Suppose A is a 2×2 matrix and that v_1 is an eigenvector of A with eigenvalue 2 and v_2 is an eigenvector of A with eigenvalue -2.

$$v_1 = \begin{bmatrix} 2 \\ 1 \end{bmatrix} \quad v_2 = \begin{bmatrix} 1 \\ 3 \end{bmatrix}$$

(a) Find the general solution to $y' = Ay$

$$c_1 e^{2t} \begin{bmatrix} 2 \\ 1 \end{bmatrix} + c_2 e^{-2t} \begin{bmatrix} 1 \\ 3 \end{bmatrix}$$

(b) Draw a picture of all solutions to $y' = Ay$. Make sure to include the solutions that always stay in some eigenspace of A.

The solutions in green are solutions of the form $ce^{2t} \begin{bmatrix} 2 \\ 1 \end{bmatrix}$. They always stay in the eigenspace E_2 of A and as $t \to \infty$ they rush away from the origin.

The solutions in red are solutions of the form $ce^{-2t} \begin{bmatrix} 1 \\ 3 \end{bmatrix}$. They always stay in the eigenspace E_{-2} of A and as $t \to \infty$ they get closer to the origin.

The solutions in black are linear combinations of the green and red solutions. As $t \to \infty$ the green component gets larger and the red component gets smaller until the green component dominates.