Review

1. For A shown below, find:

 \[
 A = \begin{bmatrix}
 1 & -2 & 0 & 3 \\
 0 & 1 & 1 & -1 \\
 0 & 0 & 0 & 0
 \end{bmatrix}
 \]

 (a) a vector in $\text{Col } A$
 (b) a vector not in $\text{Col } A$
 (c) a vector in $\text{Null } A$
 (d) a vector not in $\text{Null } A$

2. If A is an $n \times m$ matrix then how many solutions does $A\mathbf{x} = \mathbf{b}$ have if:

 (a) $\text{Null } A = \{0\}$ and $\mathbf{b} \in \text{Col } A$?
 (b) $\text{Null } A \neq \{0\}$ and $\mathbf{b} \in \text{Col } A$?
 (c) $\mathbf{b} \notin \text{Col } A$?

3. If A is an $n \times n$ invertible matrix, what are $\text{Null } A$ and $\text{Col } A$?

Bases, Dimension, and Rank

1. Is \(\left\{ \begin{bmatrix} 1 \\ 2 \\ 3 \\ 4 \end{bmatrix}, \begin{bmatrix} 1 \\ 2 \\ 3 \\ 4 \end{bmatrix} \right\} \) a basis for \mathbb{R}^2?

2. Can 2 vectors ever form a basis for \mathbb{R}^3? Can 4 vectors ever form a basis for \mathbb{R}^3? What are the possible sizes of a basis for \mathbb{R}^3?

3. Suppose V is a subspace of \mathbb{R}^n. What is the largest possible size of a basis for V? What if you know that $V \neq \mathbb{R}^n$?

4. Find a basis for $\text{Col } A$ and a basis for $\text{Null } A$.

 \[
 A = \begin{bmatrix}
 1 & 2 & 0 & 4 \\
 2 & 4 & 5 & -3 \\
 5 & 10 & 0 & 20
 \end{bmatrix}
 \]

5. For A as in the previous problem, what is rank A? What is $\text{dim}(\text{Null } A)$?

6. Suppose A is a 5×7 matrix of rank 3. What is $\text{dim}(\text{Null } A)$? (Hint: think about pivots.)

7. If A is an $n \times m$ matrix with linearly independent columns, what is the rank of A?
Vector Spaces

Which of the following are vector spaces?

1. The set of convergent sequences of real numbers whose limit is 0.
2. The set of functions from \mathbb{Z} to \mathbb{Z}.
3. The set of differentiable functions $f : \mathbb{R} \to \mathbb{R}$ such that $\frac{d}{dx} f(x) = f(x)$.
4. The set of polynomials with real coefficients of degree exactly 3.
5. The set of matrices in REF.