Review

1. What is \(\{0\}^\perp \)? (Assume \(0 \) here is referring to the zero vector in \(\mathbb{R}^n \).)

2. What is \((\mathbb{R}^n)^\perp\)?

3. If \(W \) is a subspace of \(\mathbb{R}^n \), what is \(W \cap W^\perp \)?

4. Show that for any vector \(v \) in \(\mathbb{R}^n \), \(v \cdot v \geq 0 \). When is it exactly equal to zero?

5. **Super useful fact:** Show that if \(u \) is orthogonal to the vectors \(v_1, \ldots, v_m \) then it is orthogonal to every vector in \(\text{span}\{v_1, \ldots, v_m\} \).

Transpose and Orthogonal Complement

1. Show that for any \(n \times m \) matrix \(A \), \(\text{Col}(A)^\perp = \text{Null}(A^T) \).

2. Show that for any \(n \times m \) matrix \(A \), \(\dim(\text{Row } A) = \dim(\text{Col } A) \).

3. Show that if \(W \) is a subspace of \(\mathbb{R}^n \), \(\dim(W^\perp) = n - \dim(W) \). (Hint: think of \(W \) as the column space of some matrix.)

4. Show that \((W^\perp)^\perp = W \).

Orthogonal Basis

1. Suppose \(W \) is a subspace of \(\mathbb{R}^n \) and \(\{v_1, \ldots, v_m\} \) is a basis for \(W \). Also suppose \(u \) is in \(W \) and that \(u = c_1 v_1 + \ldots + c_m v_m \). If \(1 \leq i \leq m \), what is \(u \cdot v_i \)?

2. Solve the following system of linear equations without doing any row reduction. (Hint: the columns of the coefficient matrix are orthogonal to each other.)

 \[
 \begin{align*}
 x_1 &+ 6x_2 &+ 2x_3 &= 23 \\
 2x_1 &- x_2 &+ x_3 &= 1 \\
 3x_1 & &- 16x_3 &= -29 \\
 4x_1 &- x_2 &+ 11x_3 &= 23
 \end{align*}
 \]

Definitions and Theorems

Definitions:

- Orthogonal
- Orthogonal complement
- Transpose
- Row Space
- Orthogonal Set, Orthogonal Basis
- Orthonormal Set, Orthonormal Basis
- Projection onto a subspace (i.e. \(\text{proj}_W(u) \))
Theorems:

- If a vector is orthogonal to every vector in a list then it is also orthogonal to all vectors in the span of that list.
- Col(A)⊥ = Null(Aᵀ)
- rank(A) = rank(Aᵀ)
- An orthogonal set of nonzero vectors is linearly independent.

For any subspace W of \(\mathbb{R}^n \), every vector can be written in a unique way as a sum of a vector in W and a vector in W⊥. The first vector in this sum is the closest vector in W to the original vector.

Most important idea today: Suppose you want to figure out how to write one vector as a linear combination of a list of vectors. When the vectors in the list are all orthogonal to each other, it is super easy to do.