Review

1. Find an eigenvector of eigenvalue 5 of the following linear transformation. Recall that $C^1(\mathbb{R})$ is the vector space of differentiable functions from \mathbb{R} to \mathbb{R} and $C(\mathbb{R})$ is the vector space of continuous functions from \mathbb{R} to \mathbb{R}. (Hint: it is not possible to solve this problem by translating everything to \mathbb{R}^n, but if you understand what an eigenvalue is and remember a little calculus, you do have the necessary knowledge to solve it.)

$$T: C^1(\mathbb{R}) \rightarrow C(\mathbb{R})$$

$$T(f) = \frac{df}{dx}$$

2. What are all the eigenvalues of the linear transformation in the previous problem?

Complex Eigenvalues

1. Find the eigenvalues of

$$A = \begin{bmatrix} 1/2 & -3/5 \\ 3/4 & 11/10 \end{bmatrix}$$

2. With A as in the previous problem, find an eigenvector for each eigenvalue of A.

3. Diagonalize A.

4. With v given below and A as in the previous three problems, calculate and draw $v, Av, A^2v, \ldots, A^8v$.

$$v = \begin{bmatrix} 2 \\ 0 \end{bmatrix}$$

5. If $a_0 = 1$, $a_2 = 2$ and $a_{n+1} = 2a_n - 2a_{n-1}$, find a formula for a_n.