Vector Arithmetic and Span

1. Is it possible to add together multiples of \mathbf{a} and \mathbf{b} to get \mathbf{c} ?

(a)
$$\mathbf{a} = \begin{bmatrix} 1 \\ 0 \end{bmatrix}$$
 $\mathbf{b} = \begin{bmatrix} 0 \\ 1 \end{bmatrix}$ $\mathbf{c} = \begin{bmatrix} 1 \\ -2 \end{bmatrix}$ (b) $\mathbf{a} = \begin{bmatrix} 3 \\ 5 \end{bmatrix}$ $\mathbf{b} = \begin{bmatrix} 3 \\ 2 \end{bmatrix}$ $\mathbf{c} = \begin{bmatrix} 1 \\ -2 \end{bmatrix}$

- 2. Draw span $\left\{ \begin{bmatrix} 1 \\ 3 \end{bmatrix} \right\}$, span $\left\{ \begin{bmatrix} 0 \\ 0 \end{bmatrix} \right\}$, and span $\left\{ \begin{bmatrix} 1 \\ 0 \end{bmatrix}, \begin{bmatrix} 0 \\ 1 \end{bmatrix} \right\}$.
- 3. If \mathbf{u} and \mathbf{v} are both in span $\{\mathbf{w}_1, \mathbf{w}_2\}$ then is $5\mathbf{u} 2\mathbf{v}$ also in the span of \mathbf{w}_1 and \mathbf{w}_2 ?
- 4. (a) Is it possible to find two vectors in \mathbb{R}^2 that don't span all of \mathbb{R}^2 ?
 - (b) Is is possible to find two vectors in \mathbb{R}^2 whose span does not include **0**?
 - (c) Is it possible to find two vectors in \mathbb{R}^3 whose span is all of \mathbb{R}^3 ?

Challenge problem: What is $\operatorname{span}\{\mathbf{u}_1, \mathbf{u}_2\} \cap \operatorname{span}\{\mathbf{v}_1, \mathbf{v}_2\}$?

$$\mathbf{u}_1 = \begin{bmatrix} 1 \\ 1 \\ 2 \end{bmatrix} \ \mathbf{u}_2 = \begin{bmatrix} 1 \\ 5 \\ 3 \end{bmatrix} \ \mathbf{v}_1 = \begin{bmatrix} 1 \\ 2 \\ 3 \end{bmatrix} \ \mathbf{v}_2 = \begin{bmatrix} 2 \\ 0 \\ 2 \end{bmatrix}$$