Vector Arithmetic and Span

1. Is it possible to add together multiples of \mathbf{a} and \mathbf{b} to get \mathbf{c} ?
(a)

$$
\mathbf{a}=\left[\begin{array}{l}
1 \\
0
\end{array}\right] \quad \mathbf{b}=\left[\begin{array}{l}
0 \\
1
\end{array}\right] \quad \mathbf{c}=\left[\begin{array}{c}
1 \\
-2
\end{array}\right]
$$

(b) $\quad \mathbf{a}=\left[\begin{array}{l}3 \\ 5\end{array}\right]$
$\mathbf{b}=\left[\begin{array}{l}3 \\ 2\end{array}\right] \quad \mathbf{c}=\left[\begin{array}{c}1 \\ -2\end{array}\right]$
2. Draw span $\left\{\left[\begin{array}{l}1 \\ 3\end{array}\right]\right\}$, $\operatorname{span}\left\{\left[\begin{array}{l}0 \\ 0\end{array}\right]\right\}$, and span $\left\{\left[\begin{array}{l}1 \\ 0\end{array}\right],\left[\begin{array}{l}0 \\ 1\end{array}\right]\right\}$.
3. If \mathbf{u} and \mathbf{v} are both in $\operatorname{span}\left\{\mathbf{w}_{1}, \mathbf{w}_{2}\right\}$ then is $5 \mathbf{u}-2 \mathbf{v}$ also in the span of \mathbf{w}_{1} and \mathbf{w}_{2} ?
4. (a) Is it possible to find two vectors in \mathbb{R}^{2} that don't span all of \mathbb{R}^{2} ?
(b) Is is possible to find two vectors in \mathbb{R}^{2} whose span does not include $\mathbf{0}$?
(c) Is it possible to find two vectors in \mathbb{R}^{3} whose span is all of \mathbb{R}^{3} ?

Challenge problem: What is $\operatorname{span}\left\{\mathbf{u}_{1}, \mathbf{u}_{2}\right\} \cap \operatorname{span}\left\{\mathbf{v}_{1}, \mathbf{v}_{2}\right\}$?

$$
\mathbf{u}_{1}=\left[\begin{array}{l}
1 \\
1 \\
2
\end{array}\right] \mathbf{u}_{2}=\left[\begin{array}{l}
1 \\
5 \\
3
\end{array}\right] \mathbf{v}_{1}=\left[\begin{array}{l}
1 \\
2 \\
3
\end{array}\right] \mathbf{v}_{2}=\left[\begin{array}{l}
2 \\
0 \\
2
\end{array}\right]
$$

