Dot Product and Friends

1.

$$\mathbf{u} = \begin{bmatrix} 1\\2\\-3 \end{bmatrix} \quad \mathbf{v} = \begin{bmatrix} 0\\-6\\4 \end{bmatrix}$$

- (a) Find the lengths of \mathbf{u} and \mathbf{v} —i.e. find $||\mathbf{u}||$ and $||\mathbf{v}||$.
- (b) Find the distance between \mathbf{u} and \mathbf{v} .
- (c) Find $\mathbf{u} \cdot \mathbf{v}$.
- (d) Find $\mathbf{u} \cdot (\mathbf{u} + 2\mathbf{v})$
- (e) Find the cosine of the angle between \mathbf{u} and \mathbf{v} .
- (f) Find a nonzero vector which is orthogonal to **u**
- (g) Find a unit vector in the same direction as **u**.
- 2. Let \mathbf{u} and \mathbf{v} be as in the previous problem. Find a vector that is orthogonal to both \mathbf{u} and \mathbf{v} .
- 3. True or false: three nonzero orthogonal vectors in \mathbb{R}^3 form a basis for \mathbb{R}^3 .
- 4. True or false: If **u** is orthogonal to both **v** and **w** then it is orthogonal to $2\mathbf{v} + 3\mathbf{w}$.