Dot Product and Friends

1.

$$
\mathbf{u}=\left[\begin{array}{c}
1 \\
2 \\
-3
\end{array}\right] \quad \mathbf{v}=\left[\begin{array}{c}
0 \\
-6 \\
4
\end{array}\right]
$$

(a) Find the lengths of \mathbf{u} and \mathbf{v}-i.e. find $\|\mathbf{u}\|$ and $\|\mathbf{v}\|$.
(b) Find the distance between \mathbf{u} and \mathbf{v}.
(c) Find $\mathbf{u} \cdot \mathbf{v}$.
(d) Find $\mathbf{u} \cdot(\mathbf{u}+2 \mathbf{v})$
(e) Find the cosine of the angle between \mathbf{u} and \mathbf{v}.
(f) Find a nonzero vector which is orthogonal to \mathbf{u}
(g) Find a unit vector in the same direction as \mathbf{u}.
2. Let \mathbf{u} and \mathbf{v} be as in the previous problem. Find a vector that is orthogonal to both \mathbf{u} and \mathbf{v}.
3. True or false: three nonzero orthogonal vectors in \mathbb{R}^{3} form a basis for \mathbb{R}^{3}.
4. True or false: If \mathbf{u} is orthogonal to both \mathbf{v} and \mathbf{w} then it is orthogonal to $2 \mathbf{v}+3 \mathbf{w}$.

