Review

1. True or False: The set of invertible 3×3 matrices is a subspace of $M_{3 \times 3}$ (i.e. of the vector space of all 3×3 matrices).

More Practice with Coordinates

1. Consider the following three polynomials in \mathbb{P}_2.
 \[p(x) = -2x^2 + 4x + 4 \]
 \[q(x) = 3x^2 + 6x - 2 \]
 \[r(x) = -2x^2 + x + 3 \]
 (a) What is the dimension of $\text{span}\{p(x), q(x), r(x)\}$?
 (b) Find a basis for $\text{span}\{p(x), q(x), r(x)\}$.

The Matrix of a Linear Transformation Relative to a Basis

1. Let $T: \mathbb{P}_2 \rightarrow \mathbb{R}^2$ be the linear transformation defined by
 \[T(p) = \begin{bmatrix} \int_0^2 p(x) \, dx \\ \int_1^3 p(x) \, dx \end{bmatrix} \]
 You do not need to check that T is a linear transformation.
 (a) Let \mathcal{B} be the basis $1, x, x^2$ for \mathbb{P}_2 and let \mathcal{C} be the basis $[1, 0], [0, 1]$ for \mathbb{R}^2 (i.e. the standard basis). Find $\mathcal{C}[T]_{\mathcal{B}}$.
 (b) Find a basis for the range of T.
 (c) What is the dimension of the kernel of T?
 (d) Find a nontrivial element of the kernel of T. Try graphing the polynomial that you found.

2. You may have heard before that knowing the value of a quadratic polynomial on three points completely determines the polynomial. Let’s use linear algebra to see how to do this.
 (a) Let $T: \mathbb{P}_2 \rightarrow \mathbb{R}^3$ be the linear transformation defined by
 \[T(p) = \begin{bmatrix} p(0) \\ p(1) \\ p(2) \end{bmatrix} \]
 Calculate $T(1), T(x), \text{and } T(x^2)$.
 (b) Let \mathcal{B} be the basis $1, x, x^2$ for \mathbb{P}_2 and let \mathcal{C} be the standard basis for \mathbb{R}^3. Find $\mathcal{C}[T]_{\mathcal{B}}$.
 (c) Check that T is invertible and find a matrix representing the inverse of T.
 (d) Use your answer to part (c) to find a polynomial p such that $p(0) = 10, p(1) = 5$, and $p(2) = -3$.
 (e) **Challenge problem:** Find a formula for the unique quadratic polynomial p such that $p(a_0) = b_0, p(a_1) = b_1$, and $p(a_2) = b_2$ (assuming that a_0, a_1, a_2 are all distinct).