Coordinates

1. Let's use linear algebra to solve the differential equation $y^{\prime \prime}+2 y^{\prime}-5 y=3 \sin (x)-2 \cos (x)$
(a) Let V be the vector space $\operatorname{span}\{\sin (x), \cos (x)\}$. Check that $\{\sin (x), \cos (x)\}$ is a basis for V.
(b) Write the coordinate vector of $3 \sin (x)-2 \cos (x)$ in the basis $\{\sin (x), \cos (x)\}$.
(c) Let $T: V \rightarrow V$ be the linear transformation defined by $T(f)=\frac{d^{2} f}{d x^{2}}+2 \frac{d f}{d x}-5 f$. Find the matrix for T in the basis $\{\sin (x), \cos (x)\}$.
(d) Let A be the matrix you found in part (c) and \mathbf{v} be the vector you found in part (b). Find a solution to $A \mathbf{x}=\mathbf{v}$.
(e) Use your answer to part (d) to find a solution to the original differential equation.
2. Is $\left\{\sin ^{2}(x), \cos ^{2}(x), 1\right\}$ a basis for $\operatorname{span}\left\{\sin ^{2}(x), \cos ^{2}(x), 1\right\}$?
3. Write the coordinate vector of the polynomial $p(x)=x^{2}-1$ in the basis $\left\{1, x, x^{2}+x+2\right\}$ for \mathbb{P}_{2} (you don't need to check that this is a basis).
4. If the coordinate vector of a polynomial $p(x) \in \mathbb{P}_{2}$ in the basis $\left\{1, x, x^{2}+x+2\right\}$ is $\left[\begin{array}{c}1 \\ 3 \\ -1\end{array}\right]$, what is $p(x)$?
