Abstract Vector Spaces

1. Which of the following are vector spaces?
(a) The set of sequences of real numbers that converge to 0 .
(b) The set of sequences of real numbers that converge to 1 .
(c) The set of letters in the Latin alphabet.
(d) The set of 2×3 matrices in RREF.
(e) The set of differentiable functions on the real numbers.
2. Are the polynomials $1, x^{2}, 3 x^{2}-2$ linearly independent?
3. Is the sequence $(1,0,1,0, \ldots)$ in the span of $(1,1,1,1, \ldots)$ and $(1,-1,1,-1, \ldots)$?
4. Are the following 2×2 matrices linearly independent?

$$
\left[\begin{array}{cc}
1 & 0 \\
0 & -1
\end{array}\right]\left[\begin{array}{ll}
0 & 0 \\
1 & 0
\end{array}\right]\left[\begin{array}{ll}
0 & 1 \\
0 & 0
\end{array}\right]\left[\begin{array}{cc}
-1 & -1 \\
1 & 1
\end{array}\right]
$$

5. Which of the following are linear transformations?
(a) $T: \mathbb{P}_{3} \rightarrow \mathbb{P}_{3}$ defined by $T(p)=\frac{d p}{d x}$.
(b) $T: M_{2 \times 2} \rightarrow M_{2 \times 2}$ defined by $T(A)=A+I_{2}$.
(c) $T: C([0,1]) \rightarrow \mathbb{R}$ defined by $T(f)=\int_{0}^{1} f(x) d x$.
