Math 54 Midterm 2 Review

1. Which of the following are vector spaces? (For an extra challenge, for each set that is a vector space, try to figure out its dimension.)
(a) The set of 5×5 matrices A such that $A^{T}=A$.
(b) The set of linear transformations from \mathbb{R}^{3} to \mathbb{R}^{2} that are onto.
(c) The set of all polynomials with coefficients in the real numbers that have the form $a x^{3}+b x$.
(d) The set of convergent sequences of real numbers.
2. Let V be the subspace of the vector space of continuous functions that is spanned by the set $\left\{\sin (x), \cos (x), e^{e^{x}}\right\}$ (you may assume without proof that these three functions are linearly independent). Do the functions f, g, h form a basis for V ?

$$
\begin{aligned}
& f(x)=3 \sin (x)+2 \cos (x)+e^{e^{x}} \\
& g(x)=\sin (x)+2 \cos (x) \\
& h(x)=5 \sin (x)+6 \cos (x)+e^{e^{x}}
\end{aligned}
$$

3. Let $\mathcal{B}=\left\{1+x, x+x^{2}, 1+x^{2}\right\}, \mathcal{C}=\left\{1+x+x^{2}, 2+x+x^{2}, 3 x^{2}\right\}$ and $T: \mathbb{P}_{2} \rightarrow \mathbb{R}^{2}$ be the linear transformation defined by

$$
T(p)=\left[\begin{array}{c}
p(2) \\
p(1)+p(3)
\end{array}\right] .
$$

(a) Find the matrix for T relative to \mathcal{B} and the standard basis of \mathbb{R}^{2}.
(b) Find the change of basis matrix from \mathcal{C} to \mathcal{B}.
(c) Use your answers to parts (a) and (b) to find the matrix for T relative to \mathcal{C} and the standard basis for \mathbb{R}^{2}.
4. Let \mathbf{v} and \mathbf{u} be eigenvectors of a matrix A with different eigenvalues. Show that $\mathbf{u}+\mathbf{v}$ is not an eigenvector of A.
5. Let $\mathbf{v}_{1}, \ldots, \mathbf{v}_{k}$ be eigenvectors of a matrix A with distinct eigenvalues. Show that no linear combination of $\mathbf{v}_{1}, \ldots, \mathbf{v}_{k}$ is an eigenvector of A.
6. Suppose A is a 5×5 matrix whose characteristic polynomial is $\lambda^{3}(\lambda-1)(\lambda-2)$. What are the possible values for $\operatorname{rank} A$? For which of these values is A diagonalizable?
7. Find a formula for A^{n} where

$$
A=\left[\begin{array}{ll}
2 & 1 \\
0 & 3
\end{array}\right]
$$

8. Mark each of the following statements true or false. For each statement, either give a proof that it is always true or give a counterexample to show it can be false.
(a) Let A be an $n \times n$ matrix with only positive eigenvalues such that there is an orthogonal basis for \mathbb{R}^{n} consisting of eigenvectors of A. If \mathbf{x} is a nonzero vector then $\mathbf{x} \cdot(A \mathbf{x})$ is positive.
(b) Every diagonalizable matrix is invertible.
(c) Every invertible matrix is diagonalizable.
(d) Every matrix with a repeated eigenvalue is not diagonalizable.
(e) Let V be a subspace of \mathbb{R}^{n} and W a subspace of V. Let \mathbf{x} be a vector in $\mathbb{R}^{n}, \mathbf{y}$ the projection of \mathbf{x} on the subspace V and \mathbf{z} the projection of \mathbf{y} on the subspace W. Then \mathbf{z} is the projection of \mathbf{x} on W.
(f) If \mathbf{v} and \mathbf{u} are eigenvectors of a matrix A with distinct eigenvalues then \mathbf{v} and \mathbf{u} are orthogonal.
