Math 54 Midterm 2 Review

- 1. Which of the following are vector spaces? (For an extra challenge, for each set that is a vector space, try to figure out its dimension.)
 - (a) The set of 5×5 matrices A such that $A^T = A$.
 - (b) The set of linear transformations from \mathbb{R}^3 to \mathbb{R}^2 that are onto.
 - (c) The set of all polynomials with coefficients in the real numbers that have the form $ax^3 + bx$.
 - (d) The set of convergent sequences of real numbers.
- 2. Let V be the subspace of the vector space of continuous functions that is spanned by the set $\{\sin(x), \cos(x), e^{e^x}\}$ (you may assume without proof that these three functions are linearly independent). Do the functions f, g, h form a basis for V?

$$f(x) = 3\sin(x) + 2\cos(x) + e^{e^x}$$

$$g(x) = \sin(x) + 2\cos(x)$$

$$h(x) = 5\sin(x) + 6\cos(x) + e^{e^x}$$

3. Let $\mathcal{B} = \{1+x, x+x^2, 1+x^2\}, \mathcal{C} = \{1+x+x^2, 2+x+x^2, 3x^2\}$ and $T: \mathbb{P}_2 \to \mathbb{R}^2$ be the linear transformation defined by

$$T(p) = \begin{bmatrix} p(2) \\ p(1) + p(3) \end{bmatrix}.$$

- (a) Find the matrix for T relative to \mathcal{B} and the standard basis of \mathbb{R}^2 .
- (b) Find the change of basis matrix from \mathcal{C} to \mathcal{B} .
- (c) Use your answers to parts (a) and (b) to find the matrix for T relative to C and the standard basis for \mathbb{R}^2 .
- 4. Let \mathbf{v} and \mathbf{u} be eigenvectors of a matrix A with different eigenvalues. Show that $\mathbf{u} + \mathbf{v}$ is not an eigenvector of A.
- 5. Let $\mathbf{v}_1, \dots, \mathbf{v}_k$ be eigenvectors of a matrix A with distinct eigenvalues. Show that no linear combination of $\mathbf{v}_1, \dots, \mathbf{v}_k$ is an eigenvector of A.
- 6. Suppose A is a 5×5 matrix whose characteristic polynomial is $\lambda^3(\lambda 1)(\lambda 2)$. What are the possible values for rank A? For which of these values is A diagonalizable?
- 7. Find a formula for A^n where

$$A = \begin{bmatrix} 2 & 1 \\ 0 & 3 \end{bmatrix}.$$

8. Mark each of the following statements true or false. For each statement, either give a proof that it is always true or give a counterexample to show it can be false.

1

- (a) Let A be an $n \times n$ matrix with only positive eigenvalues such that there is an orthogonal basis for \mathbb{R}^n consisting of eigenvectors of A. If \mathbf{x} is a nonzero vector then $\mathbf{x} \cdot (A\mathbf{x})$ is positive.
- (b) Every diagonalizable matrix is invertible.
- (c) Every invertible matrix is diagonalizable.
- (d) Every matrix with a repeated eigenvalue is not diagonalizable.
- (e) Let V be a subspace of \mathbb{R}^n and W a subspace of V. Let \mathbf{x} be a vector in \mathbb{R}^n , \mathbf{y} the projection of \mathbf{x} on the subspace V and \mathbf{z} the projection of \mathbf{y} on the subspace W. Then \mathbf{z} is the projection of \mathbf{x} on W.
- (f) If \mathbf{v} and \mathbf{u} are eigenvectors of a matrix A with distinct eigenvalues then \mathbf{v} and \mathbf{u} are orthogonal.