Math 54 Midterm 2 Review

1. Which of the following are vector spaces? (For an extra challenge, for each set that is a vector space, try to figure out its dimension.)

 (a) The set of 5×5 matrices A such that $A^T = A$.
 (b) The set of linear transformations from \mathbb{R}^3 to \mathbb{R}^2 that are onto.
 (c) The set of all polynomials with coefficients in the real numbers that have the form $ax^3 + bx$.
 (d) The set of convergent sequences of real numbers.

2. Let V be the subspace of the vector space of continuous functions that is spanned by the set $\{\sin(x), \cos(x), e^x\}$ (you may assume without proof that these three functions are linearly independent). Do the functions f, g, h form a basis for V?

 \[f(x) = 3\sin(x) + 2\cos(x) + e^x \]
 \[g(x) = \sin(x) + 2\cos(x) \]
 \[h(x) = 5\sin(x) + 6\cos(x) + e^x \]

3. Let $\mathcal{B} = \{1 + x, x + x^2, 1 + x^2\}, \mathcal{C} = \{1 + x + x^2, 2 + x + x^2, 3x^2\}$ and $T: \mathbb{P}_2 \rightarrow \mathbb{R}^2$ be the linear transformation defined by

 \[T(p) = \begin{bmatrix} p(2) \\ p(1) + p(3) \end{bmatrix} \]

 (a) Find the matrix for T relative to \mathcal{B} and the standard basis of \mathbb{R}^2.
 (b) Find the change of basis matrix from \mathcal{C} to \mathcal{B}.
 (c) Use your answers to parts (a) and (b) to find the matrix for T relative to \mathcal{C} and the standard basis for \mathbb{R}^2.

4. Let v and u be eigenvectors of a matrix A with different eigenvalues. Show that $u + v$ is not an eigenvector of A.

5. Let v_1, \ldots, v_k be eigenvectors of a matrix A with distinct eigenvalues. Show that no linear combination of v_1, \ldots, v_k is an eigenvector of A.

6. Suppose A is a 5×5 matrix whose characteristic polynomial is $\lambda^3(\lambda - 1)(\lambda - 2)$. What are the possible values for rank A? For which of these values is A diagonalizable?

7. Find a formula for A^n where

 \[A = \begin{bmatrix} 2 & 1 \\ 0 & 3 \end{bmatrix} \]

8. Mark each of the following statements true or false. For each statement, either give a proof that it is always true or give a counterexample to show it can be false.
(a) Let \(A \) be an \(n \times n \) matrix with only positive eigenvalues such that there is an orthogonal basis for \(\mathbb{R}^n \) consisting of eigenvectors of \(A \). If \(x \) is a nonzero vector then \(x \cdot (Ax) \) is positive.

(b) Every diagonalizable matrix is invertible.

(c) Every invertible matrix is diagonalizable.

(d) Every matrix with a repeated eigenvalue is not diagonalizable.

(e) Let \(V \) be a subspace of \(\mathbb{R}^n \) and \(W \) a subspace of \(V \). Let \(x \) be a vector in \(\mathbb{R}^n \), \(y \) the projection of \(x \) on the subspace \(V \) and \(z \) the projection of \(y \) on the subspace \(W \). Then \(z \) is the projection of \(x \) on \(W \).

(f) If \(v \) and \(u \) are eigenvectors of a matrix \(A \) with distinct eigenvalues then \(v \) and \(u \) are orthogonal.