MATH 54, FALL 2016, QUIZ 4

(1) Mark each statement true or false. If true, provide a short explanation. If false, provide a counterexample.
(a) A linear transformation from \mathbb{R}^{2} to \mathbb{R}^{3} cannot be one-to-one.
(b) A linear transformation from \mathbb{R}^{2} to \mathbb{R}^{3} cannot be onto.
(c) If T and S are both linear transformations from \mathbb{R}^{n} to \mathbb{R}^{m} and $T\left(e_{i}\right)=S\left(e_{i}\right)$ for all $i \leq n$ then $T=S$. (Recall that e_{i} is the vector in \mathbb{R}^{n} all of whose entries are 0 , except for the $i^{\text {th }}$ entry, which is 1 .)
(d) If a linear transformation is onto then it is also one-to-one.
(2) Let $T: \mathbb{R}^{3} \rightarrow \mathbb{R}^{2}$ be the linear transformation defined by

$$
T\left(\left[\begin{array}{l}
x_{1} \\
x_{2} \\
x_{3}
\end{array}\right]\right)=\left[\begin{array}{c}
x_{1}+3 x_{2}-x_{3} \\
2 x_{2}+4 x_{3}
\end{array}\right]
$$

(a) Find the standard matrix for T.
(b) Is T one-to-one? Is T onto?

