
Midterm 2 Solutions
Math 114S, Winter 2022

Instructions. Turn in your exam on Gradescope by 10 am PST on Saturday, February 26th. Late exams
are not accepted, so I advise you to turn it in at least a few minutes early. You may consult the lecture notes,
course textbooks or standard websites such as Wikipedia. You may not attempt to search for specific
exam questions online nor may you communicate with anyone besides the instructors of the
course about the contents of the exam. In particular, you should not talk to your fellow students
about the exam, except to ask logistics questions, and you may not post exam-related questions on any
Q&A websites or forums. If you have any questions about the exam, please make a private post on piazza.
There are 50 points in total.

Note: For each problem below, unless otherwise stated, you may use the Axiom of Choice (including any of
its consequences which we proved in class).

Short Answer Questions.

Question 1 (4 points)
Compute the rank of the following set: A = {{⟨R,Z⟩, {⟨Q, ω⟩}, ⟨R, Vω+2⟩}}. You may take as given the
calculations of ranks from the Homework 6 solutions. You should show work justifying your answer but
you do not need to provide a formal proof that your answer is correct.

Solution: The rank of A is ω + 9. To see why, first note that it can be shown by transfinite
induction that for any α ∈ Ord, rank(Vα) = α. Using this plus the ranks calculated in homework 6,
we can calculate ranks as follows.

Rank Sets of that rank
ω ω
ω + 1 Z
ω + 2 Vω+2

ω + 3
ω + 4 Q
ω + 5 R {Q} {Q, ω}
ω + 6 {R} {R,Z} {R, Vω+2} ⟨Q, ω⟩
ω + 7 ⟨R,Z⟩ ⟨R, Vω+2⟩ {⟨Q, ω⟩}
ω + 8 {⟨R,Z⟩, {⟨Q, ω⟩}, ⟨R, Vω+2⟩}
ω + 9 {{⟨R,Z⟩, {⟨Q, ω⟩}, ⟨R, Vω+2⟩}}

To see why the table above is correct, note that for each set in the table, its rank according to the
table is always the smallest ordinal strictly larger than the ranks of all of its elements.

Common Mistakes: Mistakes made included miscalculating the rank of Vω+2, miscalculating
the rank of an ordered pair in terms of the ranks of its elements and overlooking one or more
pairs of curly brackets.

Question 2 (8 points)
For any subset A ⊆ ω and natural number n, say that n is prime-in-A if every divisor of n which is
contained in A is equal to either 1 or n. For example, if A is the set of numbers greater than 10 then 14
is prime-in-A.
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Define a class function F : Ord → P(ω) by transfinite recursion as follows.

Zero case: F (0) = ω \ {0, 1}

Successor case: F (α+ 1) =

{
F (α) \ {n} if n is the least element of F (α) which is prime-in-F (α)

F (α) if no such n exists

Limit case: F (β) =
⋂
α<β

F (α).

For both parts below, you should give a brief justification of your answer, but you do not need to provide
a formal proof.

(a) What is F (ω + ω)?

Solution: F (ω + ω) = ∅.

Let’s start by calculating some values of F .

F (0) = {2, 3, 4, 5, 6, . . .} by definition of F
F (1) = {3, 4, 5, 6, . . .} 2 is prime (hence prime-in-F (0)) and the least

element of F (0), so it is removed
F (2) = {4, 5, 6, . . .} likewise, 3 is prime and the least element of F (1)

F (3) = {5, 6, . . .} 4 is not prime, but it is prime-in-F (2) (because all
its proper divisors have already been removed)
and it is least in F (2) so it is removed

At this point it seems reasonable to guess that for all n ∈ ω, F (n) = {m ∈ ω | m ≥ n + 2}.
And indeed, this can be proved by induction on ω. The key point is that if A is a nonempty set
of natural numbers which does not contain 0 then the least element of A is always prime-in-A
since A does not contain any of its proper divisors (which are all smaller than it).

Thus we have
F (ω) =

⋂
n∈ω

{m ∈ ω | m ≥ n+ 2} = ∅.

There are two ways to finish. First, we could note that a simple proof by transfinite induction
shows that F is decreasing—i.e. for all α < β, F (β) ⊆ F (α). Second, and even simpler, we can
note that since ω + ω is a limit ordinal greater than ω, we have

F (ω + ω) =
⋂

α<ω+ω

F (α) ⊆ F (ω) = ∅

and thus F (ω + ω) = ∅.

(b) What is F (ω3)? Recall that ω3 denotes the unique ordinal with order type ω × ω × ω.

Solution: F (ω3) = ∅.

This follows from the same reasoning as part (a). In particular, ω3 is a limit ordinal greater
than ω so F (ω3) ⊆ F (ω) = ∅.
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Comment: As many students realized, this problem was supposed to work a bit differently. I
meant to define a more interesting function that would “run out” after ω2 steps rather than after
ω steps, but I didn’t proofread the exam very carefully and ended up with a problem that was a
bit simpler than intended. However, I didn’t want to change the problem once the exam started
so I decided to keep it as is.

Question 3 (12 points)
For each set below, write either “countable,” “continuum” or “other” to indicate, respectively, that the
set is countable, has cardinality |2ω| or that neither of those two possibilities hold. You do not need to
provide any justification for your answers.

(a) The set of surjective functions
ω → {0, 1, 2, . . . , 10}.

Solution: Continuum. Let A denote the set of surjective functions from ω to {01, 2, . . . , 10}.
The function

f 7→

(
n 7→

{
n if n ≤ 10

f(n− 11) if n > 10.

)
is an injection from 2ω to A so |2ω| ≤ |A|. On other hand, A is subset of ωω so we have

|A| ≤ |ωω| ≤ |(2ω)ω| = |2(ω×ω)| = |2ω|

and thus by the Cantor-Schroeder-Bernstein theorem, |A| = |2ω|.

(b) The set of surjective functions ω → ω.

Solution: Continuum. Let A be the set of surjective functions from ω → ω. The function

f 7→

(
n 7→

{
n
2 if n is even
f(n−1

2 ) if n is odd.

)

is an injection from 2ω to A so |2ω| ≤ |A|. On other hand, A is subset of ωω so we have as in
part (a), we have |A| ≤ |2ω| and thus by the Cantor-Schroeder-Bernstein theorem, |A| = |2ω|.

(c) The set of surjective functions ω → 2ω.

Solution: Countable. Since 2ω is not countable, there are no surjective functions from ω
to 2ω. Thus this set is simply the empty set. Since the empty set is finite, it is countable
(according to our definition of “countable” from lecture).

Common Mistakes: This was the most frequently missed part of this question. Most
people who got it wrong said the set has size |2ω|, perhaps missing the significance of the
word “surjective.”

(d) The set of surjective functions 2ω → 2ω.
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Solution: Other. Let A be the set of surjective functions from 2ω → 2ω. We will show below
that |2(2ω)| ≤ |A|. By Cantor’s theorem, |2ω| < |2(2ω)| and thus |ω| < |2ω| < |A|. Therefore A
is not countable and also not the same cardinality as 2ω.

We will now show that |2(2ω)| ≤ |A|. First, for a function f : ω → 2, define shift(f) : ω → 2 as
the function

shift(f)(n) = f(n+ 1).

Also, for any m ∈ ω, let Cm denote the constantly m function. Now define a function 2(2
ω) → A

by

G 7→

(
f 7→

{
shift(f) if f(0) = 0

CG(f) if f(0) = 1.

)
This function is the desired injection.

(e) The set of isomorphism classes of finite partial orders which are in Vω+5.

Solution: Countable. The basic idea is that every isomorphism class of a finite partial order
can be described with a finite amount of information and thus the set of all such isomorphism
classes is countable. The part about Vω+5 is mostly a red herring since every isomorphism class
of finite partial orders has a representative in Vω+5. However some such restriction is needed as
the isomorphism class of a finite partial order is typically not a set and thus the collection of
all of them is clearly not a set.

More formally, note that for any n ∈ ω, any partial order of size n is isomorphic to a partial
order on n (by a trick similar to the solution of Question 6 below). Moreover, a partial order
on n is just a subset of n× n, which is a finite subset of ω × ω. Thus every finite partial order
is isomorphic to a partial order of the form ⟨n,A⟩ where A is a finite subset of ω × ω.

Let Fin(ω × ω) denote the set of finite subsets of ω × ω. Then there is a surjective function
from ω × Fin(ω × ω) to the set of isomorphism classes of finite partial orders in Vω+5 (it takes
each element of ω×Fin(ω×ω) which does represent a partial order to its isomorphism class in
Vω+5 and each other element to the isomorphism class of the empty partial order). Finally, it
is straightforward to show that ω × Fin(ω × ω) is countable by exhibiting a surjection from
ω<ω onto it.

(f) ((2ω × 2ω) ⊔ 2ω)ω.

Solution: Continuum. We can calculate

|2ω| ≤ |((2ω × 2ω) ⊔ 2ω)ω| (because |2| ≤ ((2ω × 2ω) ⊔ 2ω))
≤ |(2ω ⊔ 2ω)ω| (because |2ω × 2ω| = |2ω|)
= |(2× 2ω)ω|
= |2ω × (2ω)ω| (because |(A×B)C | = |AC ×BC |)
= |2ω × 2(ω×ω)|
= |2ω × 2ω|
= |2ω|.

Thus by the Cantor-Schroeder-Bernstein theorem, |2ω| = |((2ωω) ⊔ 2ω)ω|.
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Long Answer Questions.

Question 4 (8 points)
If f, g : ω → ω, then f dominates g if for all n ∈ ω, g(n) ≤ f(n). If A is a set of functions from ω to ω
then A is dominating if for every function g : ω → ω there is some f ∈ A which dominates g. Prove that
there is no countable dominating set of functions from ω to ω.

Solution: Suppose A is a countable set of functions ω → ω. We will show that A is not a dominating
set. Since A is countable, either A = ∅ or we can enumerate the elements of A in an infinite list
f0, f1, f2, . . . (more formally, there is a surjection F : ω → A and fn denotes F (n)).

If A = ∅ then A cannot be a dominating set, for example because no function in A dominates the
identity function Iω.

So let’s suppose that there is some sequence of functions f0, f1, f2, . . . such that A = {fn | n ∈ ω}.
We now aim to construct a function not dominated by any element of A. To that end, define a
function g : ω → ω by

g(n) = fn(n) + 1.

We will now show g is not dominated by any element of A and thus A is not a dominating set. Let
f be an element of A. Then for some n ∈ ω, f = fn and so we have

g(n) = fn(n) + 1 = f(n) + 1 > f(n).

Therefore f does not dominate g.

Question 5 (10 points)
Recall that a graph is an ordered pair ⟨V,E⟩ consisting of a set V , called the set of vertices, and a set
E of ordered pairs of elements of V , called the set of edges. A subset U ⊂ V is a clique1 if for every
a, b ∈ U , ⟨a, b⟩ ∈ E. A clique U is maximal if there is no clique U ′ such that U is a proper subset of U ′.
Show that every graph has a maximal clique.

Solution: The idea is to form a clique by adding vertices one at a time, adding a vertex at each
step as long as doing so will keep our set a clique. We can formalize this process using transfinite
recursion.

Let α be some ordinal such that there is a bijection from α to V . For each β < α, let vβ denote the
image of β under this bijection. Now define a function F : α+ 1 → P(V ) by transfinite recursion as
follows

Zero case: F (0) = ∅

Successor case: F (β + 1) =

{
F (β) ∪ {vβ} if F (β) ∪ {vβ} is a clique.
F (β) otherwise.

Limit case: F (β) =
⋃
γ<β

F (γ).

Define U = F (α). We need to show that U is a clique and that it is maximal.

1This definition of graph and clique are slightly different from the standard definitions—normally cliques are only defined
for undirected graphs without self-loops. Note that in the definition above, if U is a clique and a, b ∈ U then we must have all
of ⟨a, a⟩, ⟨a, b⟩ and ⟨b, a⟩ in U . I used this definition to keep the definitions as short as possible.
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Claim 1. For all β, γ ≤ α, if β ≤ γ then F (β) ⊆ F (γ).

Proof. Fix β ≤ α and proceed by transfinite induction on γ.

Zero case: If γ = 0 then F (γ) = ∅ is a subset of every set.

Successor case: Suppose that the conclusion holds for γ and we will show it holds for γ+1. There
are two cases. Either γ < β or β ≤ γ and F (β) ⊆ F (γ).

In the first case, either γ + 1 < β or γ + 1 = β. In either case we are done.

In the second case, note that by the definition of F , F (γ) ⊆ F (γ + 1) and so F (β) ⊆ F (γ) implies
F (β) ⊆ F (γ + 1).

Claim 2. For all β ≤ α, F (β) is a clique.

Proof. We will prove this by transfinite induction on β.

Zero case: F (0) = ∅ satisfies the definition of clique vacuously.

Successor case: Assume that F (β) is a clique and we will show that F (β + 1) is a clique. There
are two cases: either F (β) ∪ {vβ} is a clique or it’s not. If it is, then F (β + 1) = F (β) ∪ {vβ} is a
clique by assumption. If it’s not then F (β + 1) = F (β) is a clique by the inductive hypothesis.

Limit Case: Assume that β is a limit ordinal and for all γ < β, F (γ) is a clique. We want to
show that F (β) = ∪γ<βF (γ) is a clique. Let a, b ∈ F (β). Thus for some γ1, γ2 < β, a ∈ F (γ1) and
b ∈ F (γ2). Without loss of generality, suppose γ1 ≤ γ2. Then by Claim 1, F (γ1) ⊆ F (γ2) and thus
a and b are both in F (γ2). Since F (γ2) is a clique by the inductive hypothesis, ⟨a, b⟩ ∈ E. Thus
F (β) is a clique.

Note that Claim 2 implies U = F (α) is a clique. So all that remains is to show it is maximal.

Claim 3. U is maximal.

Proof. Suppose U ′ ⊆ V is a proper superset of U . We will show that U ′ is not a clique.

Since U is a proper subset of U ′, there is β < α such that vβ is in U ′ but not U . Note that β+1 ≤ α
and so by Claim 1, F (β + 1) ⊂ F (α) = U . And since vβ is not in U , this implies that vβ is not
in F (β + 1). Thus by definition of F , F (β) ∪ {vβ} is not a clique. In other words, there are a
and b in F (β) ∪ {vβ} such that ⟨a, b⟩ /∈ E. Finally, note that since F (β) ⊆ U ⊂ U ′ and vβ ∈ U ′,
F (β) ∪ {vβ} ⊂ U ′ and thus a, b ∈ U ′ so U ′ is not a clique.

Common Mistakes: Most people had the right idea for this question: use transfinite recursion
and pick vertices one at a time. However, there were several mistakes both in implementing this
idea and in proving it correct. Here are some of the mistakes:

• Several people tried to set F (0) = {v} for some vertex v. However, there is no guarantee
that the graph has any non-empty cliques so this does not always work. In particular, it
could be that for every vertex v ∈ V , ⟨v, v⟩ /∈ E and thus v cannot be part of any clique.

• Several people wrote definitions that excluded all vertices of the form vβ for β a limit ordinal.
Note that in the definition above, on step β + 1 we try to add vβ rather than vβ+1 and on
limit steps we don’t add any new vertices at all. This means that every vertex, including



Math 114S, Winter 2022 Midterm 2

limit vertices, get taken care of at successor steps. If you change the successor steps to try
to take add vβ+1 instead of vβ then to make sure limits are still taken care of correctly you
need to change the definition of F in the limit case.

• Several people claimed without proof various things about the function F . For example
that F (β) is a clique for all β ≤ α. Even if you think this is too obvious to prove, it is a
good idea to at least mention that it can be proved, for example “this can be proved using
transfinite induction on β.”

• People who did not properly take care of vertices at limit ordinals typically also had mistakes
in their proofs. Usually these mistakes amounted to implicitly assuming that every vertex
v ∈ V was of the form vβ+1 for some β.

• This is not a mistake per se, but some people produced proofs that were quite difficult to read.
For example, proofs that launched into the proof of some claim or lemma without clearly
stating what was being proved, proofs by transfinite induction that only mentioned the
word “induction” halfway through in the middle of the inductive step, proofs by transfinite
induction where the inductive hypothesis seemed to change halfway through the proof and
so on. People also sometimes introduced new notation without explaining it. Keep in mind
that proof writing is still a form of writing and the goal is to clearly communicate your
ideas to another person. Thus you should try to write proofs in such a way that anyone
reading your proof can easily follow your writing. This includes doing things like: clearly
sign-posting what you are proving in each major section of the proof, clearly stating your
induction hypothesis when using induction and explaining any new notation or terminology.
It also includes structuring your proof so that a reader who is merely skimming it can
quickly find the major steps of your proof without having to go through all the details first.

Question 6 (8 points)
Graphs ⟨V,E⟩ and ⟨V ′, E′⟩ are isomorphic if there is a bijection f : V → V ′ such that for all u, v ∈ V ,

⟨u, v⟩ ∈ E ⇐⇒ ⟨f(u), f(v)⟩ ∈ E′.

Without using the Axiom of Foundation, show that for every graph ⟨V,E⟩, there is some α ∈ Ord such
that Vα contains a graph isomorphic to ⟨V,E⟩.

Solution: The idea is just that for any graph ⟨V,E⟩, we can pick some ordinal which is in bijection
with V and then use the bijection to “copy over” the graph structure to the ordinal.

Let’s do this slightly more formally. Let ⟨V,E⟩ be a graph. We showed in class that the Axiom
of Choice implies that there is some ordinal α such that |V | = |α|. Let f : V → α be a bijection
witnessing that |V | = |α|. Define E′ ⊂ α× α by

E′ = {⟨f(u), f(v)⟩ | ⟨u, v⟩ ∈ E}.

Note that ⟨V,E⟩ is isomorphic to ⟨α,E′⟩ via f and that ⟨α,E′⟩ ∈ Vα+5 so we are done.

Comment: Here’s the broader significance of this question. In set theory it is common to adopt
axioms more or less saying that every set is built up only out of other sets—in ZFC this is the
purpose of the Axiom of Foundation. There are several reasons set theorists like to do this,
including perhaps because it gives a nice and tidy picture of the universe of sets. However, in the
“real world” (and perhaps even in the “real world” of pure mathematics), not everything is a set
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and not every set only contains other sets. Thus to many people, building this assumption into
set theory may seem a little crazy.

Here is the standard response from set theorists. First, we can define a class of sets such that
each set in the class only contains other sets in the class as elements. This class is often referred
to as the class of “hereditary sets” and, in our development of set theory, is equal to ∪α∈OrdVα.
Second, every mathematical structure is structurally identical to one which is only built out of
these sorts of sets. Thus adding an axiom saying that all sets are hereditary sets does not actually
change which mathematical objects can be constructed. So, sure, it may be artificial to consider
only “hereditary sets” but it will not cause any practical problems to do so.

This question asks you to show that if we are just interested in graphs and we interpret “structurally
identical” to mean “isomorphic to” then the set theorists’ claim is true. Note, however, that the
proof above requires both the Axiom of Choice and (implicitly) the Axiom of Replacement which
are often seen as the most questionable of the axioms of ZFC. In fact, it is not possible to prove
the claim without using both of those axioms. On the other hand, most mathematicians seem
happy to accept the Axiom of Choice and do not seem bothered by the Axiom of Replacement
(assuming they have heard of it) so maybe this is not such a big deal.


