
Final Exam Solutions
Math 114S, Winter 2022

Instructions. Please carefully read the instructions for each section. Also, for each problem on this exam,
unless explicitly stated otherwise, you may use all axioms of ZFC. There are 100 points in total.

Short Answer Questions.
For each question in this section, you do not need to give any justification for your answers.

Question 1 (16 points)
Mark each of the following as True or False.

(a) Without making any other changes to our development of mathematics within ZFC, we could have
defined an ordered pair as a function with domain {∅, {∅}}.

Solution: False. Since our definition of “function” depended on the definition of “ordered
pair,” this definition would be circular.

(b) For every set x, rank(tc(x)) = rank(x), where tc(x) denotes the transitive closure of x.

Solution: True. First note that since x ⊂ tc(x) we have

rank(x) = sup{rank(y) + 1 | y ∈ x} ≤ sup{rank(y) + 1 | y ∈ tc(x)} = rank(tc(x)).

Now we need to show that rank(tc(x)) ≤ rank(x). There are two ways to do prove this, the
“top down” approach and the “bottom up” approach.

The “top down” approach is to recall that the transitive closure of x is the smallest transitive
set of which x is a subset. Now recall that if rank(x) = α then x ⊆ Vα. Since Vα is a transitive
superset of x, we must have tc(x) ⊂ Vα. Hence tc(x) has rank at most α.

The “bottom up” approach is to recall our construction of tc(x) as x∪
⋃
x∪

⋃⋃
x∪. . .. Note that

if y ∈
⋃
x then there must be some z ∈ x such that y ∈ z. Hence rank(y) < rank(z) < rank(x).

Similarly, one can show by induction on ω that every element of tc(x) must have rank less than x.
Since the rank of tc(x) is the supremum of the successors of these ranks, rank(tc(x)) ≤ rank(x).

(c) There is an ordinal α ≥ ω such that αα = α (where αα here is referring to ordinal exponentiation,
not cardinal exponentiation).

Solution: False. Since ordinal addition, multiplication and exponentiation are all order
preserving, for any α ≥ ω we have

α < α+ 1 ≤ α+ α = α× 2 ≤ α× α = α2 ≤ αα.

Actually, it’s true more generally that for any α > 1 and any β < β′, αβ < αβ′ (this can be
proved using transfinite induction). Applying this with β = 1 and β′ = α also gives the result.

(d) If M,A, and B are sets such that A,B ∈ M and M ⊨ “|A| = |B|” then |A| = |B|.
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Solution: False. Suppose B is a much larger set than A but their intersections with M have
the same size. Then M could “think” that A and B are in bijection (because M ignores all
elements of B that are not in M). For a concrete example, take A = ω, B = ℵ1 and M some
set that contains A, B, all natural numbers, all sets of natural numbers of size 1, all sets of
natural numbers of size 2, all ordered pairs of natural numbers and the identity on ω.

Common Mistakes: This was the most frequently missed True/False question. One reason
it might be tricky is that it is actually true if M is transitive (though even this requires a bit
of thought because “bijection” does not necessarily mean quite the same thing in M that it
does “in the real world”). It also might be tricky because it can be unintuitive to think about
what is “true according to M ” and because this topic was introduced only at the end of the
course.

Question 2 (5 points)
Write the formula “R is a binary relation” in the language of set theory—i.e. using only variables, logical
symbols and the symbols ∈ and =.

Solution: Recall that a binary relation is just a set of ordered pairs. So we want to say that every
element of R is an ordered pair. Substituting in the formal definition of “ordered pair,” this gives us

∀p
[
p ∈ R =⇒ ∃a ∃b

(
∀x (x ∈ p ⇐⇒ (∀y (y ∈ x ⇐⇒ y = a)

∨ ∀y (y ∈ x ⇐⇒ (y = a ∨ y = b))))
)]
.

Another way to express this is

∀p
[
p ∈ R =⇒ ∃a ∃b∃c∃d∀x ((x ∈ p ⇐⇒ (x = c ∨ x = d)) ∧ (x ∈ c ⇐⇒ x = a)

∧ (x ∈ d ⇐⇒ (x = a ∨ x = b)))
]

Common Mistakes: There were a few common types of mistakes for this problem.

• Some people used ⇐⇒ instead of =⇒ after “p ∈ R.” However, this would mean that R
contains all ordered pairs rather than just that every element of R is an ordered pair.

• Some people switched the order of ∃a∃b and ∀x in the formula. However this would just
imply that p is a set of sets of size 1 and 2, which is not quite right.

• Some people wrote something like the second formula above, but replaced one or more of
the ⇐⇒ ’s with ∧’s, for example writing ∃x (x ∈ p∧ (x = c∨ x = d)). But this just implies
p contains either c or d, not that p = {c, d}.

Common Mistakes: The following were not strictly mistakes, but seem worth pointing out.

• A few people required that there were some sets X and Y such that R ⊆ X × Y . It
is possible to prove in ZFC that every binary relation has this property, but it was not
technically part of our definition of “binary relation” and is not necessary here.

• Many people wrote formulas that were much more complicated than necessary. For example,



Math 114S, Winter 2022 Final Exam

some people tried to split into different cases depending on whether a = b. However, this is
not necessary and just makes the formula harder to read.

Question 3 (5 points)
Let 0R denote the additive identity of the real numbers. Using the definition of R that we gave in class,
list all elements in the transitive closure of 0R.

Solution: Recall that, formally, 0R = {q ∈ Q | q < 0Q}. Also recall that we showed in class that
tc(x) = x∪

⋃
x∪

⋃⋃
x∪ . . .. So we need to calculate

⋃
0R,

⋃⋃
0R and so on. If we do this, we get

tc(0R) ={q ∈ Q | q < 0Q}
∪ {⟨n,m⟩ ∈ Z× Z | (n < 0Z and m > 0Z) or (n > 0Z and m < 0Z)}
∪ {{n} | n ∈ Z and n ̸= 0Z}
∪ {{n,m} | n,m ∈ Z and ((n < 0Z and m > 0Z) or (n > 0Z and m < 0Z))}
∪ {n ∈ Z | n ̸= 0Z}
∪ {⟨k, l⟩ ∈ ω × ω | k ̸= l}
∪ {{k} | k ∈ ω}
∪ {{k, l} | k, l ∈ ω and k ̸= l}
∪ ω.

A few points here deserve a bit more explanation. First, note that if q is a rational number less
than 0 then q must be a set of nonzero integers. Thus the integer 0Z is not part of the transitive
closure of 0R. Next, if n is a nonzero integer then all of its elements must have the form ⟨k, l⟩ for
k, l ∈ ω such that k ̸= l. Moreover, each such pair is contained in soome nonzero integer. Finally, ω
is a transitive set, so the “unfolding” process stops there.

Common Mistakes: The most common mistake was to either not realize that 0Z should not
be in the transitive closure or to realize that but fail to “propagate” that realization—e.g. to not
include 0Z but still include sets like ⟨k, k⟩ where k ∈ ω. Some people also left out some sets—e.g.
by going directly from ordered pairs of integers to integers.

Comment: When grading this question, all I was really looking for was the list of elements of
tc(0R), not the surrounding explanation. However, many people wrote quite a bit of explanation
(up to an entire typed page). Perhaps that’s because it was somewhat unclear exactly what the
question was asking for or perhaps its because the solutions to the midterm exams provided
explanations even for questions that didn’t ask for it. In case the latter factor was responsible, let
me clarify that I try to give extra explanation on the solutions to make them more helpful to
read—they are not intended to be examples of what you need to actually write on the exam itself.

Examples and Constructions.
For each question in this section, provide the example or construction requested. You do not need to provide
any justification for your answers.

Question 4 (8 points)
One day you meet some aliens from the planet Orbifulx, and you learn that everything in their
development of mathematics revolves around circles. Therefore, rather than either ordered or unordered
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pairs, they prefer to consider triplets of objects arranged in a circle, which we will refer to as “circular
triples.” Two circular triples are considered the same if one can be rotated (but not reflected) so that it
is equal to the other. Your task is to convince the Orbifulxians that their concept of “circular triples”
can be constructed within set theory.

To be more precise, let ◦(x, y, z)◦ denote the circular triple consisting of x, y, and z arranged in a circle
so that if we go around the circle in clockwise order, starting from x, we will encounter x, y and z in
that order. So ◦(x, y, z)◦ = ◦(y, z, x)◦ no matter what x, y and z are, but ◦(x, y, z)◦ = ◦(y, x, z)◦ if and
only if at least two of x, y, z are equal. Explain how to define ◦(x, y, z)◦ for all sets x, y, z such that it
will behave as the Orbifulxians expect.

Solution: There were two main valid solutions.

Solution 1. Define ◦(x, y, z)◦ = {⟨x, y, z⟩, ⟨y, z, x⟩, ⟨z, x, y⟩}.

Solution 2. Define ◦(x, y, z)◦ = {⟨x, y⟩, ⟨y, z⟩, ⟨z, x⟩}.

Common Mistakes: Several people tried to define ◦(x, y, z)◦ as an equivalence class in a certain
equivalence relation. The main problem with this is that without further justification, it does not
look like a valid construction of a set within ZFC. In fact, if you define an equivalence relation on
ordered triples in the obvious way then the equivalence classes actually will be sets, and in fact
they will be exactly the sets defined in the first solution above. However, you should not assume
this fact is obvious to the Orbifulxians.

There is actually a second technical issue with this approach: the definition of “equivalence relation”
that we gave in class technically required equivalence relations to be sets, not proper classes. We
talked informally about things like cardinality as being an equivalence relation, but we never
made this formal.

For these reasons, solutions that tried to define an equivalence relation on ordered triples were
not given full credit (though unless other mistakes were made, such solutions were given close to
full credit).

Question 5 (8 points)
Suppose F is a class function defined on the ordinals and α is an ordinal. Say that F stabilizes at α
if α is the least ordinal such that for all β > α, F (β) = F (α). Give an example of a class function
F : Ord → {0, 1} which does not stabilize at any ordinal.

Solution: There are many possible valid solutions. Probably the simplest one is to define

F (α) =

{
0 if α = 0 or α is a limit ordinal
1 if α is a successor ordinal.

Question 6 (8 points)
Recall the definition of stabilizes at from the previous question. Given any function g : P(ω) → P(ω),
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define a class function Fg : Ord → P(ω) by transfinite recursion as follows:

Zero case: Fg(0) = ω

Successor case: Fg(α+ 1) = g(Fg(α))

Limit case: Fg(β) =
⋂
α<β

Fg(α).

Give an example of a function g : P(ω) → P(ω) such that Fg stabilizes at ω2 and for all A ⊆ ω,
g(A) ⊆ A.

Solution: There are many valid examples here, though you have to be a little bit careful (as I
unfortunately found out when writing midterm 2).

Here’s one example that works. First, for any set ∅ ̸= A ⊆ ω \ {0, 1}, define p(A) to be the least
prime number which divides some element of A. Second, for any set ∅ ̸= A ⊆ ω \ {0, 1}, define n(A)
to be the least element of A which is divisible by p(A). Now define g : P(ω) → P(ω) by

g(A) =


A \ {0, 1} if 0 ∈ A or 1 ∈ A

A \ {n(A)} if ∅ ̸= A ⊆ ω \ {0, 1}
∅ if A = ∅.

It is clear that for all A ⊆ ω, g(A) ⊆ A. Now note that we have

Fg(0) = {0, 1, 2, 3, 4, 5, 6, 7, 8, . . .}
Fg(1) = {2, 3, 4, 5, 6, 7, 8, . . .}
Fg(2) = {3, 4, 5, 6, 7, 8, . . .}
Fg(3) = {3, 5, 6, 7, 8, . . .}

...
Fg(ω) = {3, 5, 7, 9, 11, . . .}
Fg(ω + 1) = {5, 7, 9, 11, . . .}
Fg(ω + 2) = {5, 7, 11, . . .}

...

Hopefully the pattern is clear. After ω steps, all multiples of 2 have been removed. After ω × 2
steps, all multiples of 3 have been removed. More generally, after ω × n steps, all multiples of the
nth smallest prime number have been removed. Thus, after ω × ω = ω2 steps, all numbers have
been removed and Fg stabilizes to ∅.

Comment: There is another sort of example which may feel somehow like “cheating” but which
does not violate any of the constraints of the problem and which is a completely valid solution.
Namely, pick some bijection p : ω → ω × ω. Then define g : P(ω) → P(ω) as follows

g(A) =

{
∅ if A = ∅
A \ {p−1(α)} if A ̸= ∅ and α is the least element of p[A]

where “least element of p[A]” refers to the standard ordering on ω × ω which we defined in class
(i.e. the reverse lexicographic ordering). The idea is basically just to think of A as a subset of
ω × ω and ensure that in step α of the transfinite recursion, we will remove α from the set.
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Common Mistakes: Some solutions to this question did not actually give well-defined functions
on all of P(ω). For example, some people tried to define g(A) in terms of the least prime contained
in A, or the least power of a prime. However, there are plenty of sets A ⊆ ω which do not contain
any primes or do not contain any powers of primes so such definitions only make sense if they
include a case for handling these sorts of A’s.

Long Answer Questions.

For each question in this section, provide a complete proof.

Question 7 (12 points)
Let A denote the set of all functions ω → ω. Let ∼ be the binary relation on A defined by

f ∼ g ⇐⇒ {n ∈ ω | f(n) ̸= g(n)} is finite.

Note that ∼ is an equivalence relation on A (you do not need to prove this). Show that A/∼ is
uncountable.

Solution: There are a few different valid solutions.

Solution 1: Diagonalization. One solution is to use a diagonalization argument. Suppose A/∼
is countable. Then we can enumerate its elements with some sequence C0, C1, C2, . . .. Using the
Axiom of Choice we can pick representatives f0 ∈ C0, f1 ∈ C1, . . .. We will now construct a function
g : ω → ω such that for all n ∈ ω, g ≁ fn. This shows that [g]∼ is not equal to any of the Cn’s and
thus that the Cn’s do not actually enumerate A/∼. Define g as follows

g(n) = 1 +max
i≤n

fi(n).

Now let n be any natural number. Note that for all m ≥ n, g(m) > fn(m) and hence g and fn
disagree at infinitely many places. Thus g ≁ fn, as desired.

Solution 2: Computing sizes of equivalence classes. Another solution is to show that each equivalence
class in A/∼ is countable. Let’s first see why this is enough to finish the proof. By the Axiom of
Choice, any countable union of countable sets is countable. Thus if A/∼ is countable then so is its
union, which is just A itself. But we have already shown in class that A is not countable.

Now let’s actually show that each equivalence class in A is countable. Fix an equivalence class
C ∈ A/∼ and a representative f ∈ C. Recall that ω<ω denotes the set of finite sequences of natural
numbers. We will show there is a surjection from ω<ω to C. Since we showed in class that ω<ω is
countable, this is enough to show C is countable. The surjection can be defined as follows. For any
σ ∈ ω<ω define a function fσ : ω → ω by

fσ(n) =

{
σ(n) if n ∈ dom(σ)

f(n) otherwise.

We now claim that the map σ 7→ fσ is a surjection from ω<ω onto C. Let g be an element of C.
Since g ∼ f , there is some largest natural number n such that g(n) ̸= f(n). Let σ = g ↾ (n+ 1) and
note that g = fσ.

Solution 3: An injection from 2ω. A third solution is to just directly build an injection from 2ω into
A/∼. The basic idea of the injection is that we can map distinct elements of 2ω to elements of A
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in distinct equivalence classes by “repeating each bit infinitely many times.” Let’s now make this
precise.

Pick a bijection p : ω → ω× ω. Also for any x = ⟨n,m⟩ ∈ ω× ω, let x0 denote the first element of x
(i.e. n) and let x1 denote the second element of x (i.e. m). Now for any f ∈ 2ω define a function
f̃ : ω → ω as follows

f̃(n) = f(p(n)0).

In other words, f̃ repeats each bit of f infinitely many times—i.e. f(0) is repeated at f̃(p−1(⟨0, 0⟩)),
f̃(p−1(⟨0, 1⟩)), f̃(p−1(⟨0, 2⟩)) and so on.

Define a map 2ω → A/∼ by f 7→ [f̃ ]∼. We claim this map is injective. To see why, suppose f ̸= g
are elements of 2ω. Let n ∈ ω be such that f(n) ̸= g(n). Thus for all m ∈ ω, f̃(p−1(⟨n,m⟩)) =
f(n) ̸= g(n) = g̃(p−1(⟨n,m⟩)). The point is that f̃ and g̃ disagree at infinitely many points and
therefore f̃ ≁ g̃. Since f̃ ≁ g̃, we have [f̃ ]∼ ̸= [g̃]∼ as desired.

Comment: There are a couple interesting points about the three proofs above.

First, the first two proofs require the Axiom of Choice, but the third one does not.

Second, the third proof actually proves more than the first two. The first two just show that A/∼
is not countable, but the third shows that its cardinality is at least |2ω| (this is only implied by
uncountability if you assume the continuum hypothesis). This raises a question: what is the exact
cardinality of |A/∼|? Using the Axiom of Choice, it is easy to show it is exactly |2ω| = |ωω|—there
is an obvious surjection from ωω to A/∼ and using Choice this can be converted to an injection
going the other way. Thus we have |2ω| ≤ |A/∼| ≤ |ωω| = |2ω| so by the Cantor-Schroeder-
Bernstein theorem, they are equal. Without the Axiom of Choice, the situation is different: it is
actually not possible to show that |A/∼| ≤ |2ω|. This demonstrates a rather bizarre possibility
when working without the Axiom of Choice. Namely, it is possible that a quotient of a set has
strictly larger cardinality than the set itself.

Question 8 (10 points)
Without using the Axiom of Choice, show that for any infinite sets A and B, |A×B| ≤ |AB|.

Solution: We need to show that there is an injective function A×B → AB. In other words, we
need to explain how to associate a function B → A to each pair ⟨a, b⟩ ∈ A×B in such a way that
distinct pairs are associated with distinct functions. One natural way to do this is to send the pair
⟨a, b⟩ to a function which takes value a at b and is constant (and not equal to a) everywhere else.
Since B is infinite, if we are given such a function then we can tell what a and b are as follows: first
look for an element of the domain of the function whose image is different from all other elements of
the domain (that element will be b) and then check where that element gets mapped to (that will
be a). The only problem with that for each a ∈ A, we need to pick some value of A not equal to a.
Superficially, this seems to require the Axiom of Choice. However, if we are more careful then it can
actually be done without using Choice.

Let’s now do this more carefully. Since A is infinite, it has at least two elements. So we may pick
a0, a1 ∈ A such that a0 ̸= a1. Now for any ⟨a, b⟩ ∈ A×B, define a function fa,b : B → A as follows

fa,b(x) =


a if x = b

a0 if x ̸= b and a ̸= a0

a1 if x ̸= b and a = a0.
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We now claim that the map ⟨a, b⟩ 7→ fa,b is an injective function from A×B to AB.

To see why, let ⟨a, b⟩, ⟨a′, b′⟩ ∈ A×B such that fa,b = fa′,b′ . Since B is infinite, we can find some
d ∈ B which is equal to neither of b and b′. We now split into two cases.

Case 1: a = a0 or a′ = a0. Without loss of generality, assume a = a0. In this case, fa′,b′(d) =
fa,b(d) = a1. Since d ̸= b′, this implies a′ = a0 and hence a = a′. Since a0 = fa,b(b) = fa′,b′(b) and
fa′,b′ is only equal to a0 at b′, we must have b = b′. Thus ⟨a, b⟩ = ⟨a′, b′⟩.

Case 2: a ≠ a0 and a′ ̸= a0. In this case, fa,b(b
′) = fa′,b′(b

′) = a′ ̸= a0. But since a ̸= a0,
there is only one place where fa,b is not equal to a0, namely at b. Thus b = b′. Therefore
a = fa,b(b) = fa,b(b

′) = fa′,b′(b
′) = a′. So ⟨a, b⟩ = ⟨a′, b′⟩ and we are done.

Common Mistakes: There were two main types of mistakes in this problem.

First, some people used essentially the construction above, but instead of using the trick with
a0 and a1 to find some element of A not equal to a, they simply said something like “pick some
element of A not equal to a.” The problem is that this is implicitly using the Axiom of Choice,
which the problem explicitly forbids. The point of picking a0 and a1 in advance is that it allows
us to explicitly define which element of A we should use in each case and since we have only had
to make a finite number of arbitrary choices (our choice of a0 and a1) rather than infinitely many,
we do not have to use the Axiom of Choice.

Second, some people gave an alternate construction that was not injective. For example, some
people tried to define fa,b as follows. First, pick some a0 ∈ A and then define

fa,b(x) =

{
a if x = b

a0 otherwise.

The trouble with this definition is that for all b, b′ ∈ B, fa0,b = fa0,b′ . By the way, this particular
construction should seem a bit suspicious immediately because it never seems to use the fact that
|A| ≥ 2, even though the claim in the problem statement fails if |A| = 1. Other people tried more
complex variations on this idea which failed to be injective for a number of different reasons.

Common Mistakes: One uncommon mistake was to define an injection A × B → AB using
some injection ω → A. Unfortunately, however, the fact that |ω| ≤ |A| for every infinite set A is
not provable without the Axiom of Choice so this approach does not work.

Comment: This problem is quite similar to an optional homework problem from lecture 23,
which asked you to show without Choice that for all infinite sets A and B, |A ⊔B| ≤ |A×B|. If
the problem above appealed to you then I recommend you spend a few moments thinking about
this one as well. It’s not quite as obvious as it at first appears.

Question 9 (12 points)
Show that the Axiom schema of Separation is not provable from the Axioms of Extensionality, Empty
Set and Powerset. In other words, show that there is some instance of the Axiom of Separation that is
not provable from those three Axioms.



Math 114S, Winter 2022 Final Exam

Solution: In class, we only learned one technique to prove independence results in set theory.
Namely, if you want to prove that one set of sentences T cannot prove some other sentence φ, then
find a set which is a model of every sentence in T but which is not a model of φ. So that’s what
we’ll do here. In particular, we will show that ω is a model of the Axioms of Extensionality, Empty
Set and Powerset, but is not a model of some instance of Separation.

Extensionality: We showed in class that every transitive set is a model of the Axiom of Extension-
ality and we also showed that ω is transitive.

Empty Set: We showed in class that every nonempty set is a model of the Axiom of Empty Set.

Powerset: We claim that for all n ∈ ω, ω ⊨ P(n) = (n+ 1). It is worth pointing out here that
n+1 is not really the powerset of n—it is just the case that it looks like it is from the perspective of
ω (basically because ω is missing most subsets of n). To see why this is true, recall that the formal
definition of “x = P(n)” is

∀y (y ∈ x ⇐⇒ ∀z (z ∈ y =⇒ z ∈ n)).

Relativized to ω, this becomes

∀y ∈ ω (y ∈ x ⇐⇒ ∀z ∈ ω (z ∈ y =⇒ z ∈ n)).

Note that for m ∈ ω, if m ≤ n then m ⊆ n and hence ∀z ∈ ω(z ∈ m =⇒ z ∈ n) and if m > n then
n ∈ m ∩ ω but n /∈ n ∩ ω. Therefore, the only sets in ω which satisfy the final clause in the formula
above are 0, 1, . . . , n. And since n+ 1 is exactly the set containing all of these, it will satisfy the
formula above.

Failure of Separation: Let ϕ(x, y) denote the formula x = y. We will show that ω fails to model
the instance of Separation using the formula ϕ with parameter 1 applied to the set 2 = {0, 1}. This
instance of Separation states the following

∃z ∀x(x ∈ z ⇐⇒ (x ∈ 2 ∧ x = 1)).

Relativized to ω, this becomes

∃z ∈ ω ∀x ∈ ω(x ∈ z ⇐⇒ (x ∈ 2 ∧ x = 1)).

In other words, it asserts that there is some z ∈ ω such that z ∩ ω = {1}. However, since every
element of ω that contains 1 also contains 0, this statement is false.

Comment: You might have noticed that deciding what sentences are true according to some
model M can require a lot of care and attention to detail. In general, the assertion that M ⊨ ϕ
may be quite different than the assertion that ϕ itself holds. In addition, determining whether
M ⊨ ϕ seems to require writing out ϕ in the language of set theory, which can result in some rather
long formulas. So how do set theorists handle this sort of complexity when proving independence
results? There are two, complementary, answers.

First, set theorists have developed a lot of intuition for what it means for various common formulas
to hold or not hold in a model M and which statements hold of M if and only if they hold “in the
real world.” Second, this intuition is supplemented with a number of precisely stated theorems
stating that for certain sorts of models M and certain sorts of formulas ϕ, M ⊨ ϕ if and only if ϕ
holds. Such theorems are typically referred to as “absoluteness theorems.”
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Here’s one example of such a theorem. Suppose M is a transitive set and ϕ is a formula with
parameters from M such that all quantifiers in ϕ have the form ∀x ∈ y or ∃x ∈ y (such quantifiers
are called bounded). Then M ⊨ ϕ if and only if ϕ holds. If you look back at the proof we gave in
class for the independence of the Axiom of Replacement, you’ll see that applying this theorem
could have simplified several parts of the proof.

Common Mistakes: Several people gave proofs that made incorrect assumptions about when a
model “believes” some fact about a set. For example, it is tempting to assume that if y = P(x)
and x, y ∈ M then M ⊨ “y = P(x)” but this is false in general (the problem is that there may be
some sets which M “thinks” are subsets of x but which are actually not subsets of x and hence
not contained in y). Thus to show that M is a model of the Axiom of Powerset, it is not enough
to check that M is closed under the powerset operation.

Common Mistakes: Several people described sets M that either were not models of the Axiom
of Powerset or were models of the Axiom of Separation (or both). In one case, someone gave a set
M which was not a model of Extensionality or Powerset, but was a model of Separation.

One common response of this sort was to define M = {∅, {∅}, {{∅}}, . . .}. However, this is not
a model of the Axiom of Powerset. To see why, note that M ⊨ ∅ ⊆ {∅} and M ⊨ {∅} ⊆ {∅}.
Thus any set which M believes is the powerset of {∅} must contain both ∅ and {∅}, but M does
not contain any such set. This also is a model of the Axiom of Separation (as a small exercise,
try figuring out why that is).

Common Mistakes: Several people also tried to give heuristic arguments for why Separation is
not provable from Extensionality, Empty Set and Powerset. For example, if you start with the
empty set and iterate taking the powerset then you can only ever get bigger sets, not smaller
subsets of sets you already have. Unfortunately, these arguments, while perhaps persuasive at an
informal level, do not rigorously prove anything. They can be made into formal mathematical
arguments by building some set M which makes precise the informal argument that “by iterating
powerset you can never capture smaller subsets of sets you already have.”

Question 10 (16 points)
Recall that a graph is simply a pair consisting of a set V , called the set of vertices, and a set E ⊆ V ×V ,
called the set of edges. If x is a set, the membership graph of x is the graph whose set of vertices is x
and whose set of edges is the set {⟨y, z⟩ | y, z ∈ x and y ∈ z}. A graph is realizable if it is isomorphic to
the membership graph of some transitive set.

A graph is rankable if there is some way of assigning ordinals to the vertices such that ordinal assignments
always increase along edges—i.e. G = ⟨V,E⟩ is rankable if there is some function f : V → Ord such
that for all edges ⟨u, v⟩ ∈ E, f(u) < f(v). A graph G = ⟨V,E⟩ is rigid if for all u, v in V ,

{w ∈ V | ⟨w, u⟩ ∈ E} = {w ∈ V | ⟨w, v⟩ ∈ E} =⇒ u = v.

Prove that a graph is realizable if and only if it is rankable and rigid.

Solution: ( =⇒ ) Suppose G = ⟨V,E⟩ is a realizable graph. So there is some transitive set x and
some bijection f : V → x such that for all u, v ∈ V , ⟨u, v⟩ ∈ E if and only if f(u) ∈ f(v). We need
to show G is rankable and rigid.



Math 114S, Winter 2022 Final Exam

To see that G is rankable, consider the function g : V → Ord defined by g(v) = rank(f(v)). Note
that if ⟨u, v⟩ ∈ E then f(u) ∈ f(v) and hence rank(f(u)) < rank(f(v)). Thus g increases along any
edge in E.

To see that G is rigid, suppose we have u, v ∈ V such that {w ∈ V | ⟨w, u⟩ ∈ E} = {w ∈ V |
⟨w, v⟩ ∈ E}. Since f is an isomorphism, this implies that {y ∈ x | y ∈ f(u)} = {y ∈ x | y ∈ f(v)}
or, in other words, that f(u) ∩ x = f(v) ∩ x. But since x is transitive and f(u), f(v) ∈ x, we have
f(u), f(v) ⊆ x and thus f(u) = f(u) ∩ x = f(v) ∩ x = f(v). And since f is a bijection, f(u) = f(v)
implies that u = v.

( ⇐= ) Suppose G = ⟨V,E⟩ is a graph which is both rankable and rigid and let f : V → Ord be a
ranking function. By the Axiom of Replacement, we can assume that the codomain of f is actually
some fixed ordinal, α and that f is an actual function, rather than a class function. The idea now is
to assign sets to vertices in V by transfinite recursion, on step β assigning sets to all vertices v such
that f(v) = β (none of these vertices can be neighbors of each other, so it is okay to assign all of
them simultaneously). At each step, there is actually one valid choice of which set to assign to each
vertex (if we wish to end up mapping G to the membership graph on a transitive set) and rigidity
will guarantee that the assignment is injective.

More formally, we will use transfinite recursion to define a function β 7→ gβ such that for each
β < α, gβ is a function with domain {v ∈ V | f(v) = β}. We can then stitch all of these functions
together to get a single function defined on all of V . So suppose that we have already defined gγ for
all γ < β. Then we define gβ as follows.

gβ(v) = {gf(u)(u) | f(u) < β and ⟨u, v⟩ ∈ E}.

Note that by the Axiom of Replacement, gβ is really a function (rather than a class function). By
the way, if you wanted to do this transfinite induction completely formally then you would have to
define gβ to be the unique function defined as above or ⊥ if no such function exists and then prove
by transfinite induction that such a function does exist at every step of the transfinite recursion.

Now define a function g =
⋃

β<α gβ . Note that by the Axiom of Replacement, g is actually a set, not
a class. Also note that since each v ∈ V is only in the domain of a single gβ , g really is a function,
rather than just a binary relation. Furthermore, for any v ∈ V , we have g(v) = gf(v)(v). Similar
remarks apply to

⋃
γ≤β gγ for any β < α. We will now establish several properties of the function g.

Claim 1. range(g) is transitive.

Proof. Suppose y ∈ x ∈ range(g). Thus for some v ∈ V , x = gf(v)(v). And by definition of gf(v)(v),
this means there is some u ∈ V such that y = gf(u)(u). Thus y ∈ range(g) and so range(g) is
transitive.

Claim 2. g is injective.

Proof. We will show by transfinite recursion that for each β < α,
⋃

γ≤β gγ is injective. Fix β < α
and suppose for induction that this holds for each γ < β. Let u ≠ v be vertices in the domain of⋃

γ≤β gγ (so in particular, f(u), f(v) ≤ β). By rigidity, u ̸= v implies that for some w ∈ V either
⟨w, u⟩ ∈ E and ⟨w, v⟩ /∈ E or vice-versa. Without loss of generality, suppose that the former case
holds. Since f(w) < f(u) we have gf(w)(w) ∈ gf(u)(u). We now claim that gf(w)(w) /∈ gf(v)(v),
which implies that gf(u)(u) ̸= gf(v)(v).
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Suppose not. Thus there is some z ∈ V such that ⟨z, v⟩ ∈ E and gf(z)(z) = gf(w)(w). Note that
both f(z) and f(w) must be strictly less than β and thus by the inductive hypothesis applied to
max(f(z), f(w)), z = w. But this implies that ⟨w, v⟩ ∈ E, which contradicts our choice of w.

Claim 3. g is an isomorphism from G to the membership graph of range(g).

Proof. Every function is a surjection onto its range and we have already shown that g is injective.
Thus it remains to show that for all u, v ∈ V , ⟨u, v⟩ ∈ E if and only if g(u) ∈ g(v).

The forward direction is clear: if ⟨u, v⟩ ∈ E then f(u) < f(v) and so by definition of g, g(u) =
gf(u)(u) ∈ g(v) = gf(v)(v).

For the backwards direction, suppose that g(u) ∈ g(v). Then by definition of g there must be some
w ∈ V such that ⟨w, v⟩ ∈ E and g(u) = g(w). But since g is injective, this implies that u = w and
thus that ⟨u, v⟩ ∈ E.

Comment: The reverse direction of this equivalence is essentially a construction called the
“Mostowski collapse” of a well-founded directed graph. It is used frequently in certain parts of set
theory, often so automatically that its use may not even be mentioned.

Comment: It is possible to show that if G is a rankable, rigid graph then not only is it isomorphic
to the membership graph of a transitive set, that transitive set and the isomorphism are both
unique. This can be shown by using transfinite induction to show that if h is an isomorphism
from G to the membership graph of a transitive set then for every v in V , h(v) is equal to g(v) as
defined above.

Comment: I initially intended to use the following, slightly different version of this problem.
Suppose you define “realizable” as “isomorphic to the membership graph of any set (not necessarily
transitive).” Then it is possible to show that a graph is realizable in this sense if and only if it is
rankable (with no rigidity requirement). The proof is essentially the same except to ensure that g
remains injective you have to add a unique extra element to each g(v). Moreover, you cannot add
these extra elements at the end of the construction—they need to be added during the transfinite
recursion so that g(v) does not change after you put it into other g(u)’s. Making sure that these
extra elements really are distinct, not just from each other but from all the g(v)’s (some of which
have not even been built yet) can be somewhat tricky. Thus I decided that version of the problem,
despite having a simpler statement, was not a good choice for the exam.

Common Mistakes: Several people claimed that the ranking function f : V → Ord on G already
is an isomorphism from G to the membership graph of a transitive set. There are several problems
with this.

• The range of f may not even be transitive. The problem is that f may “skip” some ordinals
and thus its range may be not an ordinal itself, but rather a proper subset of an ordinal. As
an example, consider the membership graph on ω. A valid ranking function on this graph is
to assign the ordinal 2n to the vertex n. But the range of this ranking function is not all of
ω, but just the set of even natural numbers.

• f might not be injective. The only requirement on f is that ordinals increase along edges.
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But if there are no edges between two vertices then they might well be assigned the same
ordinal. As an example, consider the membership graph on V3 where the ordinal assigned to
each element is its rank. Then {∅, {∅}} and {{∅}} are assigned the same ordinal despite
not being equal.

• G might not look like a line. Note that if G is isomorphic to the membership graph of an
ordinal then for every pair of vertices u, v in G, either ⟨u, v⟩ ∈ E or ⟨v, u⟩ ∈ G. But this is
certainly not true of all rankable rigid graphs. Another way to think about this is to note
that the only condition we have on f is that ⟨u, v⟩ ∈ E implies that f(u) < f(v), but this
does not imply that if f(u) < f(v) then ⟨u, v⟩ ∈ E.

Some people tried to modify the function f in some way such that it is injective and doesn’t skip
ordinals. However, the third point above is still a problem. And in fact, it’s simply not true that
every rankable, rigid graph is isomorphic to the membership graph of an ordinal, so this approach
is fundamentally unworkable.

Common Mistakes: To show that a realizable graph is rankable, some people tried to define a
ranking function using some version of transfinite recursion. The problem with this approach is
that it’s not clear what well-order is being used to carry out the transfinite recursion.

It is actually possible to get this approach to work, but it requires some extra work plus some facts
that we did not cover in class. Let me explain. It turns out that it is possible to extend transfinite
recursion to work on more general structures than just well-orders. In particular, transfinite
induction and recursion work on any well-founded partial order (which is a partial order where
every set has a minimal element). The transitive closure (in the sense of binary relations) of the
membership relation on a transitive set can be shown to be a well-founded partial order and thus
it is possible to define functions by transfinite recursion on this partial order. However, we did not
cover transfinite recursion on well-founded partial orders in class so without further justification
this approach was not given full credit.

Common Mistakes: A number of people gave proofs that realizable implies rigid that never
mentioned transitivity. But this is an important part of the proof and the implication does not
hold without it—there are non-transitive sets whose membership graphs are not rigid. Therefore
such solutions did not receive full credit.

Extra Credit Questions.

The following question is optional. If you find a correct solution you will receive two points of extra credit.

Question 11 (2 points (bonus))
Suppose H : R → R≥0 is a continuous function and f : R → R is a function (not necessarily continuous)
such that for all x ∈ R,

|f(x)− x| ≤ H(x)−H(f(x)).

Intuitively, you can think of H as the “potential energy” of a point and the equation above says that f
can only move x very far if it decreases the potential energy of x a lot. Show that there is some x ∈ R
such that f(x) = x.

Hint: There is a way to solve this question that uses ideas we learned in class.
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Solution: Every fixed point theorem in mathematics is proved by iterating the function. This one is no
different, except that the iteration required is of transfinite length.

Recall that ℵ1 is the first uncountable ordinal. Define a sequence {xα}α∈ℵ1 of points in R by transfinite
recursion as follows.

Zero case: x0 = 0

Successor case: xα+1 = f(xα)

Limit case: xα = lim
β<α

xβ.

The limit case of this definition deserves more explanation since it may not be clear how to define such
a limit or why it exists. To explain, let’s first consider what happens at ω. First note that by the
properties of f and H, we have

H(x0) ≥ H(x1) ≥ H(x2) ≥ . . .

Since H(x0), H(x1), H(x2), . . . is a decreasing sequence bounded below (by 0), it converges to some
value, hω. Moreover, we can show by induction that for all n,m ∈ ω,

|f(xn)− f(xm)| ≤ H(xn)−H(xm) ≤ H(xn)− hω.

Since H(xn) converges to hω, this implies that the sequence x0, x1, x2, . . . is a Cauchy sequence and so
it converges to some value, y. We then set xω equal to y. Note that by continuity of H, H(xω) = hω
and thus for all n < ω, H(xn) ≥ H(xω). Moreover, we can also use continuity of H to show that for
any n < ω, we have

|f(xn)− f(xω)| ≤ sup
m≥n

|f(xn)− f(xm)| ≤ sup
m≥n

(H(xn)−H(xm)) = H(xn)−H(xω).

The point is that if α is a countable limit ordinal and f(xβ) and H(xβ) are sufficiently well behaved for
β < α then we can essentially repeat this same analysis again at α. More precisely, suppose that α is a
limit ordinal and that for all β < γ < α, H(xβ) ≥ H(xγ) and |f(xβ)− f(xγ)| ≤ H(xβ)−H(xγ).

Now pick a sequence β0 ≤ β1 ≤ β2 ≤ . . . of ordinals less than α such that supn<ω βn = α (it is possible
to show that such a sequence exists for any countable limit ordinal α). We can again show that the
sequence H(xβ0), H(xβ1), H(xβ2), . . . converges to some value hα and that the sequence xβ0 , xβ1 , xβ2 , . . .
is Cauchy and thus converges to some xα. And as before, continuity of H guarantees that H(xα) = hα
and that for any βn, |f(xβn) − f(xα)| ≤ H(xβn) − H(xα). Furthermore, suppose that γ < α. Thus
there is some n such that γ < βn. So by assumption plus what we have just noted, we have

H(xγ) ≥ H(xβn) ≥ H(xα)

and

|f(xγ)− f(xα)| ≤ |f(xγ)− f(xβn)|+ |f(xβn)− f(xα)|
≤ H(xγ)−H(xβn) +H(xβn)−H(xα)

= H(xγ)−H(xα).

We are now almost done. Note that if we can find some α < ℵ1 such that H(xα) = H(xα+1) then we
are done because we have

|xα − f(xα)| = |xα − xα+1| ≤ H(xα)−H(xα+1) = 0
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and thus xα is a fixed point of f .

So let’s suppose that for all α < ℵ1, H(xα) > H(xα+1). Then for each α < ℵ1, pick some rational
number qα in the interval (H(xα+1), H(xα)). Since {H(xα)}α<ℵ1 is a strictly decreasing sequence, all
of the qα’s are distinct. Thus we have an injective map from ℵ1 into Q, which is impossible since Q is
countable and ℵ1 is not.

Comment: This is a special case of the Caristi fixed point theorem. There are other proofs known
that do not rely on transfinite recursion, but they do not seem as easy or natural to me as the proof
above, which is really just an elaboration of the idea that you ought to be able to find fixed points of
functions by iterating the function sufficiently many times.

You may find it surprising that a theorem from real analysis uses transfinite recursion, but Cantor’s
original motivation for developing the theory of ordinals and transfinite recursion was actually a
problem in Fourier analysis. In a funny coincidence, Paul Cohen, who also revolutionized set theory,
also worked on Fourier analysis.

Comment: A funny point is that the fixed point theorem for continuous, order preserving functions
on the ordinals (which was part of Homework 6’s “long” question), which one might expect to involve
transfinite recursion, can be proved with a length ω iteration, while the Caristi fixed point theorem,
which is a theorem about real numbers and not ordinals, requires a transfinite iteration.

Common Mistakes: Two people solved this problem correctly. A number of people also submitted
incorrect solutions. By far the most common error was the following. It is tempting to think that we
can do something similar to the solution above, but stop after only ω many steps. And indeed, this
is how several fixed point theorems are proved, such as the Banach fixed point theorem, a.k.a. the
contraction mapping theorem. However, in this case it does not work. The problem is that since f is
not guaranteed to be continuous, it may not be the case that f(xω) = limn<ω f(xn) and thus we have
no easy way to calculate xω.

Here’s a concrete example to show why this fails. Suppose H is the function defined by H(x) = |x|
and f is defined as follows

f(x) =


1 + 1

n+1 if x = 1 + 1
n for some n ∈ N \ {0}

0 if x = 1

x otherwise.

It is easy to verify that f and H obey the conditions in the problem statement. But if we set x0 = 2
and start iterating, we will get

x0 = 2

x1 = 1 + 1/2

x2 = 1 + 1/3

...
xn = 1 + 1/(n+ 1)

...

Taking the limit of these we get xω = 1. But 1 is not a fixed point of f—indeed, f(1) = 0.


