1. (9 points) Solve the following differential equation

\[
\frac{t^2 A' - 100A'}{A} = 1.
\]

2. (2 points) Separation of variables can be used to solve \(y'' = y' + y \).

○ True ○ False

3. (2 points) \(y(t) = \cos(t) + 5 \) is a solution to the differential equation \(y'(t) \cos(t) + y'(t)y(t) = -5 \sin(t) \). (Hint: the derivative of \(\cos(t) \) is \(-\sin(t) \)).

○ True ○ False

4. (2 points) A student is asked to write a differential equation to model the amount of water in a puddle in the following scenario: “A puddle of water initially contains 50 mL of water. Water evaporates from the puddle at a rate proportional to the amount of water in the puddle. There is also a light rain which adds water to the puddle at a rate of 5 mL per minute.” The student writes

\[
\frac{dW}{dt} = 5t - kW(t); \ W(0) = 50
\]

where \(W(t) \) is the amount of water in the puddle (in mL) after \(t \) minutes and \(k \) is a constant. The student’s reasoning is as follows: the derivative of \(W \) is how much water is entering the puddle minus how much water is leaving the puddle. After \(t \) minutes, \(5t \) mL of water have entered the puddle and water is leaving the puddle through evaporation at a rate that is some constant multiple of the amount of water in the puddle. Also, at time 0 there are 50 mL of water in the puddle. The student’s answer is:

○ Correct with valid reasoning.
○ Correct with invalid reasoning.
○ Incorrect.