Solve the following differential equations.

1. \(y'' + 7y' + 10y = 0 \) with initial conditions \(y(0) = 1 \) and \(y'(0) = 1 \).

 This is a linear, homogeneous equation with constant coefficients. So we can use the characteristic polynomial method. The characteristic polynomial is \(\lambda^2 + 7\lambda + 10 = (\lambda + 2)(\lambda + 5) \).

The roots are \(-2\) and \(-5\) so the general solution to the differential equation is \(y(t) = C_1 e^{-2t} + C_2 e^{-5t} \).

 Using the initial conditions to solve for \(C_1 \) and \(C_2 \), we find that

 \[
 \begin{align*}
 1 &= y(0) = C_1 e^{-2\cdot0} + C_2 e^{-5\cdot0} = C_1 + C_2 \\
 1 &= y'(0) = -2C_1 e^{-2\cdot0} - 5C_2 e^{-5\cdot0} = -2C_1 - 5C_2
 \end{align*}
 \]

 Solving this system of linear equations gives us \(C_1 = 2 \) and \(C_2 = -1 \). Therefore

 the final solution is \(y(t) = 2e^{-2t} - e^{-5t} \).

2. \(ty' - 4y = t^2 \)

 For this equation, we can use the integrating factor method. First we divide by \(t \) to isolate \(y' \). This gives us

 \[
 y' - \frac{4}{t} y = t.
 \]

 The integrating factor is

 \[
 e^{\int -\frac{4}{t} dt} = e^{-4\ln|t|} = e^{\ln|t|^{-4}} = |t|^{-4} = t^{-4}.
 \]

 Therefore

 \[
 t^{-4} y(t) = \int t^{-4} t dt = \int t^{-3} dt = -\frac{1}{2t^2} + C.
 \]

 Solving for \(y(t) \) we get a final solution of

 \[
 y(t) = -\frac{t^2}{2} + Ct^4.
 \]

3. \(t^2 y' = -y^2 \)

Date: April 11, 2017.
This equation is separable. So we have

\[\int -\frac{1}{y^2} \, dy = \int \frac{1}{t^2} \, dt. \]

Therefore

\[\frac{1}{y} = -\frac{1}{t} + C. \]

Solving for \(y(t) \) gives us a final solution of

\[y(t) = \frac{1}{-\frac{1}{t} + C}. \]

By the way, this is not equal to \(-t + C\) or to \(-t + \frac{1}{C}\).