Network Flows

This is to be read in conjunction with section 4.3. We recall that an a — 2 cut P, P is simply a division
of all vertices of the network so that a € P and z € P. The capacity k (P, P) of such a cut is the sum of all
capacities of edges going from P to P

k(P,P)= > k(e).
eG(P,IS)

The simplest case occurs when P = {a}. Given that the strength of a flow is defined as the value of the flow
on the edges emmanating from a we clearly have

Ifl <k ({a},P).

This generalizes to ~
|fI <k (P, P)

for any a — z cut of the network as observed in Theorem 2. A different way of seeing this, without resorting
to tricks, is by first observing that what f flows from P to P can’t exceed capacity, i.e.,

Soofes D k(e).
eE(P,P) eE(P,Is)
On the other hand the strength of the flow must equal what flows from P to P if we also subtract what flows
back from P to P, i.e.,
fl= > fl- > flo.
e€(P,P) e€(P,P)

To give a rigorous proof of this generalized conservation law we introduce the function « (z,e), where x € V
is a vertex and e € F is an edge,

1 if e points away from =,
a(x,e) =< —1 if e points into z,
0 if e does not have z as an edge.

The conservation law says that for any vertex € V' — {a, 2z} we have
Y alze)f(e)=0,
eck

while the strength is

fl=> alae) f(e).

eck
If we add these sums over all vertices in P we get

Il = D al@e)fO+ Y. Y alze)f(e)
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So for a fixed edge we see that

1 if e starts in P and ends in P,

Z o (z,¢) = —1 if e starts in P and ends in P,
’ 0 if both endpoints of e are in P,
0 if both endpoints of e are in P.



This shows that

1= fE@d al@e= Y fl- > flo.

€€l zeP e€(P,P) e€(P,P)

The fact that | f| can be calculated by adding the amount that flows into z is a consequence of this fundamental
formula. We simply use P =V — {z}, P = {z} and note that there are no edges that begin at z, to see that

Ifl = oo fleo- > fle
ee(V—{z},{z}) ee(V—{z},{z})

= ST fle).
e€(V—{z},{z})

These observations also establish corollary 2a. Namely, if
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then
= > fle— > fle
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= Z kE(e)—0
eE(P,IS)
— k(PP).

A simple path in a graph is a path or trail from one vertex to another which never repeats an edge. If we
have such a path in a network with a flow f, then we say that it is « flezible if k (e) — f (e) > « for all edges
that are directed in the same direction as the path is traveled, while f (e) > a on all edges that are directed
against the direction of the way we travel along the path. For each flow f we define Py as the set of vertices
in the network that we can reach starting at a by traveling along « flexible simple paths with o > 1.

The key observation is that if z € Py, then the strength of f can be improved to |f| + a by adding « to
f along the edges that flow with the path, while subtracting o from f along edges that are directed against
the path. Having made such a change we can repeat the procedure. Since we add at least 1 to the strength
each time we make such a change and the strength of a flow can’t exceed any capacity this procedure will
terminate in a finite number of steps. When this happens we have found a flow f such that z ¢ P;. Thus
we have found an a — z cut Py, Py. We now claim that if this happens then

|[fl =& (Py, Pr).

In other words, we have found a flow whose strength equals the capacity of a cut. This proves that a
maximum flow has strength that is equal to the minimal capacity of an a — z cut. In other words it proves
the max flow/min cut theorem.

To prove the assertion note that if e is an edge from Py to Py then f (e) = k (), because otherwise the
endpoint would be in Py as it would be the end point for a path with positive flexibility from a. Likewise if
e is an edge from Pf to Py, then f (e) = 0 because otherwise we could travel against the arrow of the edge
and have a path with positive flexibility ending up in Pf. This means that our assertion follows (see also
corollary 2a).



