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Preface

This is an evolving set of lecture notes on manifold theory. For the purposes of teach-
ing the material at UCLA it seems reasonable divide the material as follows.

• 225A: Ch 1-4. The proofs of theorems 1.4.28 and 3.1.14 can be skipped, but
there is time to cover the proofs. Section 1.3.2 should be skipped. Section 2.3.3
can also be skipped.
• 225B: Ch 5-8. Section 7.2.3 on invariant cohomology can be mentioned in pass-

ing if timing is tight. Section 7.4.2 on relative cohomology can be skipped.
In section 7.6 only the Künneth theorem is necessary for chapter 8. Examples
8.3.1,2 can be skipped.

i



Contents

Preface i

Chapter 1. Manifolds 1
1.1. Smooth Manifolds 1
1.2. Examples 2
1.3. Topological Properties of Manifolds 8
1.4. Smooth Maps 14
1.5. Exercises 24

Chapter 2. Tangent Spaces and Differentials of Maps 28
2.1. The Tangent Bundle 28
2.2. Derivatives of Maps and Vector Fields 33
2.3. Vector Bundles 38
2.4. Frobenius 44
2.5. Exercises 47

Chapter 3. Submersions and Immersions 49
3.1. Submersions 49
3.2. Embeddings 53
3.3. Exercises 56

Chapter 4. Lie Groups 58
4.1. General Properties 58
4.2. Matrix Groups 59
4.3. The Exponential Map 63
4.4. Coverings and Quotients of Lie Groups 65
4.5. The Lie Group Lie Algebra Correspondence 66
4.6. Actions and Exercises 68

Chapter 5. Transversality and Incidence Theory 71
5.1. Preimages 71
5.2. Thom’s Transversality Theorem 73
5.3. Mod 2 Intersection Theory 77
5.4. Oriented Intersection Theory 80
5.5. Exercises 92

Chapter 6. Basic Tensor Analysis 95
6.1. The Lie Derivative 95
6.2. The Exterior Derivative 97
6.3. Orientability 101
6.4. Integration of Forms 104

ii



CONTENTS iii

6.5. Exercises 107

Chapter 7. Basic Cohomology Theory 109
7.1. De Rham Cohomology 109
7.2. Examples of Cohomology Groups 113
7.3. Axiomatic Cohomology 119
7.4. Generalized Cohomology Theories 121
7.5. Poincaré Duality and its Consequences 128
7.6. The Künneth-Leray-Hirsch Theorem 132
7.7. Exercises 135

Chapter 8. Intersection Theory Revisited 138
8.1. Intersection Theory and the Poincaré Dual 138
8.2. The Hopf-Lefschetz Formulas 142
8.3. Examples of Lefschetz Numbers 144
8.4. Exercises 151

Chapter 9. Characteristic Classes 152
9.1. The Euler Class 152
9.2. Characteristic Classes 158
9.3. The Gysin Sequence 162
9.4. Further Study 163

Bibliography 164



CHAPTER 1

Manifolds

1.1. Smooth Manifolds

An n-manifold is a topological space, Mn, with a maximal atlas or a maximal smooth
structure.

The standard definition of an atlas is as follows:

DEFINITION 1.1.1. An atlas A consists of maps xα : Uα → Rn such that

(1) Uα is an open covering of M.
(2) xα is a homeomorphism onto its image.
(3) The transition functions xα ◦ x−1

β
: xβ

(
Uα ∩Uβ

)
→ xα

(
Uα ∩Uβ

)
are diffeomor-

phisms.

In condition (3) it suffices to show that the transition functions are smooth since xβ ◦
x−1

α : xα

(
Uα ∩Uβ

)
→ xβ

(
Uα ∩Uβ

)
is an inverse. The atlas is maximal provided we cannot

add a map to it so as to create a larger atlas. The maps xα : Uα →Rn are called coordinates
or charts or coordinate charts.

The second definition is a compromise between the first and a sheaf theoretic ap-
proach. It is, however, essentially the definition of a submanifold of Euclidean space where
local parametrizations are given as local graphs.

DEFINITION 1.1.2. A smooth structure is a collection D consisting of continuous
functions whose domains are open subsets of M with the property that: For each p ∈ M,
there is an open neighborhood U ∋ p and functions xi ∈D , i = 1, ...,n such that

(1) The domains of xi contain U .
(2) The map x =

(
x1, ...,xn

)
: U → Rn is a homeomorphism onto its image V ⊂ Rn.

(3) For each f : O→ R in D there is a smooth function F : x(U ∩O)→ R such that
f = F ◦ x on U ∩O.

The map in (2) in both definitions is called a chart or coordinate system on U . The
topology of M is recovered by these maps. Observe that in condition (3), F = f ◦ x−1,
but it is usually possible to find F without having to invert x. F is called the coordinate
representation of f and is normally also denoted by f . The smooth structure is maximal
provided we cannot add a function to it and still have a smooth structure.

Note that it is very easy to see that these two definitions are equivalent. Both have
advantages. The first in certain proofs. The latter is generally easier to work with when
showing that a concrete space is a manifold and is also often easier to work with when it
comes to defining foundational concepts.

DEFINITION 1.1.3. A continuous function f : O→R is said to be smooth with respect
to D if D ∪{ f} is also a smooth structure. In other words we only need to check that
condition (3) still holds when we add f to our collection D . We can more generally define

1



1.2. EXAMPLES 2

what it means for f to be Ck for any k with smooth being C∞ and continuous C0. We shall
generally only use smooth or continuous functions.

The space of all smooth functions is a maximal smooth structure. We use the notation
Ck (M) for the space of Ck functions defined on all of M and C k (M) for the space of Ck

functions defined on open sets in M, f : O→ R with O ⊂M being open and f is Ck. The
collection C k (M) is an example of a (pre)sheaf.

It is often the case that all the functions in a D have domain M. In fact, with some very
mild extra topological assumptions it is possible to always select the smooth structure such
that this is the case (see corollary 1.3.9). We shall also show that it is possible to always
use a finite collection D (see theorem 3.2.4).

The next proposition shows that the dimension of the manifold is unique.

PROPOSITION 1.1.4. If U ⊂ Rm and V ⊂ Rn are open sets that are diffeomorphic,
then m = n.

PROOF. The differential of the diffeomorphism is forced to be a linear isomorphism.
This shows that m = n. □

1.2. Examples

If we start with M ⊂ Rk as a subset of Euclidean space, then we should obviously use
the induced topology and the ambient coordinate functions xi|M : M→ R as the potential
differentiable structure D . Depending on what subset we start with this might or might not
work. Even when it doesn’t there might be other obvious ways that could make it work.
For example, we could start with a subset which has corners, such as a triangle. While
the obvious choice of a differentiable structure will not work we note that the subset is
homeomorphic to a circle, which does have a valid differentiable structure. This structure
will be carried over to the triangle via the homeomorphism. This is a rather subtle point and
begs the very difficult question: Does every topological manifold carry a smooth structure?
The answer is yes in dimensions 1, 2, and 3, but no in dimension 4 and higher. There are
also subsets where the induced topology won’t make the space even locally homeomorphic
to Euclidean space. A figure eight 8 is a good example. However, there is an interesting
bijective continuous map R→ 8. It “starts” at the crossing, wraps around in the figure 8
and then ends at the crossing on the opposite side. As the interval was open every point on
8 only gets covered once in this process. This map is clearly also continuous. However,
it is not a homeomorphism onto its image. Thus we see again that an even more subtle
game can be played where we can refine the topology of a given subset and to make it a
manifold.

1.2.1. Spheres. The n-sphere is defined as

Sn =
{

x ∈ Rn+1 | |x|= 1
}
.

Thus we have n+1 natural coordinate functions. On any open hemisphere O±i =
{

x ∈ Sn | ±xi > 0
}

we use the coordinate system that comes from using the n functions x j where j ̸= i and the
remaining coordinate function is obtained as a smooth expression:

±xi =

√
1−∑

j ̸=i
(x j)2

A somewhat different atlas of charts can be constructed via stereographic projection
from the points ±ei, where ei are the usual basis vectors. The map is geometrically given
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by drawing a line through a point z ∈ e⊥i =
{

z ∈ Rn+1 | z⊥ ei
}

and ±ei and then checking
where it intersects the sphere. The equator where xi = 0 stays fixed, while the hemisphere
closest to±ei is mapped outside this equatorial band, and the hemisphere farthest from±ei
is mapped inside the band, finally the map is not defined at ±ei. The map from the sphere
to the subspace is given by the formula:

z =
1

1∓ xi (x∓ ei)± ei

and the inverse

x =
±2

1+ |z|2
(z∓ ei)± ei.

Any two of these maps suffice to create an atlas. But we must check that the transition
functions are also smooth. To be specific we consider the ones coming from opposite
points, say en+1 and−en+1. In this case the transition is an inversion in the equatorial band
and is given by

z 7→ z

|z|2
.

In particular, we see that the sphere is naturally identified with the one point compact-
ification of Euclidean space of the same dimension.

1.2.2. Basic Geometry of Projective Spaces. Given a vector space V we define P(V )
as the space of 1-dimensional subspaces or lines through the origin. It is called the projec-
tive space of V. In the concrete case were V = Fn+1 we use the notation P

(
Fn+1

)
= FPn =

Pn.
One can similarly develop a theory of the space of subspaces of any given dimension.

The space of k-dimensional subspaces is denoted Gk (V ) and is called the Grassmannian.
The space of operators or endomorphisms on V is denoted End(V ) and the invertible

operators or automorphisms by Aut(V ) . When V = Fn these are represented by matrices
End(Fn) = Matn×n (F) and Aut(Fn) = Gln (F) . Since invertible operators map lines to
lines we see that Aut(V ) acts in a natural way on P(V ) . In fact this action is transitive, i.e.,
if we have p,q∈P(V ), then there is an operator A∈Aut(V ) such that A(p) = q. Moreover,
as any two bases in V can be mapped to each other by invertible operators it follows that
any collection of k independent lines p1, ..., pk, i.e., p1 + · · ·+ pk = p1⊕ ·· ·⊕ pk can be
mapped to any other collection of k independent lines q1, ...,qk. This means that the action
of Aut(V ) on P(V ) is k-point homogeneous for all k ≤ dim(V )+1. Note that this action
is not effective as all homotheties A = λ1V act trivially on P(V ) .

Since an endomorphism might have a kernel it is not true that it maps lines to lines,
however, if we have A ∈ End(V ) , then we do get a map A : P(V )−P(kerA)→ P(V )
defined on lines that are not in the kernel of A.

Let us now assume that V is an inner product space with an inner product ⟨v,w⟩ that
can be real (Euclidean) or complex (Hermitian). The key observation in relation to sub-
spaces is that they are completely characterized by the orthogonal projections onto the
subspaces. Thus the space of k-dimensional subspaces is the same as the space of orthogo-
nal projections of rank k. It is convenient to know that an endomorphism E ∈ End(V ) is an
orthogonal projection iff it is a projection, E2 = E that is self-adjoint, E∗ = E. In the case
of a one-dimensional subspace p ∈ P(V ) spanned by a unit vector v ∈ V, the orthogonal
projection is given by

projp (x) = ⟨x,v⟩v.
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Clearly we get the same formula for all unit vectors in p. Note that the formula is quadratic
in v. This yields an inclusion P(V )→ End(V ) and endows P(V ) with a natural topology.
One can also easily see that P(V ) is compact.

The angle between lines in V gives a natural metric on P(V ) . Automorphisms clearly
do not preserve angles between lines and so are not necessarily isometries. However if we
restrict attention to unitary or orthogonal transformations U ⊂Aut(V ) , then we know that
they preserve inner products of vectors. Therefore, they must also preserve angles between
lines. Thus U acts by isometries on P(V ) . This action is again homogeneous so P(V )
looks geometrically the same everywhere.

One way of finding coordinates around p∈P(V ) is to consider the set of 1-dimensional
subspaces, P(V )−P

(
p⊥
)
, that are not perpendicular to p. This is clearly an open set in

P(V ) and we claim that there is a coordinate map Gp : Hom
(

p, p⊥
)
→ P(V )−P

(
p⊥
)
. To

construct this map decompose V ≃ p⊕ p⊥ and note that any 1-dimensional subspace not
in p⊥ is a graph over p given by a unique homomorphism in Hom

(
p, p⊥

)
. The next thing

to check is that Gp is a homeomorphism onto its image and is differentiable as a map into
End(V ) . Neither fact is hard to verify. Finally observe that Hom

(
p, p⊥

)
is a vector space

of dimension dimV −1. In this way P(V ) becomes a manifold of dimension dimV −1.

1.2.3. Projective Coordinates. We saw that the n-dimensional (real) projective space
RPn can be identified with the space of orthogonal projections of rank 1. More concretely,
if

x =


x0

x1

...
xn

 ∈ Rn+1−{0} ,

then the matrix that describes the orthogonal projection onto span{x} is given by

Ex =
1

|x|2


x0x0 x0x1 · · · x0xn

x1x0 x1x1 · · · x1xn

...
...

. . .
...

xnx0 xnx1 · · · xnxn


=

1

|x|2
xx∗.

Clearly E∗x = Ex and as x∗x = |x|2 we have E2
x = Ex and Exx = x. Thus Ex is the orthogonal

projection onto span{x}. Finally note that Ex = Ey if and only if x = λy, λ ̸= 0. With that
in mind we obtain a natural differentiable system by using the coordinate functions

f i j (Ex) =
xix j

|x|2
.

If we fix j and consider the n+1 functions f i j, then we have the relationship

f j j =
(

f j j)2
+∑

i̸= j

(
f i j)2

.

This describes a sphere of radius 1
2 centered at the point where f i j = 0 for i ̸= j and f j j = 1

2 .
The origin on this sphere corresponds to all points where x j = 0. But any other point on the
sphere corresponds to a unique element of O j =

{
Ex | x j ̸= 0

}
. This means that around any

given point in O j we can use n of the functions f i j as a coordinate chart. The remaining
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function is then expressed smoothly in terms of the other coordinate functions. This still
leaves us with the other functions f kl , but they satisfy

f kl =
f k j f l j

f j j

and so on the given neighborhood in O j they are also smoothly expressed in terms of our
chosen coordinate functions. The more efficient collection of functions f i j, i≤ j yields the
Veronese map

RPn→ R
(n+2)(n+1)

2 .

A more convenient differentiable system can be constructed using homogeneous co-
ordinates on RPn. These are written

[
x0 : x1 : · · · : xn

]
and represent the equivalence class

of non-zero vectors that are multiples of x. The notation is suggestive of the fact that all
elements in the equivalence class have the same ratios xi : x j = xi

x j on O j. We can now
define a differentiable system by using the functions

f i
j
([

x0 : x1 : · · · : xn])= xi

x j =
f i j

f j j .

These have domain O j and are smoothly expressed in terms of the coordinate functions we
already considered. Conversely note that on Oi∩O j the old coordinates are also expressed
smoothly in terms of the new functions:

f i j =

(
∑
k

f k
i f k

j

)−1

.

On O j we can use f i
j, i ̸= j as a coordinate chart. The other coordinate functions f k

l
can easily be expressed as smooth combinations by noting that on Ol ∩O j we have

f k
l =

f k
j

f l
j
.

Thus using the obvious coordinate functions works, but it is often desirable to use a
different collection of functions for a differentiable system.

Homogeneous coordinates also work over C. We offer a few extra formulas of these
coordinates and how they tie in with the geometry of projective space.

For z =
(
z0, ...,zn

)
∈ Fn+1−{0} denote the 1-dimensional subspace generated by z

as
[
z0 : · · · : zn

]
. Thus

[
z0 : · · · : zn

]
=
[
w0 : · · · : wn

]
iff and only if z and w are propor-

tional. If we let p = [1 : 0 : · · · : 0], then the coordinate map is simply Gp
(
z1, ...,zn

)
=[

1 : z1 : · · · : zn
]
.

Keeping in mind that p is the only line perpendicular to all lines in p⊥ we see that
Pn− p can be represented by

Pn− p =
{[

z : z1 : · · · : zn] | (z1, ...,zn) ∈ Fn−{0} and z ∈ F
}
.

Here the subset

P
(

p⊥
)
=
{[

0 : z1 : · · · : zn] | (z1, ...,zn) ∈ Fn−{0}
}
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can be identified with Pn−1. Using the projection

R0 =


0 0 · · · 0
0 1 0
...

. . .
...

0 0 · · · 1

 ,
ker(R0) = p

we obtain a retract R0 : Pn− p→ Pn−1, whose preimages are diffeomorphic to F. Using
the family of transformations

Rt =


t 0 · · · 0
0 1 0
...

. . .
...

0 0 · · · 1


we see that R0 is in fact a deformation retraction.

Finally we check the projective spaces in the lowest dimensions. When dimV = 1,
P(V ) is just a point and that point is in fact V it self. Thus P(V ) = {V} .

When dimV = 2, we note that for each p ∈ P(V ) the orthogonal complement p⊥ is
again a one-dimensional subspace and therefore an element of P(V ) . This gives us an
involution p→ p⊥ on P(V ) just like the antipodal map on the sphere. In fact

P(V ) = (P(V )−{p})∪
(
P(V )−

{
p⊥
})

,

P(V )−{p} ≃ F≃ P(V )−
{

p⊥
}
,

F−{0} ≃ (P(V )−{p})∩
(
P(V )−

{
p⊥
})

.

Thus P(V ) is simply a one point compactification of F. In particular, we have that RP1 ≃
S1 and CP1 ≃ S2, (you need to convince yourself that these maps are diffeomorphisms).
Since the geometry doesn’t allow for distances larger than π

2 it is natural to identify these
projective “lines” with spheres of radius 1

2 in F2.

1.2.4. Matrix Spaces. Define Matkn×m as the matrices with n rows, m columns, and
rank k. We will focus on real matrices but everything carries over to the complex case with
the modification that all dimensions will be complex dimensions.

The special case where k = n = m is denoted Gln and is known as the general linear
group. It evidently consists of the nonsingular n× n matrices and is an open subset of all
the n×n matrices. As such it is obviously a manifold of dimension n2.

In the general case Matkn×m is still a subspace of a Euclidean space so it is natural
to suspect that the entries will suffice as a differentiable system. The trick is to discover
how many of them are needed to create a coordinate system. To that end, assume that we
look at the matrices of rank k where the first k rows and the first k columns are linearly
independent. If such a matrix is written in block form[

A C
B D

]
,

then we know that B = YA, Y ∈ Mat(n−k)×k, C = AX , X ∈ Matk×(m−k), and D = YAX .
Thus those matrices are uniquely represented by the invertible matrix A and the two gen-
eral matrices X ,Y . Next observe that Y = BA−1, X = A−1C. Thus we can use the nm−
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(n− k)(m− k) entries that correspond to A,B,C as a coordinate chart on this set. The
remaining entries corresponding to D are then smooth functions of these coordinates as
D = BA−1C.

More generally we define the sets Oi1,...,ik, j1,..., jk ⊂ Matkn×m as the rank k matrices
where the rows indexed by i1, ..., ik and columns by j1, ..., jk are linearly independent. On
these sets all entries that lie in the corresponding rows and columns are used as coordi-
nates and the remaining entries are smoothly expressed in terms of these using the above
expression with the necessary index modifications.

When m = n we can add other conditions such as having constant determinant, being
skew- or self-adjoint, orthogonal, unitary and much more.

A particularly intricate situation is the Grassmannian of k-planes in Rn (or Cn). These
are, as indicated, the k-dimensional subspaces of an n-dimensional vector space. When
k = 1 they are simply the projective spaces. As such, they are represented as the subset of
orthogonal projections:

Grk = Grk (Fn) =
{

E ∈Matkn×n | E2 = E and E∗ = E
}
.

Any k-dimensional subspace is generated by a basis, i.e., an element X ∈Matkn×k. Given
such an X the corresponding orthogonal projection is given by

EX = X (X∗X)−1 X∗ ∈ Grk.

Moreover, EX = EY if and only if X = YA where A ∈ Glk. Instead of analyzing the en-
tries of EX as our differentiable system, we will imitate the construction of homogeneous
coordinates to create an efficient way of parametrizing suitable open sets in Grk. Let
Oi1,...,ik ⊂ Grk be the open set with the property that the rows of E corresponding to the
indices i1, ..., ik are linearly independent. As E is self-adjoint the corresponding columns
are also linearly independent. If E = EX , then Oi1,...,ik corresponds to the X ∈ Matkn×k
where the rows indexed by i1, ..., ik are linearly independent. We can then consider the
matrix AX ∈ Glk which consists of those rows from X . The remaining rows in XA−1

X pa-
rametrize EX = EXA−1

X
. To see this more explicitly assume that the first k rows are linearly

independent. Then we can use

X =

[
Ik
Z

]
, Z ∈Mat(n−k)×k

and

EX =

[
A C
B D

]
=

[
(Ik +Z∗Z)−1 (Ik +Z∗Z)−1 Z∗

Z (Ik +Z∗Z)−1 Z (Ik +Z∗Z)−1 Z∗

]
.

Note that Z = BA−1 depends smoothly on the entries in E regardless of how E ∈ O1,...,k is
expressed as a matrix. In this way we have created smooth bijections

Mat(n−k)×k→ Oi1,...,ik ⊂ Grk ⊂Matkn×n.

This shows that dimGrk = k (n− k). The inverse maps will now yield the differentiable
system or equivalently atlas for Grk. The formula Z = BA−1 makes it clear that these
coordinates are smooth on an overlap Oi1,...,ik ∩O j1,..., jk .

1.2.5. Tangent Spaces to Spheres. The last example for now is somewhat different
in nature and can easily be generalized to manifolds that come from subsets of Euclidean
space where standard coordinate functions give a differentiable system.

We consider the set of vectors tangent to a sphere. By tangent to the sphere we mean
that they are velocity vectors for curves in the sphere. If c : I → Sn, then |c|2 = 1 and
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consequently ċ ·c = (ċ|c) = 1. Thus the velocity is always perpendicular to the base vector.
This means that we are considering the set

T Sn ≃
{
(x,v) ∈ Rn+1×Rn+1 | |x|= 1 and (x|v) = 0

}
Conversely we see that for (x,v) ∈ T Sn the curve

c(t) = xcos t + vsin t

is a curve on the sphere that has velocity v at the base point x. Now suppose that we are
considering the points x ∈ O±j with ±x j > 0. We know that on this set we can use xi,
i ̸= j as coordinates. It seems plausible that we could similarly use vi, i ̸= j for the vector
component. We already know that we can write x j as a smooth function of xi, i ̸= j. So we
now have to write v j as a smooth function of vi and xi. The equation (x|v) = 0 tells us that

v j =−
∑i̸= j xivi

x j

so this is certainly possible.
This also helps us in the general case where we might be considering tangent vectors

to a general M. For simplicity assume that xn+1 = F
(
x1, ...,xn

)
. If c is a curve, then we

also have cn+1 (t) = F
(
c1 (t) , ...,cn (t)

)
. Thus

ċn+1 (t) =
∂F
∂xi ċi (t) .

This means that for the tangent vectors

vn+1 =
∂F
∂xi vi.

Thus we have again written vn+1 as a smooth function of our chosen coordinates given that
xn+1 is already written as a smooth function of x1, ...,xn.

This argument is general enough that we can use it to create a differentiable structure
for similarly defined tangent spaces T M for Mm ⊂ Rn where we used the n-coordinate
functions from Rn to generate the differentiable structure on M. The only difference is that
we now need n−m functions to describe n−m of the coordinates on any given set where
we’ve used a specific set of m coordinates as a chart. For instance

x j = F j (x1, ...,xm) , j > m

yields

v j =
m

∑
i=1

∂F j

∂xi vi, j > m.

1.3. Topological Properties of Manifolds

The goal is to show that there exists partitions of unity on smooth manifolds and in
particular that manifolds are paracompact. The simplest topological assumptions for this to
work is that the manifold is second countable (there is a countable basis for the topology)
and Hausdorff (points can be separated by disjoint open sets). For a manifold, as defined
above, this means that the topology will henceforth be assumed to be second countable
and Hausdorff. The Hausdorff property is essential for many obvious properties, but it
will also seem as if it is rarely used explicitly. Two essential properties come from the
Hausdorff axiom. First, that limits of sequences are uniquely defined. Second, compact
subsets satisfy all of the usual equivalent conditions and are closed sets. In particular,
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manifolds are locally compact. This is the crucial condition obtained from assuming that
the topology is Hausdorff.

Checking that the topology is second countable generally follows by checking that the
space can be covered by countably many coordinate charts. Clearly open subsets of Rn are
second countable. So this means that the space is a countable union of open sets that are
all second countable and thus itself second countable.

Checking that it is Hausdorff is generally also easy. Either two points will lie the same
chart in which case they can easily be separated. Otherwise they’ll never lie in the same
chart and one must then check that there are charts around the points whose domains don’t
intersect.

1.3.1. Bump Functions. The goal is to prove a smooth version of Urysohn’s lemma
and construct partitions of unity.

THEOREM 1.3.1. A smooth manifold has a compact exhaustion, i.e., is σ -compact,
and is in addition paracompact.

PROOF. A compact exhaustion is an increasing countable collection of compact sets
K1 ⊂ K2 ⊂ ·· · such that M = ∪Ki and Ki ⊂ intKi+1 for all i. The crucial ingredients for
finding such an exhaustion is second countability and local compactness.

The key properties are that the space is locally compact and second countable. Around
each p ∈M select an open neighborhood Up such that the closure is compact. Since M is
second countable (or just Lindelöf) we can select a countable collection Upi that covers M.
Define K1 = U p1 and given Ki let Ki+1 = U p1 ∪ ·· · ∪U pk , where p1, ..., pk are chosen so
that k ≥ i and Ki ⊂Up1 ∪·· ·∪Upk .

To show that the space is paracompact consider the compact “annuli” Ci =Ki− intKi−1
and note that Ci ∩C j = /0 when |i− j| > 1. Extend this to a covering of open sets Ui =
intKi+1 −Ki−1 ⊃ Ci and note that Ui ∩U j = /0 when |i− j| > 4. In other words these
are locally finite covers, i.e., each p ∈ M has a neighborhood Up such that only finitely
many sets in the cover have nonempty intersections with Up. Given an open cover Bα

we can consider the doubly indexed refinement Bα ∩Ui of Bα . For fixed i we can then
extract a finite collection of Bi j ∩Ui, j = 1, ...,ni, that cover the compact set Ci. This leads
to a locally finite refinement of the original cover Bα . Specifically, when p ∈ intCi, the
neighborhood intCi is covered by the finite selection of Bi j ∪Ui and when p ∈ Ci ∩Ci+1,
then the neighborhood int(Ci∪Ci+1) is covered by the two finite selections Bi j ∪Ui and
B(i+1) j

∪Ui+1. □

Another fundamental lemma we need is a smooth version of Urysohn’s lemma, a result
established by Whitney.

LEMMA 1.3.2. (Smooth Urysohn Lemma) If M is a smooth manifold and C0,C1 ⊂M
are disjoint closed sets, then there exists a smooth function f : M→ [0,1] such that C0 =
f−1 (0) and C1 = f−1 (1) .

PROOF. First we claim that for each open set O ⊂ M there is a smooth function f :
M→ [0,∞) such that M−O = f−1 (0) .

We start by proving this in Euclidean space. First note that for any open cube

O = (a1,b1)×·· ·× (an,bn)

there is a bump function Rn→ [0,∞) that is positive on O and vanishes on the complement.
Simply select such bump functions for each interval (ai,bi) and multiply them. Then write
a general open set O as a union of open cubes such that for all p∈O there is a neighborhood
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U that intersects only finitely many open cubes. Using bump functions on each of the cubes
we can then add them up to get a function that is positive only on O.

Next note that if U ⊂M is open and the closure is contained in a chart Ū ⊂V , where
x : V →O⊂Rn, then this construction gives us a function that is positive on U and vanishes
on V −Ū . If we extend this function to vanish on M−V we obtain a smooth function.

More generally, we can find a locally finite cover of M consisting of open Uα , where
Ūα ⊂ Vα and Vα is the domain for a chart (convince yourself that this is indeed possible).
For a fixed open set O ⊂ M consider the nonempty intersections Uα ∩O and construct a
function as just explained on each of them. Then add all of these functions to obtain a
smooth function on M that is positive on O and vanishes on M−O.

Finally, the Urysohn function is constructed by selecting fi : M → [0,∞) such that
f−1
i (0) =Ci and defining

f (x) =
f0 (x)

f0 (x)+ f1 (x)
.

This function is well-defined as C0∩C1 = /0 and is the desired Urysohn function. □

We can now easily construct the partitions of unity we need.

LEMMA 1.3.3. Let M be a smooth manifold. Any covering Uα of open sets admits
partition of unity subordinate to this covering, i.e., there are smooth functions φα : M→
[0,1] such that the preimages satisfy: φ−1

α (0,∞)⊂Uα , form a locally finite covering, and
1 = ∑α φα .

PROOF. First select a locally finite covering Vi subordinate to Uα . The previous result
gives us functions λi : M→ [0,1] such that λ

−1
i (0) = M−Vi. As the cover is locally finite

the sum ∑i λi is well-defined and positive. Define

µα = ∑
{i|Vi⊂Uα}

λi.

Note that these functions vanish when the corresponding sets {i |Vi ⊂Uα} are empty. Fi-
nally define

φα =
µα

∑α µα

.

□

REMARK 1.3.4. We will often use a covering Up, p ∈M, where Up is an open neigh-
borhood of p.

PROPOSITION 1.3.5. If U ⊂M is an open set in a smooth manifold and f : U → Rn

is smooth, then λ f defines a smooth function on M provided λ : M→R is smooth and has
support in U, i.e.,

suppλ = {x ∈M | λ (x) ̸= 0} ⊂U.

PROOF. Clearly λ f is smooth on U and vanishes on the open set M− suppλ . Thus it
is smooth on M =U ∪M− suppλ . □

REMARK 1.3.6. Note that for any p ∈U the function λ can be chosen to be 1 on a
neighborhood of p. In particular, any smooth function can locally be extended to a smooth
function on all of M.

We can now also easily construct proper functions.

PROPOSITION 1.3.7. A smooth manifold admits a proper smooth function.
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PROOF. Select a compact exhaustion K1 ⊂ K2 ⊂ ·· · , where each Ki is compact, Ki ⊂
intKi+1, and M =

⋃
Ki. Choose Urysohn functions φi : M→ [0,1] such that φi (Ki−1) = 0

and φi (M− intKi) = 1. Then use ρ = ∑φi. □

The above topological properties of manifolds lead to a general principle that offers
an abstract general condition for when a statement holds for manifolds.

Consider a class M n manifolds with the following properties:
(1) Every M ∈M is σ -compact and has dimension n.
(2) Rn ∈M n.
(3) If M ∈M n and U ⊂M is open, then U ∈M n.
(4) If M ∈M n and M is diffeomorphic to N, then N ∈M n.

This can for example be the class of all n-manifolds or all oriented n-manifolds or simply
all open subsets of a manifold. The key property to be extracted from σ -compactness is
that each manifold has a proper function ρ : M→ [0,∞).

The goal is to consider the validity of a statement P(M) for all M ∈M n. We will
assume that the statement only depends on the diffeomorphism type of the manifold.

THEOREM 1.3.8. The statement P(M) is true for all manifolds in M n provided the
following conditions hold:

(1) P(Rn) is true.
(2) If A,B ⊂M ∈M n are open and P(A) ,P(B) ,P(A∩B) are true, then P(A∪B)

is true.
(3) If Ai ⊂M ∈M n form a countable collection of pairwise disjoint open sets such

that P(Ai) are true, then P(
⋃

Ai) is true.

PROOF. We start by showing that P(U) is true for all open sets U ⊂Rn. Observe first
that any open box (a1,b1)×·· ·× (an,bn) is diffeomorphic to Rn and that the intersection
of two boxes is either empty or a box. Consider next an open subset of Rn that is a finite
union of open boxes. The claim follows for such sets by induction on the number of boxes.
To see this, assume it holds for any union of k or fewer open boxes and consider k+1 open
boxes Bi. Then the statement holds for B1 ∪ ·· · ∪Bk, Bk+1, and the intersection as it is a
union of k or fewer boxes:

(B1∪·· ·∪Bk)∩Bk+1 = (B1∩Bk+1)∪·· ·∪ (Bk ∩Bk+1) .

This in turn shows that we can prove the theorem for all open sets in Rn. Fix an open set
U ⊂ Rn and a proper function ρ : U → [0,∞). Now cover each compact set ρ−1 [i, i+1]⊂
Ui by an open set Ui that is a finite union of open boxes, where Ui∩U j = /0 when |i− j| ≥ 2.
Thus the theorem holds for

⋃
U2i,

⋃
U2i+1. It also holds for the intersection (

⋃
U2i)∩

(
⋃

U2i+1) =
⋃(

U j ∩U j+1
)

as Ui ∩Ui+1 ∩U j ∩U j+1 = /0 when i ̸= j. Consequently, the
statement holds for the entire union.

Having come this far we use the exact same strategy to prove the statement for an M ∈
M n by considering the class of all open subsets U ⊂M and replacing the first statement
with:

(1) P(U) is true for all open U ⊂M that are diffeomorphic to an open subset of Rn,
i.e., all charts U ⊂M.

Using induction this shows that the statement is true for any open subset of M that is
a finite union of charts. Next write M =

⋃
Ui where each Ui is a finite union of charts

and Ui ∩U j = /0 when |i− j| ≥ 2. This means the theorem holds for
⋃

U2i,
⋃

U2i+1, and
(
⋃

U2i)∩ (
⋃

U2i+1) and consequently for the entire union. □
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As a very basic application we can show that any manifold admits a countable differ-
entiable system of functions that are defined on the entire manifold.

COROLLARY 1.3.9. For any manifold M, there exists a countable collection of smooth
functions fi : M→R that form a differentiable system. The functions can be chosen so that
the supports are locally finite.

PROOF. Note that multiplying coordinate functions xi : V → R by the same positive
function λ : V → R will create a new set of coordinates λxi : V → R.

Condition 1 is obvious as the coordinate functions on Rn can be used. For condition 3,
we can select such a countable collection on each open set Aα . As the sets are disjoint from
each other all of the these functions can be extended to smooth functions on the union. As
a countable union of countable sets is again countable we have found the desired functions.
Finally, for two open sets A, B select a partition of unity λA,λB : A∪B→ [0,1], where the
support of each function is in the set they are indexed by. Given differentiable systems
f A
i : A→R and f B

j : B→R we can construct a combined system λA f A
i , λB f B

j : A∪B→R.
For any point in A∪B one of the bump functions is positive. Consequently, we can use the
corresponding functions on A or B to construct local charts. □

Based on the proof of theorem 1.3.8 we also obtain the following less abstract version.
We consider a statement P about all open subsets of a fixed manifold. Thus we don’t
necessarily assume that the statement is invariant under diffeomorphisms.

COROLLARY 1.3.10. The statement P(M) is true for a manifold M provided
(1) M has a cover of open sets Oα that are diffeomorphic to Rn such that for all α

the statement P(B) is true for any box B⊂ Oα .
(2) If A,B ⊂M ∈M n are open and P(A) ,P(B) ,P(A∩B) are true, then P(A∪B)

is true.
(3) If Ai ⊂M ∈M n form a countable collection of pairwise disjoint open sets such

that P(Ai) are true, then P(
⋃

Ai) is true.

1.3.2. Metrizability. We finally mention several interesting results that help us un-
derstand the topological properties that are crucial for manifolds. Whitney’s embedding
theorem 3.2.4 also shows that manifolds are metrizable.

The Urysohn metrization theorem asserts that a second countable normal Hausdorff
space is metrizable. In particular, manifolds are always metrizable. The proof of this result
is remarkably simple.

THEOREM 1.3.11. A second countable normal Hausdorff space is metrizable. More-
over, if the space admits a compact exhaustion, then it is metrizable with a complete metric.

PROOF. We shall only use that the space is completely regular. In fact Tychonoff’s
Lemma shows that a regular Lindelöf space is normal. So it suffices to assume that the
space is second countable and regular. There are second countable Hausdorff spaces that
are not regular (79 in [Steen & Seebach]). Note that such spaces can’t be locally compact.

The key is to use that the Hilbert cube: ×∞
i=1Ii where Ii = [0,1] is a metric space with

distance
d ((xi) ,(yi)) = ∑

i
2−i |xi− yi| .

The goal is then to show that our space is homeomorphic to a subset in the Hilbert cube.
Choose a countable collection of closed sets C such that their complements generate

the topology of M. Enumerate the all pairs (Ci,Fi) ∈ C ×C with Ci ⊂ intFi, and for each
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such pair select a function φi : M→ [0,1] such that φi (Ci) = 0 and φi (M− intFi) = 1. This
results in a map Φ : M→×∞

i=1Ii by defining Φ(x) =×∞
i=1φi (x).

This map is injective since distinct points can be separated by open sets whose com-
plements are in C . Next we show that for each C ∈ C the image Φ(C) is closed. Consider
a sequence cn ∈ C such that Φ(cn)→ Φ(x). Note that for any fixed index i we have
φi (cn)→ φi (x). If x /∈C, then we can find a pair (Ci,Fi) where x ∈M− intFi. Therefore,
φi (cn) = 0 and φi (x) = 1, which is impossible. Thus x ∈C and Φ(x) ∈Φ(C). This shows
that the map is a homeomorphism onto its image.

An explicit metric on M can given by

d (x,y) = ∑
i

2−i |φi (x)−φi (y)| .

In case the space also has a compact exhaustion we can find a proper function ρ : M→
[0,∞) and use map: (ρ,Φ) : M→ [0,∞)×∞

i=1 Ii which is also proper. In this way the metric
has the property that bounded closed sets are compact. In particular, Cauchy sequences
have accumulations points and are consequently convergent. □

For comparison it should be mentioned that if we use the topology on R generated by
the half open intervals [a,b) then we obtain a paracompact space that is separable but not
second countable and not locally compact (51 in [Steen & Seebach]).

THEOREM 1.3.12. A connected locally compact metric space has a compact exhaus-
tion.

PROOF. Assume (M,d) is the metric space. For each x ∈M let

r (x) = sup
{

r | B(x,r) is compact
}
.

If r (x) = ∞ for some x we are finished. Otherwise r (x) is a continuous function, in fact

|r (x)− r (y)| ≤ d (x,y)

since
r (y)≤ d (x,y)+ r (x)

and
r (x)≤ d (x,y)+ r (y)

We now claim that for a fixed compact set C the set C# =
{

x ∈M | ∃z ∈C : d (x,z)≤ 1
2 r (z)

}
is also compact and contains C in its interior. The latter statement is obvious since B

(
x, 1

2 r (x)
)
⊂

C# for all x∈C. Next select a sequence xi ∈C# and select zi ∈C such that d (xi,zi)≤ 1
2 r (zi).

Since C is compact we can after passing to a subsequence assume that zi→ z ∈C and that
d (z,zi) <

1
4 r (z) for all i. Then d (z,xi) ≤ d (z,zi)+d (zi,xi) <

1
4 r (z)+ 1

2 r (zi). Continuity

of r (zi) then shows that xi ∈ B
(
z, 3

4 r (z)
)

for large i. As B
(
z, 3

4 r (z)
)

is compact we can
then extract a convergent subsequence of xi.

Finally consider the compact sets Ki+1 = K#
i where K1 is any non-empty compact set.

We claim that ∪iKi is both open and closed. The set is open since B
(
x, 1

2 r (x)
)
⊂K#

i =Ki+1
for any x ∈ Ki. To see that the set is closed select a convergent sequence xn ∈ ∪iKi and let
x be the limit point. We have r (xn)→ r (x) and d (xi,x)→ 0. So it follows that for large n
we have x ∈ B

(
xn,

1
2 r (xn)

)
showing that x ∈ K#

i if xn ∈ Ki. So the fact that M is connected
shows that it has a compact exhaustion. □

COROLLARY 1.3.13. A second countable locally compact metric space has a compact
exhaustion and is paracompact.
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PROOF. There are at most countably many connected components and each of these
has a compact exhaustion. We can then proceed as in theorem 1.3.1. □

THEOREM 1.3.14 (Baire Category Theorem). A Hausdorff space that is locally com-
pact satisfies: A countable union of closed sets without interiors has no interior.

PROOF. Let Ci ⊂ M be a countable collection of closed sets with no interior points.
Select an open set V0 ⊂ X . Then V0−C1 is a nonempty open set as C1 has no interior
points. As M is locally compact we can find an open set V1 such that V̄1 ⊂ V0−C1 is
compact. Similarly we can find open sets Vi such that V̄i ⊂Vi−1−Ci ⊂Vi−1 is compact. By
compactness

⋂
∞
i=1 V̄i is nonempty and we also have

⋂
∞
i=1 V̄i ⊂ V0−

⋃
∞
i=1 Ci. In particular,

V0 −
⋃

∞
i=1 Ci is nonempty for any open set V0. This shows that

⋃
∞
i=1 Ci has no interior

points. □

EXAMPLE 1.3.15. The set of rationals Q⊂ R is a metric space that does not admit a
complete metric nor is it locally compact.

1.4. Smooth Maps

1.4.1. Smooth Maps. A map F : M→ N between spaces has a natural dual or pull
back that takes functions defined on subsets of N to functions defined on subsets of M.
Specifically, if f : A⊂ N→R, then F∗ ( f ) = f ◦F : F−1 (A)⊂M→R. Here it could hap-
pen that F−1 (A) = /0. Note that if F is continuous, then its pull back will map continuous
functions on open subsets of N to continuous functions on open subsets of M. Conversely,
if N is normal, and the pull back takes continuous functions to continuous functions, then
it will be continuous. To see this fix O ⊂ N that is open and select a continuous func-
tion λ : N → [0,∞) such that λ−1 (0,∞) = O. Then (λ ◦F)−1 (0,∞) = F−1 (O) and is in
particular open as we assumed that λ ◦F was continuous.

DEFINITION 1.4.1. A map F : M→ N is said to be smooth if F∗ takes smooth func-
tions to smooth functions, i.e., F∗ (C ∞ (N))⊂ C ∞ (M).

PROPOSITION 1.4.2. Let F : M → N be continuous. The following conditions are
equivalent:

(1) F is smooth.
(2) If D is a differentiable structure on N, then F∗ (D)⊂ C ∞ (M).
(3) F∗ (C∞ (N))⊂C∞ (M).
(4) If xα : Uα → Rm is an atlas for M and yβ : Vβ → Rn an atlas for N, then the

coordinate representations yα ◦F ◦ x−1
β

are smooth when- and where-ever they
are defined.

1.4.2. The Rank of a Map.

DEFINITION 1.4.3. The rank of a smooth map at p ∈ M is denoted rankpF and is
defined as the rank of the differential D

(
y◦F ◦ x−1

)
at x(p). This definition is independent

of the coordinate systems we choose due to the chain rule and the fact that the transition
functions have nonsingular differentials at all points.

PROPOSITION 1.4.4. If F : M→ N and G : N→ O are smooth maps, then

rankp (G◦F)≤min
{

rankpF, rankF(p)G
}
.
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PROOF. Using coordinates x around p∈M, y around F (p)∈N, and z around G(F (p))∈
O we can consider the composition

z◦G◦F ◦ x−1 =
(
z◦G◦ y−1)◦ (y◦F ◦ x−1)

The chain rule then implies

D
(
z◦G◦F ◦ x−1) |p = D

(
z◦G◦ y−1) |y◦F(p) ◦D

(
y◦F ◦ x−1) |x(p)

This reduces the claim to the corresponding result for linear maps. □

REMARK 1.4.5. Note that rankA≥ k is an open condition on Matn×m. Thus if rankpF =
k, then rankxF ≥ k for all x in a neighborhood of p. Similarly, when V ⊂Rn is a subspace,
then the condition that imA+V = Rn is also an open condition for A ∈Matn×m.

1.4.3. Coordinates.

DEFINITION 1.4.6. We say that F : M→ N is a diffeomorphism if it is a bijection and
both F and F−1 are smooth.

PROPOSITION 1.4.7. Let y : U → Rk be smooth where U ⊂ M is an open subset. If
rankpy = dimM = m, then y is a chart on a neighborhood of p. Moreover, if rankpy = k <
dimM, then it is possible to select functions yk+1, ...,ym such that y1, ...,ym form coordi-
nates around p.

PROOF. This follows from the inverse function theorem. Select a chart x : V → Rm

on a neighborhood of p and consider the smooth map y ◦ x−1 : x(U ∩V )→ Rm. By the
definition of rank the map has nonsingular differential at x(p) and must therefore be a
diffeomorphism from a neighborhood around x(p) to its image. This shows in turn that y
is a diffeomorphism on some neighborhood of p onto its image.

For the second claim select an arbitrary coordinate system z1, ...,zm around p. The
map

(
y◦ z−1,z1, ...,zm

)
has a differential at z(p) that looks like[

D
(
y◦ z−1

)
Im

]
where Im is the identity matrix and D

(
y◦ z−1

)
has linearly independent rows. We can

then use the replacement procedure to eliminate k of the bottom m rows so as to get a
nonsingular m×m matrix. Assuming after possibly rearranging indices that the remaining
rows are the last m− k rows we see that

(
y◦ z−1,zk+1, ...,zm

)
has rank m at p and thus

forms a coordinate system around p. □

1.4.4. Immersions.

DEFINITION 1.4.8. We say that F : M→ N is an immersion if rankpF = dimM for
every p ∈M.

PROPOSITION 1.4.9. For a smooth map F : M→N the following conditions are equiv-
alent:

(1) F is an immersion.
(2) For each p ∈ M there are charts x : U → Rm and y : V → Rn with p ∈U and

F (p) ∈V such that

y◦F ◦ x−1 (x1, ...,xm)= (x1, ...,xm,0, ...,0
)

(3) If D is a differentiable structure on N then F∗ (D) is a differentiable structure
on M.
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PROOF. It is obvious that 2 implies 1. For 1 implies 2. Select coordinates u : U→Rm

around p and v : V → Rn around F (p) ∈ N. The composition v ◦ F ◦ u−1 has rank m
at u(p). After possibly reordering the indices for the v-coordinates we can assume that(
v1, ...,vm

)
◦F ◦ u−1 also has rank m at u(p). But this means that it is a diffeomorphism

on some neighborhood around u(p). Consequently x =
(
v1, ...,vm

)
◦F is a chart around p.

Consider the functions

yi = vi, i = 1, ...,m,

yi = vi− vi ◦F ◦ x−1 (v1, ...,vm) , i > m.

These are defined on a neighborhood of F (p) and when i > m we have

yi ◦F = vi ◦F− vi ◦F ◦ x−1 (v1 ◦F, ...,vm ◦F
)
= 0.

So it remains to check that y=
(
y1, ...,yn

)
are coordinates at F (p). The composition y◦v−1

has a differential that is in lower triangular block form[
Im 0
∗ In−m

]
where the diagonal entries are the identity matrices on first m and last n−m coordinate
subspaces. This shows that they will form coordinates on some neighborhood of F (p).

As 1 and 2 are equivalent we can now use the proof that 1 implies 2 to show that if 1
or 2 hold, then 3 also holds.

Conversely assume that 3 holds. Select a coordinate chart zi = yi ◦F around p ∈M,
where yi ∈D , i = 1, ...,m. The chart z has rank m at p, so it follows that the corresponding
smooth map y must have rank at least m at F (p). However, the rank can’t be greater than
m as it maps into Rm. We can now add n−m coordinate functions zi from some other
coordinate system around F (p) so as to obtain a map

(
y1, ...,ym,zm+1, ...,zn

)
that has rank

n at F (p). These coordinate choices show that 1 holds. □

COROLLARY 1.4.10. A smooth map F : M→ N is an immersion iff for any smooth
map G : L→M and o ∈ L we have

ranko (F ◦G) = rankoG.

DEFINITION 1.4.11. We say that F is an embedding if it is an immersion, injective,
and F : M→ F (M) is a homeomorphism, where the image is endowed with the induced
topology.

PROPOSITION 1.4.12. For a smooth map F : M → N the following conditions are
equivalent:

(1) F is an embedding.
(2) F∗ (C ∞ (N)) = C ∞ (M), i.e., F∗ is surjective on smooth functions.

PROOF. Start by assuming that 2 holds. Given p,q ∈ M select f ∈ C ∞ (M) such
that f (p) ̸= f (q). Next find g ∈ C ∞ (N) such that f = g ◦F . Thus g(F (p)) ̸= g(F (q))
showing that F is injective. To see that the topology of M agrees with the induced topology
on F (M) select an open set O ∈ M and λ : M→ [0,∞) such that λ−1 (0,∞) = O. Select
µ : U ⊂ N → R such that λ = µ ◦F . Note that F (M) ⊂U as λ is defined on all of M.
Thus

µ
−1 (0,∞)∩F (M) = F

(
λ
−1 (0,∞)

)
= F (O)

and F (O) is open in F (M). Finally select coordinates x around p∈M and write xi = yi ◦F
for smooth functions on some neighborhood of F (p). The composition y◦F ◦x−1 has rank
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m at x(p). So the map F ◦ x−1 must have rank at least m at x(p). However, the rank can’t
exceed m so this shows that rankpF = m and in turn that F is an immersion.

Conversely assume that F is an embedding and f : O ⊂ M → R a smooth function.
Using that F is an immersion we can for each p ∈ M select charts xp : Op → Rm around
p and yp : Up → Rn around F (p) such that y j

p|F(Op)∩Up
= 0 for j > m. Since F is an

embedding Up∩F (Op)⊂ F (M) is open. This means that we can assume that Up is chosen
so that F (Op) = Up ∩F (M). On each Up define gp such that gp ◦ y−1

p
(
a1, ..,an

)
= f ◦

x−1
p
(
a1, ...,am

)
. We can then define g = ∑p µpgp, where µp is a partition of unity for

Up. This gives us a function on the open set ∪Up. Since F is injective it follows that
g◦F = f . □

COROLLARY 1.4.13. If F : M→ N is an embedding such that F (M) ⊂ N is closed,
then F∗ (C∞ (N)) =C∞ (M).

PROOF. The only additional item to worry about is whether the function g just con-
structed can be extended to N and remain fixed on F (M). When the image is a closed
subset this is easily done by finding a smooth Urysohn function µ that is 1 on F (M) and
vanishes on N −U . The function µg is then a smooth function on N that can be used
instead of g. □

REMARK 1.4.14. We note that when an injective immersion is also a proper map, then
it becomes an embedding whose image is a closed subset. Such maps are called proper
embeddings or proper submanifolds. Calling them “closed submanifolds” might cause
confusion as closed manifolds are generally compact manifolds without boundary.

DEFINITION 1.4.15. A subset S⊂M is a submanifold if it admits a topology such that
the restriction of the differentiable structure on M to S is a differentiable structure. The di-
mension of the structure on S will generally be less than that of M unless S is an open subset
with the induced topology. Note that the topology on S can be different from the induced
topology, but it has to be finer as we require all smooth functions on M to be smooth on
S. In this way we see that a submanifold is in fact the image of an injective immersion. A
submanifold is embedded when the topology on S is the induced topology. This is equiv-
alent to saying that any point p ∈ S has a slice neighborhood, i.e., there exist coordinates
x1, ...,xn on a neighborhood U ∋ p such that S∩U =

{
x ∈U | xk+1 = · · ·= xn = 0

}
.

An embedded submanifold can always be realized as a properly embedded submani-
fold inside a suitable neighborhood.

PROPOSITION 1.4.16. If S ⊂ M is an embedded submanifold, then there is an open
set S⊂ O⊂M such that S⊂ O is a properly embedded submanifold.

PROOF. For any point p∈ S, there exists a neighborhood p∈Vp ⊂M such that V̄p and
S∩V̄p are both compact. We can then simply define O =

⋃
p∈S Vp. □

Suppose F : M→N is a smooth map whose image lies in a submanifold S⊂N. When
is F : M→ S smooth? This is definitely the case when S is embedded and also in case S is
immersed provided F : M→ S is continuous.

PROPOSITION 1.4.17. Let F : M→ N be a smooth map whose image lies in a sub-
manifold S⊂ N. If F : M→ S is continuous, then F : M→ S is smooth.

PROOF. We fix p ∈M and with it q = F (p) ∈ S. There are coordinates y1, ...,yn on
a neighborhood of q ∈ N, such that y1, ...,yk restrict to coordinates on a neighborhood
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q ∈ V ⊂ S. Since F is continuous, the preimage U = F−1 (V ) is open. Smoothness of
F |U : U → N, then shows that that yi ◦F |U is smooth for i = 1, ...,k. This shows that also
F |U : U → S is smooth. □

We finish with a useful lemma about when a map that is an embedding when restricted
to a submanifold can be extended to an embedding on a neighborhood of the submanifold.
Note that the crucial assumption that S ⊂ M is proper can be eliminated as proposition
1.4.16 shows that the submanifold is properly embedded in a suitable neighborhood.

LEMMA 1.4.18. If F : M → N is a proper immersion that is an embedding when
restricted to a properly embedded submanifold S⊂M, then F is an embedding on an open
set containing S.

PROOF. It suffices to show that F is injective on a neighborhood of S since proper
maps take closed sets to closed sets (see part (1) of proposition 1.4.22). We say that a
sequence xi converges to to S provided that for any open set U ⊃ S there exists N > 0
such that {xi | i > N} ⊂ U . If F is not injective on any neighborhood, then we can find
sequences with xi ̸= yi that converge to S and such that F (xi) = F (yi). If the closure of
either of the sets {xi} or {yi} does not intersect S, then the complement will be an open set
that contains S, which is a contradiction. Thus both sets have accumulation points that lie
in S. By passing to suitable subsequences we obtain convergent sequences xi j → x ∈ S and
yi j → y ∈ S such that F

(
xi j

)
= F

(
yi j

)
. In particular, F (x) = F (y) so x = y and xi j = yi j

for large j as they lie in a neighborhood of x = y where F is injective. □

1.4.5. Submersions.

DEFINITION 1.4.19. We say that F : M→ N is a submersion if rankpF = dimN for
all p ∈M.

PROPOSITION 1.4.20. For a smooth map F : M → N the following conditions are
equivalent:

(1) F is a submersion.
(2) For each p ∈ M there are charts x : U → Rm and y : V → Rn with p ∈U and

F (p) ∈V such that

y◦F ◦ x−1 (x1, ...,xm)= (x1, ...,xn) .
(3) For each f ∈ C ∞ (N) and p ∈M we have that rankp ( f ◦F) = rankF(p) ( f ).

PROOF. Assume that 1 holds and select a chart y around F (p). Then y ◦F has rank
n at p. We can now supplement with m− n coordinate functions xi from any coordinate
system around p such that x1 = y1 ◦F, ..., xn = yn ◦F, xn+1, ..., xm are coordinates around
p. This yields the desired coordinates.

Clearly 2 implies 3.
If we assume that 3 holds and that we have a chart y around F (p). Then we can

consider smooth functions f = ∑αiyi, where αi ∈ R. These have rank 1 at F (p) unless
α1 = · · · = αn = 0. If we choose coordinates x around p, then D

(
f ◦F ◦ x−1

)
|x−1(p)) =

∑αiD
(
yi ◦F ◦ x−1

)
|x−1(p). So it follows that D

(
yi ◦F ◦ x−1

)
|x−1(p) are linearly indepen-

dent, which in turn implies that y◦F ◦ x−1 has rank n at x−1 (p). □

COROLLARY 1.4.21. A smooth map F : M → N is a submersion iff for any smooth
map G : N→ O and p ∈M we have

rankp (G◦F) = rankF(p)G
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Finally we mention a few useful properties.

PROPOSITION 1.4.22. Let F : Mm→ Nn be a smooth map.
(1) If F is proper, then it is closed.
(2) If F is proper, K ⊂ N is compact, and O⊃ F−1 (K) is open, then there exists an

open set V ⊃ K such that F−1 (V )⊂ O.
(3) If F is a submersion, then it is open.
(4) If F is a proper submersion and N is connected then it is surjective.

PROOF. 1. Let C ⊂ M be a closed set and assume F (xi)→ y, where xi ∈ C. The
set {y,F (xi)} is compact. Thus the preimage is also compact. This implies that {xi}
has an accumulation point. If we assume that xi j → x ∈ C, then continuity shows that
F
(
xi j

)
→ F (x) . Thus y = F (x) ∈ F (C) .

2. The set M−O is closed, so by 1 we obtain an open neighborhood

V = N−F (M−O)

around C. If F (x) ∈V , then x /∈M−O and consequently F−1 (V )⊂ O.
3. Consequence of local coordinate representation of F.
4. Follows directly from properties 1 and 3. □

COROLLARY 1.4.23. Let F : M → N be a submersion. If f : O ⊂ F (N)→ R is a
function on an open set such that f ◦F is smooth, then f is smooth.

PROOF. Smoothness is clearly a local property so we can confine ourselves to func-
tions that are defined on the coordinate systems guaranteed from 2 in proposition 1.4.20.
But then the claim is obvious. □

1.4.6. Constant Rank. The canonical forms for immersions and submersions can be
combined into a more general result for maps that have constant rank on all of the manifold.

THEOREM 1.4.24 (Rank Theorem). Let F : M→ N be a map of constant rank k on
all of M. For each p ∈ M there are charts x : U → Rm and y : V → Rn with p ∈U and
F (p) ∈V such that x(p) = 0, y(F (p)) = 0, and

y◦F ◦ x−1 (x1, ...,xm)= (x1, ...,xk,0, ...,0
)
.

Moreover, in case M = N and F (p) = p we can select just one coordinate system around
p such that

z◦F ◦ z−1 (x1, ...,xm)= (x1, ...,xk,0, ...,0
)
.

PROOF. We start with general charts around p and F (p) such that u(p)= 0, v(F (p))=
0, and

v◦F ◦u−1 (u1, ...,um)= (A(u) ,B(u))
where A takes up the first k coordinates and B the remaining n−k. After possibly reordering
these two coordinate systems we can assume that u 7→ A(u) has rank k in a neighborhood
of 0. Now consider the map u 7→ x(u) =

(
A(u) ,uk+1, ...,um

)
. This map has rank m at 0

and is consequently a local diffeomorphism. This gives us a new chart x around p where

v◦F ◦ x−1 (x1, ...,xm)= (x1, ...,xk,B(x)
)
.

Since this map has constant rank k it must follow that
∂B
∂xi = 0, i = k+1, ...,m.
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After possibly shrinking the domain of the chart we have that

v◦F ◦ x−1 (x1, ...,xm)= (x1, ...,xk,B
(

x1, ...,xk
))

.

We can now define y =
(
v1, ...,vk,vk+1−Bk+1, ...,vn−Bn

)
. This map is nonsingular at 0

and
y◦F ◦ x−1 (x1, ...,xm)= (x1, ...,xk,0, ...,0

)
.

□

1.4.7. Regular and Critical Points. We say that F : M→ N is non-singular on M if
it is both a submersion and an immersion. This is evidently equivalent to saying that it is
locally a diffeomorphism.

A point p ∈ M is called a regular point if rankpF = dimN, otherwise it is a critical
point. A point q ∈ N is called a regular value if F−1 (q) is empty or only contains regular
points, otherwise it is a critical value.

REMARK 1.4.25. Note that if p ∈M is a regular point for F : M→ N, then there is a
neighborhood p ∈U ⊂M such that q is a regular value for F |U : U → N. Thus the set of
regular points is open. This however does not tell us that the set of regular values is open.
In case F is proper we can use proposition 1.4.22 to conclude that the set of regular values
is open.

THEOREM 1.4.26 (The Preimage Theorem). If q ∈ N is a regular value for a smooth
function F : Mm → Nn, then F−1 (p) is empty or a properly embedded submanifold of M
of dimension m−n.

PROOF. Note that the preimage is closed, so it follows that its intersections with com-
pact sets is compact. We shall also use the induced topology and show that it is a subman-
ifold with respect to that topology. We claim that C ∞ (M) restricts to a differential system
on the preimage.

If we select coordinates yi, i = 1, ...,n around q ∈ N, then the functions yi ◦ F are
part of a coordinate system xi around any point p ∈ F−1 (q). This means that we can
find a neighborhood p ∈U such that U ∩F−1 (q) =

{
x ∈U | yi (F (x)) = yi (F (q))

}
, i.e.,

xi = yi ◦F are constant on the preimage. Given f ∈ C ∞ (M) defined around p we have that
f = F

(
x1, ...,xm

)
. Now on U ∩F−1 (q) the first n coordinates are constant so it follows

that f |U∩F−1(q) = F
(
x1 (p) , ...,xn (p) ,xn+1, ...,xm

)
. Thus the restriction can be written as

a smooth function of the last m− n coordinates. Finally we note that these last m− n
coordinates also define the desired chart on U ∩F−1 (q) as they are injective and yield a
homeomorphism onto the image. □

REMARK 1.4.27. The constant rank theorem implies that the preimage theorem re-
mains true as long as the map has constant rank k on M. In this case the preimages have
dimension m− k provided they are nonempty.

To complement the preimage theorem we next prove.

THEOREM 1.4.28 (Brown, 1935, A.P. Morse, 1939 and Sard, 1942). The set of regular
values for a smooth function F : Mm→ Nn is a countable intersection of open dense sets
and in particular dense. Moreover, the set of critical values has measure 0.

PROOF. We prove Brown’s original statement: the set of critical values has no interior
points. The proof we give is fairly standard and is very close to Brown’s original proof.
The same proof is easily adapted to prove Sard’s measure zero version, but this particular
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statement is in fact rarely used. A.P. Morse proved the measure theoretic result when the
target space is R.

Note that the set of critical points is closed but its image need not be closed. However,
the set of critical points is a countable union of compact sets and thus the image is also a
countable union of compact sets. This means that we rely on the Baire category theorem:
a set that is the countable union of closed sets with empty interiors also has empty interior.
Thus we only need to show that there are no interior points in the set of critical values
that come from critical points in a compact set. Further note that it suffices to prove the
theorem for the restriction of F to any open covering of M.

To clarify the meaning of measure 0 and prove Sard’s theorem in the case where it is
most used, we make some simple observations.

Consider a map F : O ⊂ Rn→ Rn. When F is locally Lipschitz, then it maps sets of
measure zero to sets of measure zero. Moreover, any differentiable map that has bounded
derivative on compact sets is locally Lipschitz. Thus C1 diffeomorphisms preserve sets
of measure zero. This shows that the notion of sets of measure zero is well-defined in a
smooth manifold. Now consider F : Mm→Nn, where m< n and construct F̄ : M×Rn−m→
N, by F̄ (x,z) = F (x). Then F (M) = F̄ (M×{0}) has measure zero as M×{0} ⊂ M×
Rn−m has measure zero.

In the general case the proof uses induction on m. For m = 0 the claim is trivial as M
is forced to be a countable set with the discrete topology. As mentioned above, it suffices
to prove it for maps F : U ⊂ Rm → Rn, where U is open. For such a map let C0 be the
set of critical points and define Ck ⊂C0 as the set of critical points where all derivatives of
order ≤ k vanish. Note that all of these sets are closed.

First we show that F (Ck) has no interior points when k ≥ m/n: Fix a compact set K.
Taylor’s theorem shows that we can select r > 0 and C > 0 such that for any x ∈ B(p,r)
with p ∈Ck ∩K we have

|F (p)−F (x)| ≤C |p− x|k+1 .

Now cover Ck∩K by finitely many cubes Iε
i of side length ε < r, then F (Iε

i ) lies in a cube
Jε

i of side length ≤C (m,n)εk+1 for a constant C (m,n) that depends on C, m, and n. Thus

|Jε
i | ≤ (C (m,n))n

ε
n(k+1)

= (C (m,n))n
ε

n(k+1)−m |Iε
i | .

Since Ck ∩K is compact we can assume that ∑ |Iε
i | remains bounded as ε → 0. Thus

∑ |Jε
i | will converge to 0 since n(k+1)> m. This shows that F (Ck ∩K) does not contain

any interior points as it could otherwise not be covered by cubes whose total volume is
arbitrarily small.

Next we show that F (Ck−Ck+1) has no interior points for k > 0: Denote by ∂ k some
specific partial derivative of order k. Thus

(
∂ kF

)
(p) = 0 for p∈Ck−Ck+1 but some partial

derivative ∂∂ kF
∂x j (p) ̸= 0. Without loss of generality we can assume that ∂∂ kF1

∂x j (p) ̸= 0. This
means that near p the set where ∂ kF1 = 0 will be a submanifold of dimension m−1. Since
p is critical for F it’ll also be a critical point for the restriction of F to any submanifold.
By induction hypothesis the image of such a set has no interior points. Thus for any fixed
compact set K the set K∩ (Ck−Ck+1) can be divided into a finite collection of sets whose
images have no interior points.

Finally we show that F (C0−C1) has no interior points: Note that when n = 1 it
follows that C0 =C1 so there is nothing to prove in this case. Assume that p ∈C0−C1 is a
point where ∂F i

∂x j ̸= 0. After rearranging the coordinates in Rm and Rn we can assume that
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∂F1

∂x1 ̸= 0. In particular, the set L =
{

x | F1 (x) = F1 (p)
}

is a submanifold of dimension
m−1 in a neighborhood of p. Let G =

(
F2, ...,Fn

)
: L→Rn−1. Now observe that if F (p)

is an interior point in F (C0−C1), then G(p) is an interior point for G(L∩ (C0−C1)).
This, however, contradicts our induction hypothesis since all the points in L∩ (C0−C1)
are critical for G. (For the measure zero statement, this last part requires a precursor to the
Tonelli/Fubini theorem or Cavalieri’s principle: A set has measure zero if its intersection
with all parallel hyperplanes has measure zero in the hyperplanes.)

Putting these three statements together implies that the set of critical values has no
interior points. □

1.4.8. Covering Maps. We start with a more general result about proper maps.

LEMMA 1.4.29. Let F : Mm → Nm be a smooth proper map. If y ∈ N is a regular
value, then there exists a neighborhood V around y such that F−1(V ) =

⋃n
k=1 Uk where Uk

are mutually disjoint and F : Uk→V is a diffeomorphism for all k = 1, ...,n.

PROOF. First use that F is proper to show that F−1(y) = {x1, . . . ,xn} is a finite set.
Next use that y is regular to find mutually disjoint neighborhoods Wk around xk such that
F : Wk → F(Wk) is a diffeomorphism. Finally, use proposition 1.4.22 to find an open
neighborhood V of y such that F−1 (V )⊂

⋃n
k=1 Wk. We can then use Ui =Wi∩F−1 (V ). □

DEFINITION 1.4.30. A smooth map π : N̄→ N is called a covering map if each point
in N is evenly covered, i.e., for every y ∈ N there is a neighborhood V around y such that
π−1 (V ) =

⋃
Ui where π : Ui→V is a diffeomorphism and the sets Ui are pairwise disjoint.

In other words: π−1 (V ) is diffeomorphic to π−1 (y)×V :

π−1 (V ) −→ π−1 (y)×V
↘ ↙

V

and F−1 (y)⊂ N̄ is a 0-dimensional submanifold.

COROLLARY 1.4.31. If π : N̄ → N is a proper non-singular map with N connected,
then π is a covering map.

The key property for covering maps is the unique path lifting property. A lift of a
continuous map F : M→N into the base of a covering map π : N̄→N is a continuous map
F̄ : M→ N̄ such that π ◦ F̄ = F . If F̄ (x0) = π (y0), then we say that the lift goes through
y0.

N̄
↗ ↓

M −→ N

When F is smooth then the lift is also forced to be smooth. Moreover, when the covering
is trivial:

N̄ −→ π−1 (F (x0))×N
↘ ↙

N

then F has a lift through any y0 ∈ π−1 (F (x0))

PROPOSITION 1.4.32. If M is connected, x0 ∈M, and y0 ∈ N̄ such that F (x0)= π (y0),
then there is at most one lift F̄ such that F̄ (x0) = y0.
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PROOF. Assume that we have two lifts F1 and F2 with this property and let A =
{x ∈M | F1 (x) = F2 (x)}. Clearly A is non-empty and closed. The covering maps prop-
erty shows that A is open. So when M is connected A = M. □

DEFINITION 1.4.33. We say that two maps F0,F1 : M→ N are homotopic if there is a
smooth map H : [0,1]×M→ N such that F0 (x) = H (0,x) and F1 (x) = H (1,x). Smooth-
ness of such a homotopy near the boundary points hasn’t been defined yet. However, using
a smooth function λ : R→ [0,1] where λ |(−∞,0] ≡ 0 and λ |[1,∞) ≡ 1 we can alter any ho-
motopy to a new “homotopy” where t ∈ R:

H (λ (t) ,x) : R×M→M.

This is useful not only for defining smooth homotopies but also when M has boundary as
the product [0,1]×M is not a manifold with boundary in this case. Moreover, composing
with λ forces the homotopy to be stationary in the t-direction at t = 0,1. Thus we can
smoothly concatenate homotopies provided H1 (1,x) = H2 (0,x). In particular, maps being
smoothly homotopic is an equivalence relation.

DEFINITION 1.4.34. Curves are very simple homotopies between maps from a one
point space. Thus curves can easy be concatenated to smooth curves if we don’t care about
how they are parametrized. The equivalences of points created by curves are the path
connected components of a manifold. We say that a manifold is path connected if any two
points can be joined by a curve. A manifold is simply connected if it is path connected and
any closed curve is homotopic to a constant map.

THEOREM 1.4.35. Let π : N̄ → N be a covering map. If M is connected and simply
connected, then any continuous F : M→ N has lift through each point in π−1 (F (x0)).

PROOF. Cover N by connected open sets Vα such that π−1 (Vα)≃ π−1 (F (x0))×Vα .
Next suppose that M is covered by a string of connected sets Ui, i = 0,1,2... such

that F (Ui) ⊂ Vαi . We can then lift F on each of the sets Ui to go through a given point

in π−1 (F (Ui)). If we further have the property that Uk ∩
(⋃k−1

i=0 Ui

)
is non-empty and

connected, then we can use the uniqueness of liftings to successively define F |Uk given
that it is defined on

⋃k−1
i=0 Ui. Note that the sets Ui need not be open.

Unfortunately not a lot of manifolds admit such covers. Clearly Rk does as it can
be covered by coordinate cubes. Also any interval, disc, and square has this property.
However, the circle S1 cannot be covered by such a string of sets. On the other hand
spheres Sn, n > 1 do have this property. We will only use the property for the interval and
square.

We can now show that if we have a map G : M0→M, where M0 has the desired cov-
ering property, then F ◦G can be lifted. Given two curves ci : [0,1]→M where ci (0) = x0
and ci (1) = x ∈M, where i = 0,1, we invoke simple connectivity of M to find a homotopy
H : [0,1]2→M where H (s,0) = x0, H (s,1) = x, and H (i, t) = ci (t). We can then find a
lift of F ◦H such that F ◦H (s,0) = y0. The unique path lifting property then guarantees
that F ◦H (s,1) is constant, and, in particular, that the lift of F at x ∈M does not depend
on the path connecting it to x0. This gives us a well-defined lift of F that is smooth when
composed with any curve that starts at x0. □

COROLLARY 1.4.36. If π : N̄ → N is a covering map and F : M→ N is a map such
that for every closed curve c : S1→M the map F ◦c has a lift that passes through each point
in π−1 (F ◦ c(t0)) for a fixed t0 ∈ S1, then F has a lift through each point in π−1 (F (x0)).
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PROOF. This proof is almost identical to the above proof. The one difference is that
the curves are no longer necessarily homotopic to each other. However, the fact that lifts
of closed curves in M are assumed to become closed shows that the construction is inde-
pendent of the paths we choose. □

COROLLARY 1.4.37. If F0 : M0→ N and F1 : M1→ N are coverings where all man-
ifolds are connected and M0,1 are both simply connected, then M0 and M1 are diffeomor-
phic.

PROOF. This is an immediate consequence of the lifting property of each of the cov-
ering maps to the other covering space. □

COROLLARY 1.4.38. (Hadamard) Let F : Rn → Rn be a proper non-singular map,
then F is a diffeomorphism.

1.5. Exercises

(1) Let F : Rm→ Rn be a smooth map such that F (λx) = λF (x) for all λ ∈ R and
x ∈ Rm. Show that F is linear.

(2) Let F : Rm→ Rn be a smooth map such that F (0) = 0 and define

H (t,x) =

{
t−1F (tx) t ̸= 0
DF |0 (x) t = 0

Show that H (t,x) : R×Rm→ Rn is smooth.
(3) Show that RP1 and S1 are diffeomorphic. Hint: Read subsection 1.2.3.
(4) Show that CP1 and S2 are diffeomorphic. CP1 is also called the Riemann sphere.

Hint: Read subsection 1.2.3.
(5) Let p : C→ C be a nontrivial polynomial and define P : CP1→ CP1 by

P([z : 1]) = [p(z) : 1] and P([1 : 0]) = [1 : 0] .

(a) Show that P is smooth.
(b) Show that a similar definition works for any smooth proper map f : C→

C and will always define a continuous extension F : CP1 → CP1. Will it
always be smooth?

(6) Let p
q be a rational function, where p and q are complex polynomials without

common roots. Show that

R([z : 1]) = [p(z) : q(z)]

can be extended to a smooth map R : CP1→ CP1 (the extension depends on the
degrees of the polynomials).

(7) Let Mm be a path connected manifold. Show that if m > 1, then M−{p} is path
connected.

(8) Let F : Rn→ Rn be a smooth proper map with finitely many critical values.
(a) Show that if n ≥ 2, then F is surjective (Hint: The set of regular values is

connected).
(b) Give a counter example when n = 1.

(9) Show that Aut(V ) acts by diffeomorphisms on P(V ).
(10) Show that

(a) FPn−1 ⊂ FPn is an embedded submanifold
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(b) and

{[z0 : · · · : zn] ∈ FPn | λ0z0 + · · ·+λnzn = 0}

defines an embedded submanifold diffeomorphic to FPn−1 as long as (λ0, ...,λn) ̸=
0.

(11) Consider the immersion R→ R2 whose image looks like a figure 8 with loops
that are in the first and third quadrants and is invariant under the involution
A(x,y) = (y,x). Show that the restriction of A to this immersed submanifold
is not continuous.

(12) Show that the space of symmetric matrices of rank k ≤ n in Matn×n (R) is a
manifold of dimension

(k+1
2

)
+ k (n− k).

(13) Let

Vk (Rn) =
{
(v1, ...,vk) ∈ Rn×·· ·×Rn | vi · v j = δi j

}
⊂Matkn×k (R)

be the Stiefel manifold of k ordered orthonormal vectors. Show that this is a
manifold of dimension kn−

(k+1
2

)
.

(14) Let Gk (Rn) be the Grassmannian of k-dimensional subspaces in Rn.
(a) Show that the map

Matkn×k (R) → Gk (Rn)

X 7→ EX = X (X∗X)−1 X∗

is a submersion whose preimages are diffeomorphic to Glk.
(b) Show that there is a submersion Vk (Rn)→ Gk (Rn) whose preimages can

be identified with O(k).
(15) Show that the complex exponential map exp : C→ C× = C−{0} is a covering

map.
(16) Show that Rn→ T n = S1×·· ·×S1 is a covering map and use this to show that

any map M→ T n is homotopic to a constant provided M is simply connected.
(17) Let M,N be manifolds. If S ⊂ M is a closed subset and q ∈ N, then there is a

smooth map F : M→ N such that S = F−1 (q).
(18) Show that if F : M→ N admits a section s : N →M, i.e., F ◦ s = idN , then s is

an embedding. Show that there exists a neighborhood U of s(N)⊂M such that
F |U : U → N is a submersion.

(19) Show that the map

FPm×FPm → FPmn+m+n

([· · · : xi : · · · ] , [· · · : y j : · · · ]) 7→ [· · · : xiy j : · · · ]

gotten by multiplying all of the homogeneous coordinates is well-defined and an
embedding.

(20) Show that {
[z1 : z2 : z3] ∈ CP2 | zn

1 + zn
2 + zn

3 = 0
}

is a compact submanifold.
(21) More generally, show that{

[z1 : z2 : z3] ∈ CP2 | p(z1,z2,z3) = 0
}

is a compact submanifold when p is homogeneous and irreducible. What hap-
pens in the real case?
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(22) Show that {
(z0, ...,zn) ∈ Cn+1 | z2

0 + · · ·+ z2
n = 1

}
defines a submanifold and that it is diffeomorphic to T Sn.

(23) Show that the Brieskorn variety W 2n−1 (d)⊂ Cn+1 defined by the equations

z2
0 + · · ·+ z2

n = 0
z0z̄0 + · · ·+ znz̄n = 2

is a manifold of dimension 2n−1.
(24) Show that the Milnor manifold with m≤ n given by

H (m,n) = {([z0 : · · · : zm] , [w0 : · · · : wn]) ∈ FPm×FPn | z0w0 + · · ·+ zmwn = 0}
is a manifold of dimension dimRF · (m+n−1).

(25) Let F : M→N be a submersion. Show that if S⊂N is an embedded submanifold,
then F−1 (S)⊂M is an embedded submanifold that, when nonempty, satisfies

dimN−dimS = dimM−dimF−1 (S) .

Hint: Start with the case where S=G−1 (z) and z is a regular value. Then localize
to prove the result.

(26) Note that the torus S1×S1 can be embedded in R3.
(a) Show that the n torus S1×·· ·×S1 can be embedded in Rn+1.
(b) Show that Sp×Sq can be embedded in Rp+q+1.
(c) Show that Sp1 ×·· ·×Spk can be embedded in Rp1+···+pk+1.

(27) Let F : S1→ R.
(a) Show that if y ∈ R is a regular value, then it has an even number of preim-

ages.
(b) Show that there are at least as many critical points as there are preimages of

a regular value.
(28) Show that RPn ⊂ RPn+1 is not the preimage of a regular value of a function

RPn+1→ R.
(29) Without quoting theorem 1.4.28 Show that if F : Mm → Nn has constant rank

k < n, then the image F (M)⊂ N has measure zero.
(30) A classical way of embedding RPn into Sn+k uses a symmetric bilinear map

b : Rn+1×Rn+1→ Rn+k+1 with the property that if b(x,y) = 0, then x = y = 0.
Define F : Sn→ Sn+k, by F (x) = b(x,x)

|b(x,x)| .
(a) Show that F (x)=F (y) if and only if x=±y. Hint: Consider b(x+λy,x−λy)

when b(x,x) = λ 2b(y,y).
(b) Show that F induces an embedding RPn→ Sn+k.
(c) Use b(x,y) =

(
z0, ...,z2n

)
, where x =

(
x0, ...,xn

)
, y =

(
y0, ...,yn

)
and zk =

∑i+ j=k xiy j, to obtain an embedding RPn→ S2n.
(d) Use the multiplicative structure on R2 ≃ C to obtain a diffeomorphism

RP1→ S1.
(31) A regular closed curve c : S1→ R2 is said to have a crossing at q ∈ R2 provided

F−1 (q) = {p1, p2} consists of exactly two points and the derivatives of c at these
two points are linearly independent. For each positive integer k there exists a
curve with k crossings (draw it). It can even be realized as the level set F−1 (0)
of a polynomial F (x,y) : R2→ R.
(a) Check this in these three cases: F (x,y) = x2 + y2− 1 for p = 0, F (x,y) =(

x2 + y2−4
)2 for p = 1, F (x,y) =

(
4x2
(
1− x2

)
− y2

)2 for p = 2.
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(b) Show that if F−1 (0) is the image of a curve with p crossings, then the zero
level set of F (x,y)+ z2− ε is a compact surface of genus p (p holes) for
sufficiently small ε . Essentially the curve has been fattened so that each of
p+1 enclosed regions of the curve correspond to a hole in the surface and
the crossings become necks.



CHAPTER 2

Tangent Spaces and Differentials of Maps

2.1. The Tangent Bundle

2.1.1. Motivation. To motivate let us start by selecting a countable differentiable sys-
tem

{
f i
}

, i = 1,2, ... of functions f i : M→ R (see corollary 1.3.9).
Tangent vectors are supposed to be tangents or velocities to curves on the manifold.

These vectors have, as such, no place to live unless we know that the manifold is in Eu-
clidean space. In the general case we can use the countable collection f i of smooth func-
tions coming from a differential structure to measure the coordinates of the velocities by
calculating the derivatives

d
(

f i ◦ c
)

dt
for a smooth curve c : I→M. Thus a tangent vector v ∈ T M looks like a countable collec-
tion vi of its coordinates. However, around any given point we know that there will be n
coordinate functions, say f 1, ..., f n, that yield a chart and then other smooth functions F j,
j > n such that f j = F j

(
f 1, ..., f n

)
. Thus we also have the relations

v j =
n

∑
i=1

∂F j

∂xi vi.

In other words the n coordinates v1, ...,vn determine the rest of the coordinate components
of v. Note that at a fixed point p, the tangent vectors v∈ TpM form an n-dimensional vector
space, which is an n-dimensional subspace of a fixed infinite dimensional vector space.
Moreover, this tangent space is well-defined as the set of vectors tangent to curves going
through p and is thus not dependent on the chosen coordinates. However, the coordinates
help us select a basis for this vector space and thus to create suitable coordinates that yield
a differentiable structure on T M.

As it stands, the definition does depend on our initial choice of a differentiable system.
To get around this we could simply use the entire space of smooth functions C∞ (M) to get
around this. This is more or less what we shall do below.

2.1.2. Abstract Derivations. The space of all smooth functions C ∞ (M) is not a vec-
tor space as we can’t add functions that have different domains, especially if these domains
do not even intersect. If we fix p ∈M, then we consider the subset Cp (M) ⊂ C ∞ (M) of
smooth functions whose domain contains p. Thus any two functions in Cp (M) can now be
added in a meaningful way by adding them on the intersection of their domains and then
noting that this is again an open set containing p. Thus we get a nice and very large col-
lection of smooth functions defined on neighborhoods of p. To get a logically meaningful
theory this space is often modified by considering instead equivalence classes of function
in Cp (M), the relation being that two functions are equivalent if they are equal on some
neighborhood of p. This quotient space is denoted Fp (M) and the elements are called
germs of functions at p. Note that Fp (M) really is a vector space.

28
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Now consider a curve c : I → M with c(t0) = p. The goal is to make sense of the
velocity of c at t0. If f ∈ Cp (M), then f ◦c measures how c changes with respect to f . If f
had been a coordinate function this would be the corresponding coordinate component of
c in a chart. Similarly the derivative d

dt ( f ◦ c) measures the change in velocity with respect
to f , i.e., what should be the f -component of the velocity.

DEFINITION 2.1.1. The velocity ċ(t0) of c at t0 is the map

Cp (M) → R

f 7→ d
dt

( f ◦ c)(t0) .

Thus ċ(t0) is implicitly defined by specifying how it creates directional derivatives

Dċ(t0) f =
d
dt

( f ◦ c)(t0)

for all smooth functions defined on a neighborhood of p = c(t0).

DEFINITION 2.1.2. A derivation at p or on Cp (M) is a linear map D : Cp (M)→ R
that also satisfies the product rule for differentiation at p:

D( f g) = D( f )g(p)+ f (p)D(g) .

There is an alternate way of defining derivations as linear functions on Cp (M). Let
C 0

p (M) ⊂ Cp (M) be the maximal ideal of functions that vanish at p and
(
C 0

p (M)
)2 ⊂

C 0
p (M) the ideal generated by products of elements in C 0

p (M).

LEMMA 2.1.3. The derivations at p are isomorphic to the subspace of linear maps on
C 0

p (M) that vanish on
(
C 0

p (M)
)2.

PROOF. If D is a derivation, then the derivation property shows that it vanishes on(
C 0

p (M)
)2. Furthermore, it also vanishes on constant functions as linearity and the deriva-

tion property implies

D(a) = aD(1) = aD(1 ·1) = a(D(1)+D(1)) .

Conversely, any linear map D on C 0
p (M) that vanishes on

(
C 0

p (M)
)2 defines a unique

linear map on Cp (M) by also defining it to vanish on constant functions. If f ,g ∈ Cp (M),
then we have

0 = D(( f − f (p))(g− f (p)))

= D( f g)− f (p)Dg−g(p)D f +D( f (p)g(p))

= D( f g)− f (p)Dg−g(p)D f

showing that it is a derivation. □

Next we show that derivations exist.

PROPOSITION 2.1.4. The map f 7→ d
dt ( f ◦ c)(t0) is a derivation on Cp (M).

PROOF. That it is linear in f is obvious from the fact that differentiation is linear. The
derivation property follows from the product rule for differentiation:

d
dt

(( f g)◦ c)(t0) =
(

d
dt

( f ◦ c)(t0)
)
(g◦ c)(t0)+( f ◦ c)(t0)

d
dt

(g◦ c)(t0) .

□
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DEFINITION 2.1.5. The tangent space TpM for M at p is the vector space of derivations
on Cp (M).

PROPOSITION 2.1.6. If p ∈U ⊂M, where U is open, then TpU = TpM.

PROOF. We already saw that derivations must vanish on constant function. Next con-
sider a function f that vanishes on a neighborhood of p. We can then find λ : M→ R that
is 1 on a neighborhood of p and λ = 0 on the complement of the region where f vanishes.
Thus λ f = 0 on M and

0 = D(λ f ) = D(λ ) f (p)+λ (p)D( f ) = D( f ) .

This in turns shows that if two functions f ,g agree on a neighborhood of p, then
D( f ) = D(g). This means that a derivation D on Cp (M) restricts to a derivation on Cp (U)
and conversely that any derivation on Cp (U) also defines a derivation on Cp (M). This
proves the claim. □

We are now ready to prove that there are no more derivations than one would expect.

LEMMA 2.1.7. The natural map Rn → T0Rn that maps v to Dv f =
(

d f
dt

)
(tv) |t=0 is

an isomorphism.

PROOF. The map is clearly linear and as

Dvxi = vi

it follows that its kernel is trivial. Thus we need to show that it is surjective. This claim
depends crucially on the fact that derivations are defined on C∞ functions. The key obser-
vation is that we have a Taylor formula

f (x) = f (0)+ xi fi (x)

where fi are also smooth and fi (0) =
∂ f
∂xi (0). The functions are defined by

fi (x) =
∫ 1

0

∂ f
∂xi (tx)dt

and the formula follows from the fundamental theorem of calculus applied to the identity:

d
dt

( f (tx)) = xi ∂ f
∂xi (tx) .

Now select an abstract derivation D ∈ T0Rn and observe that

D( f ) = D( f (0))+D
(
xi) fi (0)+0D( fi) =

∂ f
∂xi (0)D

(
xi)

So if we define a vector v =
(
D
(
x1
)
, ...,D(xn)

)
, then in fact

D( f ) = Dv ( f ) .

□

REMARK 2.1.8. The space of linear maps on Ck (Rn), 1 ≤ k < ∞, that satisfy the
product rule

D( f g) = D( f )g(0)+ f (0)D(g)
is infinite dimensional! It clearly suffices to show this for n = 1. Observe that if Z ⊂Ck (R)
is the subset of functions that vanish at 0, then we merely need to show that Z/Z2 is infinite
dimensional. To see this first note that if f is C0 and g ∈ Z, then f g is differentiable with
derivative f (0)g′ (0) at 0. This in turn implies that functions in Z2 are not only Ck but also
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have derivatives of order k+1 at 0. However, there is a vast class of functions in Z that do
not have derivatives of order k+1 at 0.

2.1.3. Concrete Derivations. To avoid the issue of crucially using C∞ functions we
give an alternate definition of the tangent space that obviously gives the above definition.

DEFINITION 2.1.9. TpM is the space of derivations that are constructed from the
derivations coming from curves that pass through p.

Without the above result it is not obvious that this is a vector space so a little more
work is needed.

PROPOSITION 2.1.10. If x1, ...,xn are coordinates on a neighborhood of p, then two
curves ci passing through p at t = 0 define the same derivations if and only if for all
i = 1, ...,n

d
(
xi ◦ c1

)
dt

(0) =
d
(
xi ◦ c2

)
dt

(0) .

PROOF. The necessity is obvious. Conversely note that any f ∈ Cp (M) can be ex-
pressed smoothly as f = F

(
x1, ...,xn

)
on some neighborhood of p. Thus

d ( f ◦ c1)

dt
(0) =

d
(
F
(
x1 ◦ c1, ...,xn ◦ c1

))
dt

(0)

=
∂F
∂xi

d
(
xi ◦ c1

)
dt

(0)

=
∂F
∂xi

d
(
xi ◦ c2

)
dt

(0)

=
d ( f ◦ c2)

dt
(0) .

□

PROPOSITION 2.1.11. The subset of derivations on Cp (M) that come from curves
through p form a subspace.

PROOF. First note that for a curve c through p we have

α
d ( f ◦ c)

dt
(0) =

d ( f ◦ c)(αt)
dt

(0) .

So scalar multiplication preserves this subset.
Next assume that we have two curves ci and select a coordinate system xi around p.

Define

c = x−1 (x1 ◦ c1 + x1 ◦ c2, ...,xn ◦ c1 + xn ◦ c2
)

where x−1 is the inverse of the chart map x : U →V ⊂ Rn. Then

xi ◦ c = xi ◦ c1 + xi ◦ c2

and
d ( f ◦ c)

dt
(0) =

d ( f ◦ c1)

dt
(0)+

d ( f ◦ c2)

dt
(0) .

This shows that addition of such derivations also remain in this subset. □
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DEFINITION 2.1.12. The velocity of a curve c : I → M at t0 is denoted by ċ(t0) ∈
Tc(t0)M and is the derivation corresponding to the map:

f 7→ d ( f ◦ c)
dt

(t0) .

As any vector v ∈ TpM can be written as v = ċ(t0) we can also define the directional
derivative of f by

Dv f =
d ( f ◦ c)

dt
(t0) .

Most books also use the notation
v( f ) = Dv f .

2.1.4. Local Coordinate Formulas, Differentials, and the Tangent Bundle. Fi-
nally let us use coordinates to specify a basis for the tangent space. Fix p ∈ M and a
coordinate system xi around p. For any f ∈ Cp (M) write f = F

(
x1, ...,xn

)
and define

∂ f
∂xi =

∂F
∂xi .

The map f 7→ ∂ f
∂xi (p) is a derivation on Cp (M). We denote it by ∂

∂xi |p. These tangent
vectors in fact form a basis as we saw that

D( f ) = D
(
xi) ∂ f

∂xi |p

i.e.,

D = vi ∂

∂xi |p,

where the components vi are uniquely determined. Moreover, as

d ( f ◦ c)
dt

(0) =
∂ f
∂xi |p

d
(
xi ◦ c

)
dt

(0)

we also get this as a natural basis if we use curves to define the tangent space.

DEFINITION 2.1.13. The cotangent space T ∗p M to M at p ∈ M is the vector space
of linear functions on TpM. Alternately this can also be defined as the quotient space
C 0

p (M)/
(
C 0

p (M)
)2 without even referring to tangent vectors.

Using coordinates we obtain a natural dual basis dxi satisfying

dxi
(

∂

∂x j

)
=

∂xi

∂x j = δ
i
j.

In particular,

dxi (v) = dxi
(

v j ∂

∂x j

)
= vi

calculates the ith coordinate of a vector.
We also obtain a natural set of transformation laws when we have another coordinate

system yi around p:

dyi =
∂yi

∂x j dx j

and
∂

∂yi =
∂x j

∂yi
∂

∂x j .
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Here the matrices
[

∂yi

∂x j

]
and

[
∂x j

∂yi

]
have entries that are functions on the common domain

of the charts and are inverses of each other. These are also the natural transformation laws
for a change of basis as well as the change of the dual basis.

The differential d also has a coordinate free definition. Let f ∈ Cp (M), then we can
define d f ∈ T ∗p M by

d f (v) = Dv f =
d ( f ◦ c)

dt
(0)

if c is a curve with ċ(0) = v. In coordinates we already know that

d f (v) =
∂ f
∂xi vi

so in fact

d f =
∂ f
∂xi dxi.

This shows that our definition of dxi is consistent with the more abstract definition and that
the transformation law for switching coordinates is simply just the law of how to write a
vector or co-vector out in components with respect to a basis.

It now becomes very simple to define a differentiable structure on the tangent bundle
T M. This space is the disjoint union of the tangent spaces TpM where p ∈ M. There
is also a natural base point projection p : T M → M that takes a vector in TpM to its
base point p. Starting with a differential system

{
f i
}

for M, we obtain a differentiable
system

{
f i ◦ p,d f i

}
for T M. Moreover, when f 1, .., f n form a chart on U ⊂ M, then

f 1 ◦ p, ..., f n ◦ p,d f 1, ...,d f n form a chart on TU . This takes us full circle back to our
preliminary definition of tangent vectors.

IMPORTANT: The isomorphism between TpM and Rn depends on a choice of coor-
dinates and is not canonically defined. We just saw that in a coordinate system we have a
natural identification

TU →U×Rn

which for fixed p ∈U yields a linear isomorphism

TpU →{p}×Rn ≃ Rn.

However, this does not mean that T M has a natural map to M×Rn, that is a linear
isomorphism when restricted to tangent spaces. Manifolds that admit such maps are called
parallelizable. Euclidean space is parallelizable as are all matrix groups. But, as we shall
see, S2 is not parallelizable.

2.2. Derivatives of Maps and Vector Fields

2.2.1. Derivatives of Maps. Given a smooth function F : M→ N we obtain a deriva-
tive or differential DF |p : TpM→ TF(p)N. If we let D= v= ċ(0)∈ TpM represent a tangent
vector, then

DF |p (D) = D◦F∗,

DDF |p(v) f = Dv ( f ◦F) ,

DF |p (v) =
d (F (c(t)))

dt
|t=0.

When using coordinates around p ∈M we can also create the partial derivatives

∂F
∂xi ∈ T N
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as the velocities of the xi-curves for F ◦ x−1 where the other coordinates are kept constant,
in fact

∂F
∂xi |p = DF

(
∂

∂xi |p
)
.

Note that ∂F
∂xi is a function from (a subset of) M to T N which at p∈M is mapped to TF(p)N.

These partial derivatives represent the columns in a matrix representation for DF since

DF (v) = DF
(

∂

∂xi vi
)
= DF

(
∂

∂xi

)
vi =

∂F
∂xi vi.

If we also have coordinates at F (p) in N, then

DF (v) =
∂F
∂xi vi =

∂
(
y j ◦F

)
∂xi vi ∂

∂y j .

So the matrix representation for DF is precisely the matrix of partial derivatives

[DF ] =

[
∂
(
y j ◦F

)
∂xi

]
=

[
∂
(
y j ◦F ◦ x−1

)
∂xi

]
.

We can now reformulate what it means for a smooth function to be an immersion or
submersion.

DEFINITION 2.2.1. The smooth function F : M→ N is an immersion if DF |p is in-
jective for all p ∈M. It is a submersion if DF |p is surjective for all p ∈M.

REMARK 2.2.2. When we consider a map F : M→Rk, then we also have a differential

dF =

 dF1

...
dFk

 : T M→ Rk.

The identification I : Rk×Rk→ TRk defined by I (p,v) = d
dt (p+ tv) |t=0 shows that DF =

I (F,dF).

We can use differentials together with some elementary linear algebra to prove an
interesting result for retracts. A retract F : M → M is an idempotent map, F ◦F = F .
Linear projections are examples of retracts.

THEOREM 2.2.3. Let M be a connected manifold. If F : M→M satisfies F ◦F = F,
then the image F (M)⊂M is a submanifold.

PROOF. First note that the image is a closed subset. We next show that F has constant
rank on a open set that contains the image. First fix p ∈ F (M). This is clearly a fixed
point of F and DF |p : TpM → TpM also satisfies (DF |p)2 = DF |p. In particular, DF |p
can only have eigenvalues 0 or 1 and kerDF |p⊕ imDF |p = TpM. Moreover kerDF |p =

im
(
idTpM−DF |p

)
so it follows that

rank
(
idTpM−DF |p

)
+ rankDF |p = n = dimM.

As both ranks can only be the same or larger (see remark 1.4.5) for points near p it follows
that they are constant on F (M). Let k = rankDF |p. For a general x ∈M with F (x) = p we
have

DF |p ◦DF |x = DF |x
implying that rankDF ≤ k on M. However, as rankDF ≥ k is an open condition there must
be an open set containing F (M) where rankDF = k.
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By the constant rank theorem (1.4.24) we can select coordinate systems around p ∈
F (M) that put F in normal form

y◦F ◦ x−1 (x1, ...,xn)= (x1, ...,xk,0, ...,0
)
.

If U is the intersection of the domains of these coordinates, then U becomes a slice neigh-
borhood for F (M) as

U ∩F (M) =
{

q ∈U | xk+1 = 0, ...,xn = 0
}
.

This shows that the image is an embedded submanifold. □

2.2.2. Vector Fields. A vector field is a smooth map (called a section) X : M→ T M
such that X |p ∈ TpM. We use X |p instead of X (p) as X is a map that can also be evaluated
on functions. In fact, we obtain a derivation

DX : C∞ (M)→C∞ (M)

by defining
(DX f )(p) = DX |p f .

Most books use the notation
X : C∞ (M)→C∞ (M)

and
X ( f )(p) = X |p f = DX |p f .

Conversely any such derivation corresponds to a vector field in the same way that tangent
vectors correspond to derivations at a point.

In local coordinates we obtain

X = DX
(
xi) ∂

∂xi .

Given two vector fields X and Y we can construct their Lie bracket [X ,Y ] implicitly as
a derivation

D[X ,Y ] = DX DY −DY DX = [DX ,DY ] .

This clearly defines a linear map and is a derivation as

D[X ,Y ] ( f g) = DX (gDY f + f DY g)−DY (gDX f + f DX g)

= DX gDY f +DX f DY g+gDX DY f + f DX DY g

−DY gDX f +−DY f DX g−gDY DX f − f DY DX g

= g [DX ,DY ] f + f [DX ,DY ]g.

In local coordinates this is conveniently calculated by ignoring second order partial
derivatives: [

X i ∂

∂xi ,Y
j ∂

∂x j

]
= X i ∂Y j

∂xi
∂

∂x j −Y j ∂X i

∂x j
∂

∂xi

+X iY j ∂ 2

∂xi∂x j −Y jX i ∂ 2

∂x j∂xi

= X i ∂Y j

∂xi
∂

∂x j −Y j ∂X i

∂x j
∂

∂xi

=

(
X j ∂Y i

∂x j −Y j ∂X i

∂x j

)
∂

∂xi .
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Since tangent vectors are also velocities to curves it would be convenient if vector
fields had a similar interpretation. A curve c(t) such that

ċ(t) = X |c(t)
is called an integral curve for X . Given an initial value p ∈ M, there is in fact a unique
integral curve c(t) such that c(0) = p and it is defined on some maximal interval I that
contains 0 as an interior point.

In local coordinates we can write xi ◦c(t) = xi (t) and X = X i ∂

∂xi . The condition that c
is an integral curve then comes down to

ċ(t) =
dxi

dt
∂

∂xi = X i ∂

∂xi

or more precisely
dxi

dt
(t) = X i (c(t)) .

This is a first order ODE and as such will have a unique solution given an initial value.
To get a maximal interval for an integral curve we have to use the local uniqueness of

solutions and patch them together through a covering of coordinate charts.
We state the main theorem on integral curves that will be used in several places.

THEOREM 2.2.4. Let X be a vector field on a manifold M. For each p ∈M there is a
unique integral curve cp (t) : Ip→M where cp (0) = p, ċp (t) = Xcp(t) for all t ∈ Ip, and Ip
is the maximal open interval for any curve satisfying these two properties. Moreover, the
map (t, p) 7→ cp (t) is defined on an open subset of R×M and is smooth. Finally, for given
p ∈M the interval Ip either contains [0,∞) or cp (t) is not contained in a compact set as
t→ b, for some b < ∞.

PROOF. The first part is simply existence and uniqueness of solutions to ODEs. The
second part is that such solutions depend smoothly on initial data. This is far more subtle
to prove (see e.g. Michel and Miller). The last statement is a basic compactness argument.

□

We use the general notation that Φt
X (p) = cp (t) is the flow corresponding to a vector

field X , i.e.
d
dt

Φ
t
X = X |Φt

X
= X ◦Φ

t
X .

REMARK 2.2.5. If we have a smooth family of vector fields Xλ : L×M→ T M, λ ∈ L,
then the corresponding flows Φt

Xλ
are also smooth with respect to λ (see e.g. Michel and

Miller).

Let F : Mm→ Nn be a smooth map between manifolds. If X is a vector field on M and
Y a vector field on N, then we say that X and Y are F-related provided DF (X |p) =Y |F(p),
or in other words DF (X) =Y ◦F. Given that tangent vectors are defined as derivations we
note that it is equivalent to say that for all f ∈ C∞ (N) we have (DY f ) ◦F = DX ( f ◦F).
In particular, when Xi are F-related to Yi for i = 1,2, it follows that [X1,X2] is F-related to
[Y1,Y2].

We can also relate this concept to the integral curves for the vector fields.

PROPOSITION 2.2.6. X and Y are F-related iff F ◦Φt
X = Φt

Y ◦F whenever both sides
are defined.
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PROOF. Assuming that F ◦Φt
X = Φt

Y ◦F we have

DF (X) = DF
(

d
dt
|t=0Φ

t
X

)
=

d
dt
|t=0

(
F ◦Φ

t
X
)

=
d
dt
|t=0

(
Φ

t
Y ◦F

)
= Y ◦Φ

0
Y ◦F

= Y ◦F.

Conversely DF (X) = Y ◦F implies that

d
dt

(
F ◦Φ

t
X
)

= DF
(

d
dt

Φ
t
X

)
= DF

(
X |Φt

X

)
= Y |F◦Φt

X
.

This shows that t 7→ F ◦Φt
X is an integral curve for Y . At t = 0 it agrees with the integral

curve t 7→Φt
Y ◦F so by uniqueness we obtain F ◦Φt

X = Φt
Y ◦F . □

Let X be a vector field and Φt = Φt
X the corresponding locally defined flow on a

smooth manifold M. The derivative of a function f : M→ R in the direction of X is the
first order term in a Taylor expansion:

f
(
Φ

t (p)
)
= f (p)+ t (DX f )(p)+o(t)

or simply

f ◦Φ
t = f + tLX f +o(t) .

The Lie bracket [X ,Y ] similarly turns out to be a first order term in a Taylor expansion.
We wish to consider how Y changes along the flow of X , i.e., how Y |Φt , changes. However,
this can’t be directly compared to Y as the vectors live in different tangent spaces. Thus
we look at the curve t 7→ DΦ−t

(
Y |Φt (p)

)
that lies in TpM. The derivative with respect to t

is called the Lie derivative, LXY , and satisfies:

DΦ
−t (Y |Φt (p)

)
= Y |p + t (LXY ) |p +o(t) .

This Lie derivative of a vector field is in fact the Lie bracket.

PROPOSITION 2.2.7. For vector fields X ,Y on M we have

LXY = [X ,Y ] .

PROOF. We see that the Lie derivative satisfies

DΦ
−t (Y |Φt ) = Y + tLXY +o(t)

or equivalently

Y |Φt = DΦ
t (Y )+ tDΦ

t (LXY )+o(t) .
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Consequently it is natural to consider the directional derivative of a function f in the direc-
tion of Y |Φt −DΦt (Y ).

D(Y |Φt−DΦt (Y )) f = DY |
Φt f −DDΦt (Y ) f

= (DY f )◦Φ
t −DY

(
f ◦Φ

t)
= DY f + tDX DY f +o(t)

−DY ( f + tDX f +o(t))

= t (DX DY f −DY DX f )+o(t)

= tD[X ,Y ] f +o(t) .

This shows that

LXY = lim
t→0

Y |Φt −DΦt (Y )
t

= [X ,Y ] .

□

Proposition 2.2.6 together with this new interpretation of Lie brackets leads to several
equivalent conditions for when vector fields commute.

PROPOSITION 2.2.8. Consider two vector fields X ,Y on M. The following are equiv-
alent:

(1) Φt
X ◦Φs

Y = Φs
Y ◦Φt

X ,
(2) DΦt

X (Y ) = Y ◦Φt
X , i.e., Y is Φt

X -related to itself,
(3) [X ,Y ] = 0 on M.

PROOF. The fact that (1) and (2) are equivalent follows from proposition 2.2.6. The
fact that (2) implies (3) follows from

[X ,Y ] = lim
t→0

Y |Φt
X
−DΦt

X (Y )

t
.

Conversely, consider the curve c(t) = DΦ
−t
X

(
Y |Φt

X (p)

)
∈ TpM. Its velocity at t0 is calcu-

lated by considering the difference:

DΦ
−t
X

(
Y |Φt

X (p)

)
−DΦ

−t0
X

(
Y |

Φ
t0
X (p)

)
= DΦ

−t0
X

(
DΦ

−(t−t0)
(

Y |
Φ

t−t0
X (Φ

t0
X (p))

))
−DΦ

−t0
X

(
Y |

Φ
t0
X (p)

)
= DΦ

−t0
X

(
DΦ

−(t−t0)
(

Y |
Φ

t−t0
X (Φ

t0
X (p))

)
−Y |

Φ
t0
X (p)

)
= DΦ

−t0
X

(
(t− t0) [X ,Y ] |

Φ
t0
X (p)+o(t− t0)

)
= o(t− t0) .

Showing that the curve is constant and consequently that (2) holds provided the Lie bracket
vanishes. □

2.3. Vector Bundles

We collect the most important constructions and concepts about vector bundles.
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2.3.1. Vector Space Constructions. We exhibit the most important vector space con-
structions that are also used for vector bundles. Given two vector spaces E and F over
the same field we have the product E ×F , direct sum E ⊕F , and the linear maps or ho-
momorphisms Hom(E,F) between the vector spaces. In the special case where F = F
is the field we obtain the dual of E, E∗ = Hom(E,F). When E = F we also denote
Hom(E,E) = End(E), the space of endomorphisms of E. In case E ⊂ F is a subspace we
also have to quotient space F/E that consists of the equivalence classes x+E for x ∈ F .

Note that the difference between direct sums and products only becomes apparent
when we have infinitely many vector spaces Eα . In this case ⊕α Eα ⊂ ×α Eα consists of
the sequences (eα) where all but a finite number of entries vanish.

A particularly useful construction is that of the tensor product E⊗F . It has the prop-
erty that there is a bilinear map

E×F → E⊗F

(v,w) 7→ v⊗w

such that E⊗F = span{v⊗w | v ∈ E, w ∈ F}. In particular, if eα is a basis for E and fβ

a basis for F , then eα ⊗ fβ is a basis for E ⊗F . The rigorous construction is somewhat
clumsy as it requires a very big vector space even when both vector spaces are finite dimen-
sional. Let U be the vector space with basis (v,w), v ∈ E, w ∈ F and W ⊂U the subspace
generated by

(λ1v1 +λ2v2,w)−λ1 (v1,w)−λ2 (v2,w) , λ1,λ2 ∈ F, v1,v2 ∈ E, w ∈ F

and

(v,µ1w1 +µ2w2)−µ1 (v,w1)−µ2 (v,w2) , µ1,µ2 ∈ F, w1,w2 ∈ F, v ∈ E.

With these constructions we can define tensor products as quotient spaces: E⊗F =U/W .
The inclusion map E × F → U that takes each pair (v,w) to a basis vector becomes a
bilinear map when composed with the quotient map U →U/W . If we denote the image of
the basis vector (v,w) by v⊗w ∈ E⊗F , then it is clear that the tensor product is spanned
by such elements. This takes us back to the desired properties.

Tensor products can be iterated and it is easy to check that (E⊗F)⊗G and E ⊗
(F⊗G) are canonically isomorphic. With this in mind we can create the k-fold tensor
product E⊗k with k factors of E. Selecting a basis eα for E allows us to write the elements
of T ∈ E⊗k as linear combinations

∑T α1···αk eα1 ⊗·· ·⊗ eαk .

We say that T is skew-symmetric if T ···α···α··· = 0 whenever two indices are equal. In this
way the skew-symmetric elements are generated by elements of the form(

· · ·⊗
ith place

v ⊗·· ·⊗
jth place

w ⊗·· ·
)
−
(
· · ·⊗

ith place
w ⊗·· ·⊗

jth place
v ⊗·· ·

)
The space of skew-symmetric elements is denoted by

∧k E ⊂ E⊗k. The skew-symmetric
elements are the image of the projection:

Alt : E⊗k → E⊗k

v1⊗·· ·⊗ vk 7→ 1
k! ∑

σ∈Sk

sign(σ)vσ(1)⊗·· ·⊗ vσ(k).
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The averaging factor k! ensures that Alt ◦Alt = Alt. The skew-symmetrization operation
leads to the wedge product∧k

E×
∧l

E →
∧k+l

E

(w1,w2) 7→ w1∧w2 =
(k+ l)!

k!l!
Alt(w1⊗w2) .

It is not difficult to check that this defines an (associative) ring structure on:
∧∗E =

⊕∞
k=0

∧k E. Note that with this choice of factor we obtain

v1∧·· ·∧ vk = k!Alt(v1⊗·· ·⊗ vk) = ∑
σ∈Sk

sign(σ)vσ(1)⊗·· ·⊗ vσ(k).

When the indices α for a basis of E are totally ordered (usually by integers) we obtain
a basis eα1 ∧·· ·∧ eαk , α1 < · · ·< αk. Thus

dim
∧k

E =

(
dimE

k

)
and in particular

∧n E is 1-dimensional when n = dimE. In this case a choice of basis
e1, ...,en creates a nonzero element in

∧n E and if vi = α
j

i e j, i = 1, ...,n, then

v1∧·· ·∧ vn =
n

∑
j1,..., jn=1

α
j1

1 · · ·α
jn

n e j1 ∧·· ·∧ e jn

= ∑
{ j1,..., jn}={1,...,n}

α
j1

1 · · ·α
jn

n e j1 ∧·· ·∧ e jn

= ∑
σ∈Sn

α
σ(1)
1 · · ·ασ(n)

n eσ(1)∧·· ·∧ eσ(n)

= ∑
σ∈Sn

sign(σ)α
σ(1)
1 · · ·ασ(n)

n e1∧·· ·∧ en

= det
[
α

j
i

]
e1∧·· ·∧ en.

We say that two bases define the same orientation provided their transition matrix has
positive determinant. This can conveniently be formulated as saying that

f1∧·· ·∧ fn = αe1∧·· ·∧ en

for an α > 0.
One can similarly construct subspaces of symmetric elements spanned by

v1⊙·· ·⊙ vk = ∑
σ∈Sk

vσ(1)⊗·· ·⊗ vσ(k)

leading to E⊙k ⊂ E⊗k.

2.3.2. Vector Bundles.

DEFINITION 2.3.1. A rank k vector bundle over M, π : E→M, is a submersion such
that all the preimages Ep = π−1 (p) are vector spaces isomorphic to a fixed vector space Fk.
In addition, the vector space structures are compatible in the sense that the bundle is locally
trivial: For every p ∈M there is a neighborhood U ∋ p such that π−1 (U) is diffeomorphic
to U ×Fk and for each x ∈U the diffeomorphism restricts to a vector space isomorphism
Ex→{x}×Fk→ Fk.
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A good way to check that a vector bundle is trivial over U ⊂ M is to find sections
s1, ...,sk : U → E, i.e., π ◦ si = idU , such that for each x ∈ U the vectors s1 (x) , ...,sk (x)
form a basis for Ex. The trivial product bundle E = M× Fk is sometimes denoted by
εk = εk (M).

The vector space constructions from above lead to similar constructions for vector
bundles over a fixed manifold. In particular, we say that a rank k vector bundle is orientable
provided each fiber can be oriented in such a way that locally there are trivializations where
the sections are equivalent to the given orientations. This can more succinctly be stated as
saying that the 1-dimensional bundle

∧k E is trivial.
A subbundle E ⊂ F of vector bundles over M is a submanifold such that E ∩Fp ⊂ Fp

is a subspace of dimension l for all p ∈M. It is not immediately clear that subbundles are
locally trivial especially as subbundles of trivial bundles need not be trivial. Consider for
example T Sn ⊂ Sn×Rn+1. Here the tangent bundle is not trivial unless n = 1,3,7 and as
we shall see only admits nowhere vanishing sections when n is odd. The normal bundle
T⊥Sn =

{
(p,v) ∈ Sn×Rn+1 | v ∈ span{p}

}
is however trivial and

T Sn⊕T⊥Sn = Sn×Rn+1

or more abstractly
T Sn⊕ ε

1 (Sn)≃ ε
n+1 (Sn) .

PROPOSITION 2.3.2. The subbundle of a trivial bundle is locally trivial. Conse-
quently, subbundles of vector bundles are also vector bundles.

PROOF. We consider a subbundle E ⊂M×Rk. As each Ep ⊂ {p}×Rk ≃Rk there is
a unique orthogonal projection projp : Rk→ Ep. Since the subbundle is a smooth subman-
ifold it follows that

P : M×Rk → E

(p,v) 7→
(

p,projp (v)
)

is smooth. Let e1, ...,ek be the canonical basis for Rk and consider the sections si (p) =
projp (ei). These sections always span Ep. For a fixed p we can select l of these sections
si1 (p) , ...,sil (p) to form a basis for Ep. When x is sufficiently near p these sections must
still be linearly independent and thus form a basis for Ex. This shows that E is locally
trivial. □

A bundle map between vector bundles E and F over M is simply a section of Hom(E,F).
If the restrictions to the fibers are always isomorphisms, then we say that the bundles are
isomorphic. In case of two vector bundles over different manifolds πi : Ei →Mi, i = 1,2
a bundle map consists of a map f : M1 → M2 and a lift f̄ : E1 → E2 that is linear when
restricted to fibers

E1
f̄→ E2

↓ ↓
M1

f→ M2

Given f : M1 → M2 we can construct a pull-back bundle f ∗E2 → M1 by letting the fiber
over p be the fiber over f (p):

f ∗E2 = {(p,v) ∈M1×E2 | f (p) = π2 (v)} .
With this construction the bundle map f̄ between E1 and E2 can be thought of as a section
of Hom(E1, f ∗E2).
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PROPOSITION 2.3.3. Every vector bundle admits a smoothly varying inner product on
its fibers. In particular, every subbundle is the image of a bundle map that is a projection
on to it.

PROOF. If π : F →M is a vector bundle and M is covered by open sets Uα such that
π−1 (Uα) ≈Uα ×Rk, then we can select an inner product gα on Rk for each α . Next use
paracompactness to select a partition of unity λα : M→ [0,∞) subordinate to the cover. The
sum g = ∑α λα gα then defines an inner product on each fiber. Note that g is a (smooth)
section of (F∗)⊙2.

When we have a subbundle E ⊂ F , then we can use the inner product g to define the
orthogonal projection fiberwise for each p∈M. This gives a smooth global projection onto
E.

The orthogonal complement to E ⊂ F is called the normal bundle to E and denoted
E⊥. It clearly depends on the metric but it is easy to verify that all normal bundles are
isomorphic. □

The tangent bundle T M of a manifold is a vector bundle, as is the dual T ∗M and
their corresponding wedge products and symmetric products

∧k T M
∧k T ∗M, T⊙kM, and

(T ∗M)⊙k. Tensor products of these bundles are called tensor bundles and their sections
tensors.

A section of (T ∗M)⊗k is called a (0,k)-tensor and is a k-linear map on each tangent
bundle. Sections of

Hom
(

T⊗kM,T⊗lM
)
= (T ∗M)⊗k⊗T⊗lM

are called (l,k)-tensors. Thus vector fields are (1,0)-tensors and functions are (0,0)-
tensors. In general the sections of a vector bundle E are denoted by Γ(E) and in a nat-
ural way forms a module over C∞ (M). The space of vector fields on M are often denoted
by X (M). Sections of

∧k T ∗M are called k-forms and the space of all such sections is
denoted by Ωk (M). The space of all forms on Mm is the direct sum

Ω
∗ (M) =⊕m

k=0Ω
k (M) .

With the usual addition and the wedge product this forms a ring.
Occasionally tensors are defined globally on vector fields, in this case it is necessary

to have a criterion that guarantees that it is a tensor.

LEMMA 2.3.4. A k-linear map T : (X (M))×k → (X (M))×l that is also C∞ (M)
linear in each variable is an (l,k)-tensor.

PROOF. The subtlety here lies in showing that it can be evaluated on vectors in a fixed
tangent space. To simplify notation assume k = 1. We have to show that if X |p = Y |p,
then T (X) |p = T (Y ) |p. We start by localizing: If X = Y on an open set U ⊂ M, then
T (X) = T (Y ) on U . For each p ∈U select select a bump function λ : M→ [0,1] that is 1
on p and has support in U . Thus λX = λY on all of M. In particular,

T (X) |p = λ (p)T (X) |p = T (λX) |p = T (λY ) |p = λ (p)T (Y ) |p = T (Y ) |p.
Now assume that U is the domain for a coordinate system x1, ...,xm and write

X |U = ∑X i
∂i.

If we multiply the right-hand side by λ we obtain a globally defined vector field. We can
further assume that λ = 1 on some smaller neighborhood V ∋ p. Thus

T (X) |p = T
(
∑λX i

∂i
)
|p = ∑X i (p)T (∂i) |p.
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This shows that T (X) |p only depends on X |p. We can also use this construction to find a
vector fields that equal any v ∈ TpM by using X = ∑λvi∂i where v = ∑vi∂i|p. □

The two propositions were only established for real vector bundles, but can without
effort be generalized to complex vector bundles with the caveat that one should use Her-
mitian inner products instead of Euclidean inner products.

2.3.3. Bundles over Projective Spaces. In this short section we discuss projective
spaces and their associated bundles.

The tautological or canonical line bundle is defined as

τ (Pn) =
{
(p,v) ∈ Pn×Fn+1 | v ∈ p

}
.

This is a natural subbundle of the trivial vector bundle Pn×Fn+1 and consequently has a
natural orthogonal complement

τ
⊥ (Pn)≃

{
(p,v) ∈ Pn×Fn+1 | p⊥ v

}
Note that in the complex case we are using Hermitian orthogonality. These are related
to the tangent bundle in an interesting fashion. From our coordinatization around a point
p ∈ Pn as in subsection 1.2.3 where we think of p⊂ Fn+1 as a 1-dimensional subspace we
see that

TpPn ≃ Hom
(

p, p⊥
)

and globally
TPn ≃ Hom

(
τ (Pn) ,τ⊥ (Pn)

)
.

For each p ∈ Pn these bundles are trivial over the coordinate neighborhood Pn−P
(

p⊥
)
.

The maps τ (Pn)→ Pn and Fn+1−{0}→ Pn seem suspiciously similar. The the fiber
over the former is p while the latter has fiber p−{0}. Thus the latter map can be identified
with the nonzero vectors in τ (Pn) . In other words the missing 0 in Fn+1−{0} is replaced
by the zero section in τ (Pn) in order to create a larger bundle. This process is called a
blow up of the origin in Fn+1. Essentially we have a map τ (Pn)→ Fn+1 that maps the zero
section to 0 and is otherwise a bijection. The map Fn+1−{0}→ Pn when restricted to the
unit sphere S⊂ Fn+1−{0} is called a Hopf fibration.

The conjugate to the tautological bundle can also be seen internally in Pn+1 as the map

Pn+1−{p}→ Pn

where Pn+1−{p} is a tubular neighborhood of Pn ⊂ Pn+1. When p = [1 : 0 : · · · : 0] this
map is given by [

z : z0 : · · · : zn]→ [z0 : · · · : zn]
and looks like a vector bundle if we use fiberwise addition and scalar multiplication in the
z-variable.

The equivalence is obtained by mapping

Pn+1−{[1 : 0 : · · · : 0]}→ τ (Pn) ,[
z : z0 : · · · : zn]→([z0 : · · · : zn] , z̄ (z0, ...,zn

)
|(z0, ...,zn)|2

)
It is necessary to conjugate z since

[
z : z0 : · · · : zn

]
and

[
λ z : λ z0 : · · · : λ zn

]
have to map to

the same vector

z̄

(
z0, ...,zn

)
|(z0, ...,zn)|2

= λ z

(
λ z0, ...,λ zn

)
|(λ z0, ...,λ zn)|2

.
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The conjugate to the tautological bundle can also be identified with the dual bundle Hom(τ (Pn) ,C)
via the natural inner product structure coming from τ (Pn)⊂ Pn×Fn+1. The relevant linear
functional corresponding to

[
z : z0 : · · · : zn

]
is given by

v→

〈
v, z̄

(
z0, ...,zn

)
|(z0, ...,zn)|2

〉
.

This functional appears to be defined on all of Fn+1, but as it vanishes on the orthogonal
complement to

(
z0, ...,zn

)
we only need to consider the restriction to span

{(
z0, ...,zn

)}
=[

z0 : · · · : zn
]
.

2.4. Frobenius

The Frobenius theorem sets up a correspondence between suitable subbundles of the
tangent bundle and decompositions of the manifold into equivalence classes of submani-
folds of the same dimension. The original motivation comes from partial differential equa-
tions where certain overdetermined problems can be solved if the PDE satisfies suitable
integrability conditions. The theory with be used later to set up a complete correspondence
between Lie subgroups of a Lie group and subalgebras of the Lie algebra of the group.

2.4.1. The Local Theory. We begin with a motivational example. It’s a classical
problem going back to Clairaut to ask when a 1-from is an exact differential

Pdx+Qdy = du?

An obvious necessary condition is that ∂yP = ∂xQ, often called Clairaut’s theorem. How-
ever, Clairaut more importantly showed that it was a sufficient condition, at least locally.
The original question is an example of an overdetermined partial differential equation and
the condition that guarantees solutions is called the integrability condition.

This problem can also be formulated in a slightly different manner. If we consider the
graph of u as a submanifold in R2×R, then the vector fields ∂x +P∂z and ∂y +Q∂z form
a basis for the tangent space to this submanifold. Their Lie bracket (∂xQ−∂yP)∂z must
also be tangent to this submanifold. As the vector is vertical this is only possible when
∂xQ− ∂yP = 0. Note that any submanifold whose tangent space is spanned by ∂x +P∂z
and ∂y +Q∂z is locally the graph of a function. In this way we have a more geometric
interpretation of the original question.

The most general overdetermined system of PDEs that can easily be handled this way
are of the following form. Given Pi

k (x,u) = Pi
k

(
x1, ...,xn,u1, ...,um

)
, where i = 1, ...,m and

k = 1, ...,n we consider the initial value problems for a system of first order PDEs u(x):

∂ui

∂xk = Pi
k (x,u(x))

u(x0) = u0

Since this implies that

∂ 2ui

∂xk∂xl =
∂Pi

l
∂xk +

∂Pi
l

∂u j P j
k

an obvious necessary condition becomes

∂Pi
l

∂xk +
∂Pi

l
∂u j P j

k =
∂Pi

k
∂xl +

∂Pi
k

∂u j P j
l .
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Again this also becomes a sufficient condition for local existence. We can also reinterpret
this as a graph/submanifold problem in Rn×Rm. Here the tangent vector fields are ∂

∂xk +

∑
m
i=1 Pi

k
∂

∂ui , k = 1, ...,n and their Lie brackets again become vertical vector fields

m

∑
i=1

(
∂Pi

l
∂xk +

m

∑
j=1

∂Pi
l

∂u j P j
k −

∂Pi
k

∂xl −
m

∑
j=1

∂Pi
k

∂u j P j
l

)
∂

∂ui .

This leads to the following general question: When will a collection of linearly in-
dependent vector fields span the tangent space of a submanifold? With the now obvious
answer being that their Lie brackets must be in the span of the vector fields.

While the question for functions can’t always be solved globally it is possible to come
up with a global problem for submanifolds. This requires a few more notions. A distribu-
tion D for a manifold M is a subbundle D ⊂ T M. We say that D is involutive if any two
vector fields X , Y with values in D, X ,Y ∈D, have the property that [X ,Y ] ∈D. The distri-
bution is integrable if locally there is a connected submanifold N ⊂M through every point
in M such that T N = D|N . The submanifold N is called an integral submanifold. Clearly
integrable distributions are involutive and we will show that the converse is true as well.

THEOREM 2.4.1 (Frobenius). Let M be an m-manifold with a distribution D of rank
k. If D is involutive, then it is integrable.

PROOF. We show that in a neighborhood of a point p ∈ M there exists a coordinate
system

(
z1, ...,zm

)
such that D = span

{
∂

∂ z1 , ...,
∂

∂ zk

}
. The integral submanifolds will then

be given as the slices: (
z1, ...,zk

)
7→
(

z1, ...,zk,ak+1, ...,am
)

where ak+1, ...,am are fixed. This implies the local existence and uniqueness of integral
submanifolds.

To construct the coordinate system start by selecting coordinates
(
x1, ...,xm

)
in a

neighborhood of p such that

Dp = span
{

∂

∂x1 |p, ...,
∂

∂xk |p
}

and xi (p) = 0, i = 1, ...,m. For the rest of the proof we can then work in suitable neighbor-
hoods of 0 ∈ Rm.

Let π be the projection (
x1, ...,xm) 7→ (x1, ...,xk

)
.

This is a submersion and as Dπ (Dp) = Dp we can shrink the neighborhood so that Dπ|Dx

is an isomorphism for all x. We can then construct unique vector fields Z1, ...,Zk with
values in D that are π-related to ∂

∂x1 , ...,
∂

∂xk . This implies that [Zi,Z j] are π-related to

0 =
[

∂

∂xi ,
∂

∂x j

]
(see proposition 2.2.6). However, as the distribution is involutive we must

have that [Zi,Z j] ∈ D showing that [Zi,Z j] = 0. The corresponding flows Φt i

i will then
commute (see proposition 2.2.8). This shows that

∂

∂ t i

(
Φ

t1

1 ◦ · · · ◦Φ
tk

k (x)
)
= Zi.



2.4. FROBENIUS 46

We can then define a map(
z1, ...,zm) 7→Φ

z1

1 ◦ · · · ◦Φ
zk

k

(
0, ...,0,zk+1, ...,zm

)
.

This is a local diffeomorphism near the origin and defines coordinates such that

∂

∂ zi = Zi ∈ D, i = 1, ...,k.

□

There are two special cases worth noting: When D is 1-dimensional the integral sub-
manifolds are unparametrized curves. This is a geometric version of finding solutions to
first order differential equation. When D has codimension 1 the integral submanifolds lo-
cally become the level sets of a function by way of the coordinates constructed in theorem
2.4.1.

EXAMPLE 2.4.2. We will exhibit some 2-dimensional distributions that are far from
involutive.

In R3 consider two vector fields X = ∂x +P∂z and Y = ∂y +Q∂z where P and Q are
functions of (x,y). These span a 2-dimensional distribution and their Lie bracket is given
by

Z = [X ,Y ] = (∂xQ−∂yP)∂z.

So if P = 1 and Q = x, then Z = ∂z and X ,Y,Z are everywhere linearly independent.
In higher dimensions we can similarly consider X = ∂1 + ∑

n
i=3 Pi∂i and Y = ∂2 +

∑
n
i=3 Qi∂i with Pi and Qi only being functions of

(
x1,x2

)
. We start with

Z1 = [X ,Y ] =
n

∑
i=3

(
∂1Qi−∂2Pi)

∂i

and then iterate Lie brackets k more times to get:

Zk = [X , · · · [X , [X ,Y ]]] =
n

∑
i=3

∂
k
1
(
∂1Qi−∂2Pi)

∂i.

If now Pi = 1 and Qi =
(
x1
)i−2, then

Zk =
n

∑
i=k+2

(i−2) · · ·(i−2− (k−1))xi−2−k
∂i

creating n linearly independent fields from two simple vector fields.

2.4.2. The Global Theory. Our final goal is to obtain a global picture of the integral
submanifolds of an involutive distribution. This will used to understand subgroups of Lie
groups in a later chapter.

A k-dimensional foliation of a manifold M is a smooth equivalence relation (R⊂M×
M is a smooth submanifold with the projections πi : M×M→M restricting to submersions
πi : R→M), where the equivalence classes consist of connected immersed submanifolds
(also called leaves) all of dimension k. The equivalence class that contains p ∈M can be
identified with the slice ({p}×M)∩R. The normal form for a submersion (see proposition
1.4.20) then guarantees that the tangent spaces to a foliation is an integrable distribution of
rank k. Again the converse is true, but there are some subtle points.

THEOREM 2.4.3. A rank k involutive distribution consists of the tangent spaces to a
foliation.
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PROOF. Let D be a rank k involutive distribution on an m-manifold M.
We start by observing that the local uniqueness of integral submanifolds shows that

if two integral submanifolds intersect, then their union is also an integral submanifold. In
this way we can create maximal integral submanifolds through a point p ∈ M by taking
the union of all integral submanifolds that contain p. However, it is not clear that these
maximal integral submanifolds are second countable. The topology is defined locally via
the local embedded integral submanifolds from theorem 2.4.1. Note that the maximal
integral submanifold is path connected as it is the union of path connected sets that all pass
through a fixed point.

To check that maximal integral submanifolds are second countable we cover M by a
countable collection of slice charts

(
x1

α , ...,x
m
α

)
: Uα → Rm such that the first k coordinate

vector fields always span D. Thus the embeddings(
x1

α , ...,x
k
α

)
7→
(

x1
α , ...,x

k
α ,a

k+1, ...,am
)

form integral submanifolds and maximal integral submanifolds are unions of such embed-
dings. We will show that only countably many embeddings from a given chart can be used
for any integral submanifold. This will show that integral submanifolds must be second
countable as there are only countably many charts.

We consider a maximal integral submanifold L⊂M. Any path connecting two points
in L is compact and can be covered by a finite collection of the charts Uα . Now consider
two embeddings (

x1
α , ...,x

k
α

)
7→
(

x1
α , ...,x

k
α ,a

k+1
i , ...,am

i

)
, i = 0,1

with images in L. As two such embeddings can be connected via a finite collection of charts
the intersection L∩Uα can only consists of a countable number of such embeddings. □

We finish with a crucial technical proposition about smoothness of maps in to sub-
manifolds. The exercises to chapter 1 has examples of how this can go wrong.

PROPOSITION 2.4.4. If F : N→M is smooth and the image lies in a leaf L⊂M of a
foliation, then F : N→ L is also smooth.

PROOF. Fix p∈N and a coordinate chart U around F (p)∈M such that L∩U consists
of a countable collection of embeddings with connected images as described in theorem
2.4.3. Let V be a small connected neighborhood around p ∈ N such that F (V )⊂U (conti-
nuity of F). Since the image lies in L and is also connected, it can only lie in the embedding
whose image contains F (p). This shows that F : N→ L is continuous and smooth. □

2.5. Exercises

(1) Show that if E ⊂F is a subbundle and E ′ is complementary to E, i.e., F =E⊕E ′,
then E ′ is isomorphic to F/E.

(2) Let E and F be vector spaces.
(a) Construct a canonical bilinear map

E×F → Hom(E∗,F) .

(b) Show that the corresponding linear map

E⊗F → Hom(E∗,F)

is an injection and an isomorphism when E is finite dimensional.
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(3) Show that a vector bundle over a compact manifold is always a subbundle of
a trivial bundle. Hint: Use a partition of unity to map the bundle into a trivial
bundle constructed from a finite covering of trivial bundles.

(4) Show that the pull-back of a trivial bundle is trivial.
(5) Let F : M→N be a smooth map and q∈N a regular value. Show that the normal

bundle to F−1 (q) ⊂M is trivial. Hint: It is isomorphic to the pull-back bundle
of TqN→{q} via F |F−1(q) : F−1 (q)→{q}.

(6) A manifold Mn is said to be parallelizable iff the tangent bundle is trivial, T M ≃
M×Rn. Show that M is parallelizable if and only if there are n vector fields that
span the tangent space at every point.

(7) Let πi : Ei→Mi, i = 1,2 be two vector bundles and consider the product bundle

π1×π2 : E1×E2→M1×M2.

(a) Show that if M1 =M2, then E1⊕E2 is isomorphic to the pull-back of E1×E2
via the diagonal map x 7→ (x,x).

(b) Let Fi : M1×M2→Mi denote the projections. Show that E1×E2 is isomor-
phic to F∗1 (E1)⊕F∗2 (E2).

(8) Show that R×Snand S1×Sn are parallelizable.
(9) Show that Sp× Sq is parallelizable if p or q is odd. Hint: S2n−1 ⊂ Cn admits a

unit vector field.
(10) Show that S3 is parallelizable. Hint: Use quaternions as in section 4.2.5 to check

that TpS3 = span{ip, jp,kp}.
(11) Show that the Lie bracket X ×X →X is not a tensor when the dimension is

≥ 2.
(12) Show that a real or complex Grassmannian Gk (V ) admits a natural embedding

span{v1, ...,vk} 7→ span{v1∧·· ·∧ vk}

into the projective space P
(∧k V

)
. This is called the Plücker embedding.

(13) Let D be a rank k distribution on Mm.
(a) Show that locally there is a trivialization of the tangent bundle X1, ...,Xm

such that X1, ...,Xk span D.
(b) Let ω1, ...,ωm be the 1-forms dual to X1, ...,Xm, i.e., ω i (X j) = δ i

j. Show
that ω i vanishes on D only when i = k + 1, ...,m and conclude that D =
∩m

i=k+1 kerω i.
(c) Let A = {ω ∈Ω(M) | ω|D = 0}. Show that A is an ideal that is locally

generated by ωk+1, ...,ωm, i.e. every element is locally of the form ∑
n
i=k+1 φiω

i,
φi ∈Ω∗ (U).



CHAPTER 3

Submersions and Immersions

3.1. Submersions

In this section we present a number of results about the deeper structure of submer-
sions.

3.1.1. Submersion-Fibrations. We study the relationship of the topologies of the
manifolds related to a submersion.

In case F is a submersion it is possible to construct vector fields in M that are F-related
to a given vector field in N.

PROPOSITION 3.1.1. Assume that F is a submersion. Given a vector field Y in N,
there are vector fields X in M that are F-related to Y.

PROOF. First we do a local construction of X . Since F is a submersion proposition
1.4.20 shows that for each p ∈M there are charts x : U → Rm and y : V → Rn with p ∈U
and F (p) ∈V such that

y◦F ◦ x−1 (x1, ...,xm)= (x1, ...,xn) .
This relationship evidently implies that ∂

∂yi and ∂

∂xi are F-related for i = 1, ...,n. Thus,

if we write Y = Y i ∂

∂yi , then we can simply define X = ∑
n
i=1 Y i ◦F ∂

∂xi . This gives the local
construction.

For the global construction assume that we have a covering Uα , vector fields Xα on Uα

that are F-related to Y, and a partition of unity λα subordinate to Uα . Then simply define
X = ∑λα Xα and note that

DF (X) = DF
(
∑λα Xα

)
= ∑λα DF (Xα)

= ∑λαY ◦F

= Y ◦F.

□

Finally we can say something about the maximal domains of definition for the flows
of F-related vector fields given F is proper.

PROPOSITION 3.1.2. Assume that F is proper and that X and Y are F-related vector
fields. If F (p) = q and Φt

Y (q) is defined on [0,b), then Φt
X (p) is also defined on [0,b). In

other words the relation F ◦Φt
X = Φt

Y ◦F holds for as long as the RHS is defined.

PROOF. Assume Φt
X (p) is defined on [0,a). If a < b, then the set

K =
{

x ∈M | F (x) = Φ
t
Y (p) for some t ∈ [0,a]

}
= F−1 ({

Φ
t
Y (p) | t ∈ [0,a]

})
49
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is compact in M since F is proper. The integral curve t 7→Φt
X (q) lies in K since F (Φt

X (p))=
Φt

Y (q) . From theorem 2.2.4 we know that a maximally defined integral curves are either
defined for all time or leave every compact set. In particular, [0,a) is not the maximal
interval on which t 7→Φt

X (p) is defined. □

These relatively simple properties lead to some very general and tricky results.

DEFINITION 3.1.3. A fibration F : M → N is a smooth map that is locally trivial
in the sense that for every p ∈ N there is a neighborhood U of p such that F−1 (U) is
diffeomorphic to U×F−1 (p) . This diffeomorphism must commute with the natural maps
of these sets on to U. In other words (x,y) ∈U ×F−1 (p) must be mapped to a point in
F−1 (x) . Note that it is easy to destroy the fibration property by simply deleting a point in
M. Note also that in this context fibrations are necessarily submersions.

Special cases of fibrations are covering maps and vector bundles. The Hopf fibration
S3 → S2 = P1 is a more non-trivial example of a fibration, which we shall study further
below. Tubular neighborhoods are also examples of fibrations.

THEOREM 3.1.4 (Ehresman). If F : M→ N is a proper submersion, then it is a fibra-
tion.

PROOF. As far as N is concerned this is a local result. In N we simply select a set U
that is diffeomorphic to Rn and claim that F−1 (U) ≈U ×F−1 (0) . Thus we just need to
prove the theorem in case N = Rn, or more generally a coordinate box around the origin.

Next select vector fields X1, ...,Xn in M that are F-related to the coordinate vector fields
∂1, ...,∂n. Our smooth map G :Rn×F−1 (0)→M is then defined by G

(
t1, ..., tn,x

)
=Φt1

X1
◦

· · · ◦Φtn

Xn
(x) . The inverse to this map is G−1 (z) =

(
F (z) ,Φ−tn

Xn
◦ · · · ◦Φ

−t1

X1
(z)
)
, where

F (z) =
(
t1, ..., tn

)
. □

REMARK 3.1.5. Note that proposition 1.4.22 shows in analogy with lemma 1.4.29
that if F : M → N is a proper map and y ∈ F (M) a regular value, then there is an open
neighborhood V ∋ y such that F−1 (V )≃V ×F−1 (y).

The theorem also unifies several different results.

COROLLARY 3.1.6 (Basic Lemma in Morse Theory). Let F : M→R be a proper map.
If F is regular on (a,b)⊂ R, then F−1 (a,b)≃ F−1 (c)× (a,b) where c ∈ (a,b) .

COROLLARY 3.1.7 (Reeb). Let M be a closed manifold that admits a map with two
critical points, then M is homeomorphic to a sphere. (This is a bit easier to show if we also
assume that the critical points are nondegenerate.)

THEOREM 3.1.8. Let π : S→ B be a fibration, where S is a sphere. If the fibration
admits a section, then B is diffeomorphic to S. In particular, the fibrations S→ Pn are
nontrivial.

PROOF. The proof uses that the identity map on is not homotopically trivial (see
proposition 5.4.5).

Note that as S is compact and connected so is B. In general, a section s : B→ S is a lift
of the identity map on B and the image must be compact and connected.

When dimB= dimS the fibration is a covering map so the image of the section must be
a connected component of S and hence all of S. This implies that S and B are diffeomorphic.
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In case dimB < dimS Sard’s theorem shows that the section can’t be surjective. In
particular, the section is homotopically trivial as S is a sphere. This in turn implies that the
identity map on B is homotopically trivial leading to a contradiction. □

Finally we can extend the fibration theorem to the case when M has boundary.

THEOREM 3.1.9. Assume that M is a manifold with boundary and that N is a manifold
without boundary, if F : M→ N is proper and a submersion on M as well as on ∂M, then
it is a fibration.

PROOF. The proof is identical and reduced to the case when N =Rn. The assumptions
allow us to construct the lifted vector fields so that they are tangent to ∂M. The flows will
then stay in ∂M or intM for all time if they start there. □

REMARK 3.1.10. This theorem is sometimes useful when we have a submersion
whose fibers are not compact. It is then occasionally possible to add a boundary to M
so as to make the map proper. A good example is a tubular neighborhood around a closed
submanifold S ⊂ U. By possibly making U smaller we can assume that it is a compact
manifold with boundary such that the fibers of U → S are closed discs rather than open
discs.

EXAMPLE 3.1.11. Consider the the projection R2 → R onto the first axis. This is
clearly a submersion and a trivial bundle. The standard vector field ∂x on R can be lifted
to the related field ∂x + y2∂y on R2. However, the integral curves for this lifted field are

not complete as they are given by
(

t + t0,
x0

1−x0(t+t0)

)
and diverge as t approaches 1

x0
− t0.

In particular, neither the above proportion or theorem 3.1.4 can be made to work when the
submersion isn’t proper even though the submersion is a trivial fibration.

3.1.2. Quotient Manifolds. If M is a manifold and ∼ an equivalence relation on M:
when is M/ ∼ a manifold and π : M → M/ ∼ a submersion? Clearly the equivalence
classes must form a foliation and the leaves/equivalence classes be closed subsets of M.
Also their normal bundles have to be trivial as preimages of regular values have trivial
normal bundle.

The most basic and still very nontrivial case is that of a Lie group G and a subgroup
H. The equivalence classes are the cosets gH in G and the quotient space is G/H. When
H is dense in G the quotient topology is not even Hausdorff. However one can prove that
if H is closed in G , so that the equivalence classes are all closed embedded submanifolds,
then the quotient is a manifold and the quotient map a submersion.

A nasty example is R2−{0} with the equivalence relation being that two points are
equivalent if they have the same x-coordinate and lie in the same component of the cor-
responding vertical line. This means that the above general assumptions are not sufficient
as all equivalence classes are closed embedded submanifolds with trivial normal bundles.
The quotient space is the line with double origin and so is not Hausdorff!

REMARK 3.1.12. The key to getting a Hausdorff quotient is to assume that the graph
of the equivalence relation

R = {(x,y) | x∼ y} ⊂M×M

is a proper submanifold. We can in fact find necessary and sufficient conditions that guar-
antee that the quotient space becomes a manifold and π : M→M/∼ a submersion. We let
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π1,2 : M×M→M denote that projections onto the first and second factor. The equivalence
class π (p) that contains p ∈M is both a subset in M and a point in the quotient. Note that

R∩ (M×{p}) = π (p)×{p} ,
R∩ ({p}×M) = {p}×π (p) .

PROPOSITION 3.1.13. If M/ ∼ has a manifold structure such that π : M → M/ ∼
becomes a submersion, then R ⊂ M×M is a properly embedded submanifold and the
restrictions of the projection maps π1,2|R : R⊂M×M→M are submersions.

PROOF. Note that a submanifold is properly embedded exactly when it is a closed
subset of the ambient manifold.

Consider the graph

G(π) = {(p,π (p)) ∈M× (M/∼) | p ∈M} .

We have that id×π : M×M→M× (M/∼) is a submersion and R = (id×π)−1 (G(π)).
Since G(π) is a properly embedded submanifold R also becomes a properly embedded sub-
manifold. This also tells us that (id×π) |R : R→G(π) becomes a submersion. Composing
this map with the diffeomorphism π1|G(π) : G(π)→M, then implies that π1|R : R→M be-
comes a submersion. Since R is invariant under the involution (p,q) 7→ (q, p) we have also
shown that π2|R : R→M is a submersion. □

The converse is also true and offers a particularly nice characterization of quotient
manifolds that rarely makes it into text books.

THEOREM 3.1.14 (Godement). If ∼ is an equivalence relation on a smooth manifold
M, then M/ ∼ has a manifold structure such that π : M→ M/ ∼ becomes a submersion
provided R⊂M×M is a properly embedded submanifold and the restriction π1|R : R→M
is a submersion.

PROOF. We first settle the topological aspects of the quotient by showing that π : M→
M/∼ is open and that M/∼ is Hausdorff. Let O⊂M be open and note that by definition
of the quotient topology that π (O) is open precisely when π−1 (π (O)) is open. The latter
set is open since,

π
−1 (π (O)) = π1 ((M×O)∩R) = {q ∈M | ∃q ∈ O : p∼ q}

and π1|R is a submersion and thus an open map. For the Hausdorff property fix two equiv-
alence classes π (p) ,π (q). Select shrinking open neighborhoods Ui ∋ p and Vi ∋ q with
∩iUi = {p} and ∩iVi = {q}. If π (Ui)∩π (Vi) ̸= /0 for all i, then there exists xi ∈Ui and
yi ∈Vi such that π (xi) = π (yi)∈ π (Ui)∩π (Vi). But then xi→ p, yi→ q, and xi ∼ yi. Since
R is a closed set this implies that p∼ q and consequently π (p) = π (q).

Note that ∆ and M×{p} are transverse at (p, p) = ∆∩M×{p}, i.e.,

T(p,p) (M×M) = T(p,p)∆+T(p,p) (M×{p}) .

In particular, R ⊃ ∆ and M×{p} are transverse at (p, p). The intersection of the tangent
spaces, T(p,p)R∩T(p,p) (M×{p}), has dimension k if dimR = n+ k. This intersection is
naturally isomorphic to the k-dimensional space Ep =

{
v ∈ TpM | (v,0) ∈ T(p,p)R

}
. In this

way we obtain a subbundle of T M. Select a submanifold W ⊂M whose tangent space TpW
is a complement to Ep ⊂ TpM. Since also π2|R is a submersion a simple generalization of
the preimage theorem 1.4.26 (see also chapter 1 exercise 25) shows that

V = R∩ (M×W ) = (π2|R)−1 (W ) = {(p,q) | q ∈W, p∼ q}
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is a submanifold of dimension n as codimW = k and dimR = n+ k. We claim that the
restriction π1|V : V → M is nonsingular at (p, p). Note that (v,w) ∈ T(p,p)V iff (v,w) ∈
T(p,p)R and w∈ TpW . So if Dπ1|V (v,w)= v= 0, then w∈Ep∩TpW = {0}. This shows that
we can find neighborhoods p ∈U1,U2 ⊂ O such that π1|R : V ∩ (U1∩U1)→U2 becomes
a diffeomorphism. The inverse has the form f (x) = (x,r (x)), in particular, U2 ⊂U1 and
r : U2→W . Now define

U = {x ∈U2 | r (x) ∈U2∩W} .
Since (r (x) ,r (x)) ∈ ∆⊂ R∩ (M×W ) it follows that r2 = r and that U is invariant under r
(as in theorem 2.2.3). Finally consider

(x,y) ∈ R∩ (U× (U ∩W ))⊂V.

As π1 (x,y) = x and f (x) = (x,r (x)) = (x,y) we see that r (x) is the only point in U ∩W
that is equivalent to x. In other words, if x,y ∈U are equivalent then r (x) = r (y).

Now suppose that W was chosen so as to have global coordinates φ =
(
x1, ...,xn−k

)
.

These descend to coordinates φ̄ =
(
x̄1, ..., x̄n−k

)
on the open set π (U) = π (U ∩W ). To

obtain a differentiable structure we note that any function f whose domain intersects
π (U ∩W ) has the property that f ◦ φ̄−1 = f ◦ π ◦ φ−1. Thus f ◦ φ̄−1 is smooth when
f ◦π is smooth. This shows that we can define a differentiable structure by declaring that
f ∈ C ∞ (M/∼) if and only if f ◦π ∈ C ∞ (M). □

3.2. Embeddings

3.2.1. Embeddings into Euclidean Space. The goal is to show that any manifold is
a proper submanifold of Euclidean space. This requires most importantly that we can find
a way to reduce the dimension of the ambient Euclidean space into which the manifold can
be embedded. Note that corollary 1.3.9 is quite similar but much simpler.

THEOREM 3.2.1 (Whitney Embedding, Dimension Reduction). If F : Mm→Rn is an
injective immersion, then there is also an injective immersion Mm→ R2m+1. Moreover, if
one of the coordinate functions of F is proper, then we can keep this property. In particular,
when M is compact we obtain an embedding.

PROOF. For each v∈Rn−{0} consider the orthogonal projection onto the orthogonal
complement of v:

fv (x) = x− (x|v)v

|v|2
.

The image is an (n−1)-dimensional subspace. So if we can show that fv ◦F is an injective
immersion, then the ambient dimension has been reduced by 1.

Note that fv◦F (x)= fv◦F (y) iff F (x)−F (y) is proportional to v. Similarly d ( fv ◦F)(w)=
0 iff dF (w) is proportional to v. With that in mind consider the images of the following
two maps:

H : M×M×R → Rn

h(x,y, t) = t (F (x)−F (y))

G : T M → Rn

G(w) = dF (w)
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As long as 2m+1 < n Sard’s theorem implies that the union of the two images has dense
complement. Therefore, we can select v∈Rn−(H (M×M×R)∪G(T M)) . Clearly v ̸= 0
as 0 lies in the image of both maps. So if F (x)−F (y) = sv, then either s = 0 and x = y
or v = 1

s (F (x)−F (y)) which is impossible. Similarly, if dF (w) = sv, then either s = 0
showing that w = 0 or v = 1

s (dF (w)) which is impossible.
Note that the v we selected could be taken from O− (H (M×M×R)∪G(T M)) ,

where O ⊂ Rn is any open subset. This gives us a bit of extra information. While we
can’t get the ultimate map Mm → R2m+1 to target a specific (2m+1)-dimensional sub-
space of Rn, we can map it into a subspace arbitrarily close to a fixed subspace of dimen-
sion 2m+ 1. To be specific simply assume that R2m+1 ⊂ Rn consists of the first 2m+ 1
coordinates. By selecting v ∈ (−ε,ε)2m+1× (1− ε,1+ ε)n−2m−1 we see that fv changes
the first coordinates with an error that is small.

This can be used to obtain proper maps fv ◦F . When the first coordinate for F is
proper, then fv ◦F is also proper provided v is not proportional to e1. This means that we
merely have to select v ∈ {|v|< 2 | (v | e1)< ε} to obtain a proper injective submersion.

□

REMARK 3.2.2. Note also that if F starts out only being an immersion, then we can
find an immersion into R2m. This is because G(T M) ⊂ Rn has measure zero as long as
n > 2m.

LEMMA 3.2.3. If A,B ⊂ Mm are open sets that both admit embeddings into R2m+1,
then the union A∪B also admits an embedding into R2m+1.

PROOF. Select a partition of unity λA,λB : A∪B→ [0,1], i.e., suppλA ⊂ A, suppλB ⊂
B, and λA + λB = 1. Further, choose embeddings FA : A→ R2m+1 and FB : B→ R2m+1.
Note multiplying these embeddings with our bump functions we obtain well-defined maps
λAFA, λBFB : A∪B→ R2m+1. This gives us a map

F : A∪B → R2m+1×R2m+1×R×R,
F (x) = (λA (x)FA (x) ,λB (x)FB (x) ,λA (x) ,λB (x)) ,

which we claim is an injective immersion.
If F (x) = F (y), then λA,B (x) = λA,B (y). If, e.g., λB (x)> 0 then FB (x) = FB (y). This

shows that x = y as FB is an injection.
If dF (v) = 0 for v ∈ TpM, then dλA,B (v) = 0. So if, e.g., λA (p) > 0, then by the

product rule:

d (λAFA) |p = (dλA) |pFA (p)+λA (p)dFA|p = λA (p)dFA|p
and consequently

dFA|p (v) = 0

showing that v = 0.
If, in addition, we select a proper function ρ : A∪B→ [0,∞), then we obtain a proper

injective immersion

(ρ,F) : A∪B→ R×R2m+1×R2m+1×R×R

and consequently an embedding. The dimension reduction result above then gives us a
(proper) embedding into R2m+1. □

THEOREM 3.2.4 (Whitney Embedding, Final Version). An m-dimensional manifold
M admits a proper embedding into R2m+1.
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PROOF. We only need to check the hypotheses in theorem 1.3.8. Clearly the statement
is invariant under diffeomorphisms and holds for Rm. Condition (2) was established in the
previous lemma. Condition (3) is almost trivial. Given embeddings Fi : Ai → R2m+1,
where Ai ⊂M are open and pairwise disjoint we can construct new embeddings Gi : Ai→(
i, i+ 1

2

)2m+1
with disjoint images. This yields an embedding G :

⋃
i Ai→ R2m+1.

This shows that any m-manifold has an embedding into R2m+1. To obtain a proper
embedding we select a proper function ρ : M → [0,∞) and use the dimension reduction
result on the proper embedding (ρ,F) : M→ R×R2m+1. □

3.2.2. Tubular Neighborhoods.

LEMMA 3.2.5. If M ⊂ Rn is a properly embedded submanifold, then there exists a
neighborhood of the normal bundle of M in Rn that is diffeomorphic to a neighborhood of
M in Rn.

PROOF. The normal bundle is defined as

T⊥M = T⊥ (M ⊂ Rn) =
{
(v, p) ∈ TpRn×M | v⊥ TpM

}
.

There is a natural map

T⊥M → Rn,

(v, p) 7→ v+ p.

This map is proper provided M⊂Rn is properly embedded. It is also clearly an embedding
when restricted to the zero section. Note that the image of the differential at a point (0, p)
contains TpM and

{
v ∈ TpRn | v⊥ TpM

}
. Consequently the differential is nonsingular.

This shows that it is a local diffeomorphism on some neighborhood of the zero section
M. Lemma 1.4.18 then shows that it is a diffeomorphism on a neighborhood of the zero
section. □

THEOREM 3.2.6. If M ⊂ N is a properly embedded submanifold, then there exists a
neighborhood of the normal bundle of M in N that is diffeomorphic to a neighborhood of
M in N.

PROOF. Any subbundle of T N|M that is transverse to T M is a normal bundle. It is
easy to see that all such bundles are isomorphic. One specific choice comes from a proper
embedding N ⊂ Rn and then defining

T⊥M =
{
(v, p) ∈ TpN×M | v⊥ TpM

}
.

We don’t immediately obtain a map T⊥M→N. First we select a neighborhood N⊂U ⊂Rn

as in the previous lemma. The projection π : U → N that takes w+ q ∈U to q ∈ N is a
fibration. This gives us a neighborhood V =

{
(v, p) ∈ T⊥M | v+ p ∈U

}
of M. This allows

us to define a map

V → N,

(v, p) 7→ π (v+ p) .

that is a local diffeomorphism near the zero section and an embedding on the zero section.
□

As an application of Whitney’s theorem and the existence of tubular neighborhoods
we can show some crucial results about smooth approximations of continuous maps.
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THEOREM 3.2.7. Let F : M → Rn be a continuous function and C ⊂ M a closed
subset such that F is smooth on a neighborhood U0 of C. If ε : M→ [0,1] is a continuous
function that is positive on M−C, then there exists a smooth function G : M→ N such that
|F (x)−G(x)|< ε (x). In particular, F (x) = G(x) for all x ∈C provided ε vanishes on C.

PROOF. Consider a cover that consists of U0 and Up, p ∈M−C, where Up ⊂M−C
is a neighborhood of p where |F (x)−F (p)| < ε (x) for all x ∈ Up. We can then select
a partition of unity λ0, λp, p ∈ M−C subordinate to this cover. Note that as all λp have
support in M−C, it follows that λ0|C ≡ 1. Clearly

F (x) = λ0 (x)F (x)+ ∑
p∈M−C

λp (x)F (x)

and we can define a smooth function that agrees with F on C:

G(x) = λ0 (x)F (x)+ ∑
p∈M−C

λp (x)F (p) .

It follows that

|F (x)−G(x)| ≤ ∑
p∈M−C

λp (x) |F (x)−F (p)| ≤ ε (x) .

□

We can next use the tubular neighborhood theory to approximate maps into general
manifolds.

THEOREM 3.2.8. Let F : M→ N be a continuous function and C⊂M a closed subset
such that F is smooth on a neighborhood U0 of C. There exists a smooth G : M→ N such
that F (x) = G(x), for all x ∈C and F and G are homotopic to each other.

PROOF. Let N ⊂ Rn be a proper embedding and U a tubular neighborhood of N
in Rn with π : U → N a retract onto N. Select ε : N → [0,1] such that ε|C ≡ 0 and
B(y,ε (y)) ⊂U for all y ∈ N. From the theorem above we have smooth Ḡ : M→ Rn such
that

∣∣F (x)− Ḡ(x)
∣∣< ε (x). The choice of ε guarantees that for all x ∈M the homotopy

H (t,x) = (1− t)F (x)+ tḠ(x) ∈U, t ∈ [0,1] .

This gives a homotopy π ◦H : [0,1]×M→ N from F to a smooth map G = π ◦ Ḡ such that
for all x ∈C we have

π ◦ Ḡ(x) = π ◦F (x) = F (x) .

□

REMARK 3.2.9. Note that if F is proper, then G will also be proper as the functions
stay close to each other provided ε (x) is bounded.

COROLLARY 3.2.10. If two smooth maps are homotopic via a continuous homotopy,
then they are also smoothly homotopic.

3.3. Exercises

(1) Show that Vk (Rn) can be realized as the quotient O(n)/O(n− k).
(2) Use theorem 3.1.14 on Matkn×k (R) to show that the Grassmannian Gk (Rn) is a

manifold.
(3) Use theorem 3.1.14 on Vk (Rn) to show that the Grassmannian Gk (Rn) is a man-

ifold.



3.3. EXERCISES 57

(4) Use theorem 3.1.14 on O(n) to show that the Grassmannian Gk (Rn) is a mani-
fold.

(5) Show that the submersions Vk (Rn)→ Gk (Rn) and O(n)→ Gk (Rn) are fibra-
tions.

(6) Show that Matkn×k (R)→ Gk (Rn) is a fibration (hint: this can be proven directly
from the definition or by using that Vk (Rn)→ Gk (Rn) is a fibration).

(7) Give an example of an injective immersion R→ T 2 whose image is dense, e.g.,
of the form

(
ei2πt ,ei2πat

)
. Extend this map to an immersion R× (−ε,ε)→ T 2

and show that it is not injective on any neighborhood of R×{0}.
(8) Let F : M→N be a proper immersion. Show that if F is injective when restricted

to a closed subset C⊂M, then F is also injective on an open neighborhood of C.
(9) Show that any vector bundle E→M is a subbundle of a trivial bundle. Hint: You

need a dimension reduction result that controls the rank of the trivial bundle in
terms of the rank of E.



CHAPTER 4

Lie Groups

4.1. General Properties

A Lie group is a smooth manifold with a group structure that is also smooth, i.e., a
manifold G with an associative multiplication

G×G → G

(g,h) 7→ gh

that is smooth and inverse operation

G → G

g 7→ g−1

that is smooth. The identity is generally denoted e. The most obvious example of a Lie
group is is simply a vector space with addition as the product structure. A more interesting
example is the space of invertible matrices, Gl (n,F) with matrix multiplication as the
product structure.

A Lie group homomorphism is a homomorphism between Lie groups that is also
smooth. A Lie subgroup H ⊂ G is a subgroup that is also an immersed submanifold such
that the inherited group operations are smooth on the submanifold, i.e., it is the image of a
Lie group under an injective immersion that is also a homomorphism.

A Lie group is homogeneous in a canonical way as left translation by group elements:
lg (x) = g · x maps the identity element e to g. Consequently, lgh−1 maps h to g. Since
left translation is a diffeomorphism it can be used to calculate the differential of a Lie
group homomorphism from the differential at the identity. For a smooth homomorphism
φ : G1→ G2 between Lie groups the homomorphism property can be expressed as

φ ◦ lg = lφ(g) ◦φ

or
φ = lφ(g) ◦φ ◦ lg−1

This shows that
Dφ |g = Dlφ(g) ◦Dφ |e ◦Dlg−1

In particular, φ has constant rank and it’s kernel kerφ ⊂ G1 must be a properly embedded
submanifold and a Lie subgroup.

We could equally well have used right translation rg (x) = xg for these observations.
A vector field is left invariant if it is lg-related to itself for all g, i.e., Dlg (X |h) = X |gh.

This shows that X |e determines X . Conversely, given X |e ∈ TeG it is easy to see that
X |g = Dlg (X |e) defines a smooth left invariant vector field. The space of left invariant
vector fields is denoted by g and is identified with TeG as a vector space. However, there is
an extra structure on g as the Lie bracket of left invariant fields is again left invariant (see
section 2.2.2). This makes g in to a Lie algebra, i.e., an algebra with a bracket operation

58
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[X ,Y ] that is bilinear, skew-symmetric, and satisfies the Jacobi identity. Any associative
algebra (A,+, ·) has such a bracket structure defined by commutation [a,b] = ab−ba. The
space of square matrices Matn×n (F) with this commutator bracket is denoted by gl(n,F)
when we think of it as a Lie algebra.

When H ⊂ G is a Lie subgroup it follows that h ⊂ g is a subalgebra as left multipli-
cation lg on G preserves H when g ∈ H. More generally, for a smooth homomorphism
φ : H → G we see that any X ∈ h is φ -related to the left invariant field Y ∈ g that is deter-
mined by Y |e = Dφ (X |e) showing that we obtain a Lie algebra homomorphism φ∗ : h→ g,
i.e., φ∗ is linear and preserves Lie brackets, φ∗ [X ,Y ] = [φ∗ (X) ,φ∗ (Y )].

4.2. Matrix Groups

We explain the various basic matrix groups that come from the general linear groups.

4.2.1. The General Linear Groups. The most obvious examples of Lie groups are
matrix groups starting with the general linear groups

Gl (n,R)⊂Matn×n (R) = gl(n,R) ,

Gl (n,C)⊂Matn×n (C) = gl(n,C) .
These are open subsets of the vector space of n×n matrices and and the group operations
are explicitly given in terms of the standard arithmetic operations of numbers. The identity
is usually denoted e = I for matrix groups. As such we have right and left translation
on Matn×n (F) for any A ∈Matn×n (F) defined by lA (X) = AX and rA (X) = XA. These
are linear maps but not invertible unless A ∈ Gl (n,F). With that in mind we note that
the equation for left invariant fields X |g = Dlg (X |I) becomes X |g = gX |I = rX |I (g). This
allows us to show that the Lie bracket of left invariant fields is the same as the Lie algebra
gl(n,F). Let X = rA and Y = rB be two left invariant fields and f : Matn×n (F)→R a linear
function. For any tangent vector v ∈Matn×n (F) we have Dv f = f (v). This shows that

(DX f ) |g = DgA f = f (gA) = f ◦ rA (g)

and as rA is linear

(DY (DX f )) |I = (DY ( f ◦ rA)) |I = f ◦ rA ◦ rB (I) = f (BA) .

Similarly,
(DX (DY f )) |I = f (AB)

and we can conclude that

D[X ,Y ] f |I = f ([A,B]) = f (AB−BA) .

Thus [X ,Y ] |I = [A,B] = AB−BA.

4.2.2. The Special Linear Groups. The determinant map det : Matn×n (F)→ F is
multiplicative and smooth, and the general linear group is in fact the open subset of matri-
ces with non-zero determinant.

The derivative of the determinant is important to calculate. The determinant function
is multi-linear in the columns of the matrix. So if we denote the identity matrix by I, then
it follows that

det(I + tX) = 1+ t (trX)+o(t)

and for A ∈ Gl that

det(A+ tX) = detA
(
1+ t

(
tr
(
A−1X

))
+o(t)

)
.
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In particular, all non-zero values in F−{0} are regular values of det. This gives us the
special linear groups Sl (n,F) of matrices with det = 1. The tangent space TISl is given as
the kernel of the differential and is thus the space of traceless matrices:

TISl = {X ∈Matn×n | trX = 0}= sl(n,F) .

4.2.3. The Polar Decomposition. Using that the operation of taking adjoints A→ A∗

is smooth we obtain a smooth map F : Matn×n (F)→ Symn (F) defined by A→ AA∗ where
Symn (F) denotes the real vector space of self-adjoint operators (symmetric or Hermitian
depending on the field.) Note that the image of this map consists of the self-adjoint matrices
that are nonnegative definite, i.e., have nonnegative eigenvalues. The differential of this
map at the identity can be found from the expansion

(I + tX)(I + tX∗) = I + t (X +X∗)+o(t)

and is
X +X∗.

This is clearly surjective since it is simply multiplication by 2 when restricted to Symn (F).
More generally the differential at an invertible A ∈ Gl is given by

XA∗+AX∗

which is also surjective as it is a bijection when restricted to the real subspace
{

X
(
A−1

)∗ | X ∈ Symn (F)
}

.
Thus we obtain a submersion to the space of positive definite self-adjoint matrices:

F : Gl(n,F)→ Sym+
n (F) .

Note that Sym+
n (F) ⊂ Symn (F) is an open convex cone of a real vector space and dif-

feomorphic to a Euclidean space. Finally we observe that this submersion is also proper
as AkA∗k → ∞ when Ak → ∞. In particular, we can use Ehresman’s theorem 3.1.4 to con-
clude that Gl(n,F) is diffeomorphic to Sym+

n (F)×F−1 (I). The fiber over the identity is
identified with the orthogonal group:

O(n) = {O ∈ Gl (n,R) | OO∗ = I}
or the unitary group

U (n) = {U ∈ Gl (n,C) |UU∗ = I}
and both are compact Lie groups. We note that left translates lAF−1 (I) = A ·F−1 (I) are
diffeomorphic to each other and A ·F−1 (I)⊂ F−1 (AA∗). Thus fibers are precisely the left
translates of the orthogonal or unitary groups. This is the content of the polar decomposi-
tion for invertible matrices.

The tangent spaces to the orthogonal and unitary groups are given as the kernel of the
differential of the map A→ AA∗ and are thus given by the skew-adjoint matrices

TIO(n) = {X ∈Matn×n (R) | X∗ =−X}= so(n) ,

TIU (n) = {X ∈Matn×n (C) | X∗ =−X}= u(n) .

These two families of groups can be intersected with the special linear groups to obtain
the special orthogonal groups SO(n) = O(n)∩ Sl (n,R) and the special unitary groups
SU (n) =U (n)∩Sl (n,C).

It is not immediately clear that these new groups have well-defined smooth structures.
However, it follows from the canonical forms of orthogonal matrices that SO(n) is the con-
nected component of O(n) that contains I. The other component consists of the orthogonal
matrices with det =−1.
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For the unitary group we obtain a Lie group homomorphism det : U (n)→ S1 ⊂ C
where all values are regular values.

The tangent spaces are the traceless skew-adjoint matrices. In the real case skew-
adjoint matrices are skew-symmetric and thus automatically traceless, this conforms with
SO(n) ⊂ O(n) being open. In the complex case, the skew-adjoint matrices have purely
imaginary entries on the diagonal so the additional assumption that they be traceless re-
duces the real dimension by 1, this conforms with 1 being a regular value of det : U (n)→
S1.

4.2.4. The Matrix Exponential. The matrix exponential map exp : Matn×n (F)→
Gl (n,F) is defined using the usual power series expansion. The relationship

detexp(A) = exp(trA)

shows that its image is in the general linear group and in case F = R that it maps into the
matrices with positive determinant.

It also commutes with the operation of taking adjoints expA∗ = (expA)∗. This shows
that we obtain the following restrictions

exp : TIO(n) → SO(n) ,

exp : TIU (n) → U (n) ,

exp : TISU (n) → SU (n) ,

as well as
exp : Symn (F) = TISym+

n (F)→ Sym+
n (F) .

These maps are all surjective. In all cases this uses that a matrix in the target can be
conjugated to a nice canonical form, O∗CO, where C is diagonal in the last three cases
and has a block diagonal form in the first case that consists of 2×2 rotations and diagonal
entries that are ±1. In the unitary case the diagonal entries are of the form eiθ . Thus
C = exp(iD), where D is a real diagonal matrix, and O∗CO = O∗ exp(iD)O. Similarly,
in the last case C is a diagonal matrix with positive entries and C = exp(D) for a unique
diagonal matrix D with real entries. The first case is the most intricate. First observe that
rotations do come from skew-symmetric matrices:[

cosθ −sinθ

sinθ cosθ

]
= exp

[
0 −θ

θ 0

]
.

This also takes care of pairs of real eigenvalues of the same sign as they correspond to
rotations where θ = 0 or π . Since elements in SO(n) have determinant 1 we can always
ensure that the real eigenvalues get paired up except when n is odd, in which case the
remaining eigenvalue is 1.

The polar decomposition diffeomorphism Gl (n,C) ∼= Sym+
n (R)×U (n) now tells us

that Gl (n,C) is connected. Similarly, Gl+ (n,R) ≃ Sym+
n (R)× SO(n) is connected. As

the elements of O(n) with determinant −1 are diffeomorphic to SO(n) via multiplication
by any reflection in a coordinate hyperplane it follows that Gl (n,R) has precisely two
connected components.

4.2.5. Low Dimensional Groups and Spheres. There are several interesting con-
nections between low dimensional Lie groups and low dimensional spheres.

First we note that rotations in the plane are also complex multiplication by numbers
on the unit circle S1 ⊂ C so:

SO(2) =U (1) = S1.
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The 3-sphere can be thought of as the unit sphere S3 ⊂ C2 and thus

S3 =
{
(z,w) ∈ C2 | |z|2 + |w|2 = 1

}
.

On the other hand:

SU (2) =U (2)∩Sl (2,C) =
{[

z −w̄
w z̄

]
∈U (2) | zz̄+ww̄ = 1

}
so we have:

SU (2) = S3.

Next we note that

SO(3) =
{[

e1 e2 e3
]
| ei · e j = δi j,det

[
e1 e2 e3

]
= 1
}

=
{[

e1 e2 e1× e2
]
| e1 · e2 = 0, |e1|= |e2|= 1

}
= US2

where US2 = {(p,v) | |p|= |v|= 1, p · v = 0} is the set of unit tangent vectors.
There is a another important identification for this space

SO(3) = RP3.

This comes from exhibiting a homomorphism SU (2)→ SO(3) whose kernel is {±I}. This
shows that via the identification SU (2) = S3 the preimages are precisely antipodal points.
The specifics of the construction take a bit of work and will also lead us to quaternions.
First make the identification

C2 =

{[
z −w̄
w z̄

]
| (z,w) ∈ C2

}
.

On the right hand side we obtain a collection of matrices that is closed under addition and
multiplication by real scalars. Since C is a commutative algebra the right hand side is also
closed under multiplication. Thus it forms an algebra over R. It is also a division algebra
as non-zero elements have det = |z|2 + |w|2 > 0 and thus have inverses. This is the algebra
of quaternions also denoted H. Note that X ∈ C2 has Euclidean length

|X |2 = |z|2 + |w|2 = detX .

Any A ∈ SU (2) acts by conjugation on this algebra as follows

A ·X = AXA∗.

The map X 7→AXA∗ is an orthogonal transformation as it doesn’t alter the Euclidean length
of X :

|AXA∗|2 = det(AXA∗) = detAdetX detA∗ = detX = |X |2 .
A natural orthonormal basis is given by

1 =

[
1 0
0 1

]
, i =

[
i 0
0 −i

]
, j =

[
0 −1
1 0

]
, k =

[
0 −i
−i 0

]
.

Note that these matrices each have Euclidean norm
√

2. So the inner product is scaled to
make them have norm 1. The last matrix is defined so that we obtain

i j = k =− ji,

jk = i =−k j,

ki = j =−ik,

i2 = j2 = k2 =−1.
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In fact conjugation by elements A ∈ SU (2) fixes 1 so it also fixes the orthogonal com-
plement spanned by i, j,k. Thus we obtain a homomorphism SU (2)→ SO(3) by letting
A∈ SU (2) act by conjugation on spanR {i, j,k}. The kernel of this map consists of matrices
A ∈ SU (2) that commute with all elements in H since AX = XA. This shows that the ker-
nel must consist of homotheties or real numbers if we think of H= span{1, i, j,k}. Conse-
quently, the only possibilities are±I =±1. It is also not hard to check that SU (2)→ SO(3)
is a submersion by calculating the differential at the identity. Thus the image is both open
and closed and all of SO(3). This shows that SO(3) = RP3.

From all of this we obtain a special proof of the “Hairy Ball Theorem” for S2.

THEOREM 4.2.1. Every vector field on S2 vanishes somewhere.

PROOF. The proof is by contradiction. If we have a non-zero vector field, then we
also have a unit vector field p 7→ (p,v(p)) ∈US2. This gives us a diffeomorphism

SO(3) → S2×S1 ⊂ S2×R2

[p,e, p× e] 7→ (p,e · v(p) ,(p× e) · v(p)) .

This contradicts that SO(3) = RP3, and hence has universal cover S3, as S2× S1 has a
non-compact simply connected cover S2×R. □

4.3. The Exponential Map

Note that the exponential map for matrices satisfies the law of exponents exp(A+B)=
expAexpB when A,B commute. In particular, the map t 7→ exp(tA) is a homomorphism
from the Abelian Lie group (R,+). This one-parameter group is also the integral curve for
the left-invariant vector field defined by X |g = gA since

d exp(tA)
dt

|t=t0 = exp(t0A)
d exp(sA)

ds
|s=0 = (exp(t0A))A.

With this in mind we define the exponential map on a general Lie group, exp : TeG→
G, by declaring t 7→ exp(tX) to be the integral curve through e of the left-invariant field
defined by X |g = Dlg (X), i.e., exp(tX) = Φt

X (e). Smoothness of exp then follows from
remark 2.2.5. Note that

lg exp(tX) = gexp(tX) = Φ
t
X (g)

as they agree at t = 0 and are both integral curves for X :

d (lg exp(tX))

dt
= Dlg

(
d (exp(tX))

dt

)
= Dlg

(
X |exp(tX)

)
= X |lg exp(tX).

If φ : G1→G2 is a homomorphism and Y is the left invariant field defined by Dφ (X) |e
then X and Y are φ -related and hence by proposition 2.2.6

φ
(
Φ

t
X (e)

)
= Φ

t
Y (e) .

In other words
φ (exp(tX)) = exp(tDφ |e (X))

and the diagram

TeG
Dφ→ TeH

exp ↓ exp ↓
G

φ→ H
is commutative.

PROPOSITION 4.3.1. The exponential map has the following properties.
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(1) Dexp : T0TeG→ TeG is an isomorphism. In particular, there is a neighborhood
U around 0 ∈ TeM such that exp : U → exp(U) is a diffeomorphism.

(2) exp
(
sX + tY +O

(
s2 + t2

))
= exp(sX)exp(tY ). In particular, for integers m we

have

exp(X +Y ) = lim
m→∞

(
exp
(

1
m

X
)

exp
(

1
m

Y
))m

.

(3) If TeG = V ⊕W, then the map (X ,Y ) 7→ exp(X)exp(Y ), X ∈ V , Y ∈W is a
diffeomorphism near the origin onto a neighborhood of e ∈ G.

PROOF. Recall that we can identify T0TeG ≃ TeG by sending X ∈ TeG to d
dt (tX) |0 ∈

T0TeG. As d exp(tX)
dt |t=0 = X we see that Dexp |0 = idTeG. This proves (1).

For (2) let log be the inverse of exp on a neighborhood of e ∈ G and consider the two
maps

(s, t) 7→ log(exp(sX)exp(tY )) ,
(s, t) 7→ sX + tY.

From (1) it follows that the derivatives ∂

∂ s |(0,0) = X and ∂

∂ t |(0,0) = Y are the same for both
maps. This proves the first part of the claim. For the second claim let s = t = 1

m and note
that

exp
(

1
m

X
)

exp
(

1
m

Y
)
= exp

1
m

(
X +Y +O

(
1
m

))
.

Thus (
exp
(

1
m

X
)

exp
(

1
m

Y
))m

= exp
(

X +Y +O
(

1
m

))
when m is an integer and the claim follows by letting m→ ∞.

For (3) we again use (1) and the identification T0TeG ≃ TeG = V ⊕W . As in (2) we
note that

(s, t) 7→ log(exp(sX)exp(tY )) , X ∈V, Y ∈W

again has partial derivatives at (0,0) that respect the splitting TeG = V ⊕W . This shows
that

V ⊕W → TeG

(X ,Y ) 7→ log(exp(X)exp(Y ))

is nonsingular at the origin which proves the claim. □

THEOREM 4.3.2. Let G and H be Lie groups with H connected. A homomorphism
φ : H → G is uniquely determined by its differential Dφ |e : TeH → TeG. In particular, a
connected Lie subgroup H ⊂ G is determined by TeH ⊂ TeG.

PROOF. Part (1) of the previous proposition together with φ (expX) = exp(Dφ |eX)
shows that the Dφ |e determines φ in a neighborhood of the identity. We also have φ (gexpX)=
φ (g)exp(Dφ |eX) so in a neighborhood of any g∈H the map φ is determined by φ (g) and
Dφ |e. Thus any two homomorphisms with the same differential at e must agree on a set
that is clearly closed and by what we just saw also open. This establishes the claim. □

With the use of the exponential map we can also offer a very simple topological crite-
rion for when a subgroup is an embedded Lie group. However, most embedded subgroups
are also preimages of submersions so we can generally apply the preimage theorem 1.4.26
or constant rank theorem 1.4.26 1.4.24.
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THEOREM 4.3.3 (Cartan). A closed subgroup H ⊂ G of a Lie group, is an embedded
submanifold and hence also a Lie group.

PROOF. Define the tangent space to H inside TeG as

V = {X ∈ TeG | exp(tX) ∈ H for all t ∈ R}
and let W be a complement such that TeG = span(V )⊕W .

Clearly αX ∈V if X ∈V for any α ∈ R. If X ,Y ∈V , then the formula

exp t (X +Y ) = lim
m→∞

(
exp
(

1
m

tX
)

exp
(

1
m

tY
))m

shows that X +Y ∈ H as the right-hand side is the limit of elements in H and H is closed.
This shows that V is a vector space.

Consider the restriction exp : V → H. We claim that this is a bijection near the origin.
If not, then we can find hm ∈ H, with hm→ e such that hm = expXm expYm where Xm ∈V ,
Ym ∈W −{0}. Here Xm,Ym→ 0 and we can assume that Ym

|Ym| →Y ∈W . Note that expYm ∈
H as hm,expXm ∈ H. For fixed t ∈ R−{0} let km be the integer closest to t

|Ym| so that
kmYm→ tY . No w note that

expkmYm = (expYm)
km ∈ H

and has exp tY as a limit. Since H is closed we have shown that Y ∈ V which is a contra-
diction.

The (X ,Y ) 7→ expX expY , (X ,Y ) ∈ V ⊕W is a chart around e and restricts to exp :
V → H when Y = 0. This gives a chart around e ∈ H. By left translation we obtain a
chart around every point in H. This submanifold is properly embedded as it is a closed
subset. □

4.4. Coverings and Quotients of Lie Groups

THEOREM 4.4.1. A surjective Lie group homomorphism φ : G1 → G2 with a differ-
ential that is bijective is a covering map. Moreover, when G1 is connected the kernel is
central and in particular Abelian.

PROOF. Consider a surjective Lie group homomorphism φ : G1 → G2 whose differ-
ential is bijective. The kernel kerφ is by definition the pre-image of the identity and by
the regular value theorem a closed 0-dimensional submanifold of G. Thus we can select a
neighborhood U around e ∈ G1 that has compact closure, Ū ∩kerφ = {e}, and is mapped
diffeomorphically to φ (U). Using continuity of the group multiplication and that inversion
is a diffeomorphism it follows that there is neighborhood around e ∈ G1 such that V 2 ⊂U
and V−1 =V i.e., if a,b ∈V then a ·b ∈U and a−1 ∈V . We claim that if g,h ∈ kerφ and
g ·V ∩h ·V ̸= /0, then g= h. In fact, if g ·v1 = h ·v2, then g−1 ·h= v2 ·v−1

1 ∈U∩kerφ , which
implies that g−1 · h = e. In this way we have found disjoint open sets g ·V for g ∈ kerφ

that are mapped diffeomorphically to φ (V ). We claim that additionally φ−1 (φ (V )) =⋃
g∈kerφ g ·V . To see this let φ (x) = φ (y) with y ∈V . Then g = xy−1 ∈ kerφ and x ∈ gV .

This shows that a neighborhood of e ∈ G2 is evenly covered. Using left translations
we can then show that all points in G2 are evenly covered.

Finally assume that G1 is connected. For a fixed g ∈ G1 consider conjugation x 7→
gxg−1. We say that x is central if it commutes with all elements in G1. This comes down to
checking that x is fixed by all conjugations. Now kerφ ⊂ G1 is already a normal subgroup
and thus preserved by all conjugations. Consider a path g(t) from e ∈ G1 to g ∈ G1, then
for fixed x we obtain a path g(t) · x · (g(t))−1. When x ∈ kerφ this path is necessarily in
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kerφ and starts at x. However, kerφ is discrete so the path must be constant. This shows
that any x ∈ kerφ commutes with all elements in G1. □

There is also a converse to the above theorem.

THEOREM 4.4.2. Let f : Ḡ→ G be a covering map, with Ḡ connected. If G is a Lie
group, then Ḡ has a Lie group structure that makes f a homomorphism. Moreover, the
fundamental group of a connected Lie group is Abelian.

PROOF. The most important and simplest case is when Ḡ = G̃ is simply connected.
In that case we can simply use the unique lifting property to lift the composition map
G̃× G̃→ G×G→ G to a product structure on G̃. The inverse structure is created in a
similar way. We then have to use the uniqueness of lifts to establish associativity as we
would otherwise obtain to different lifts for multiplying three elements G̃× G̃× G̃→ G.

Covering space theory shows that the fundamental group is also a group of deck trans-
formations on the universal cover. These deck transformations are precisely the lifts of the
projection G̃→ G. Composition and inverses of these lifts are simply new lifts. Conse-
quently, they form a group. This is the fundamental group as a lift is uniquely identified
by an element in the preimage of e ∈ G. As the preimage of e ∈ G is also the kernel of
G̃→ G the lifts can then be more precisely identified with left translations by elements in
the kernel of G̃→ G. The group structure on the kernel is also the same as composition
since lg1 ◦ lg2 = lg1g2 . Thus the deck transformations form an Abelian group.

In general, covering space theory shows that any connected cover Ḡ→G is determined
by its fundamental group π1

(
Ḡ
)
⊂ π1 (G). As π1 (G) is a central subgroup of G̃ we can

identify Ḡ with the group G̃/π1
(
Ḡ
)
. This induces a group structure on Ḡ. This group

structure is also a lift of Ḡ× Ḡ→ G×G→ G and is consequently smooth. □

We can now also address the question of when the coset space of a subgroup becomes
a manifold.

THEOREM 4.4.3. If H ⊂ G is a closed subgroup of a Lie group, then the quotient
space G/H is a manifold and π : G→ G/H is a submersion.

PROOF. We have to check that the corresponding equivalence relation

R =
{
(x,y) ∈ G×G | xy−1 ∈ H

}
is a properly embedded submanifold such that the restriction π1|R : R→G is a submersion.
Consider the smooth map p : G×G→ G defined by p(x,y) = xy−1. Clearly R = p−1 (H),
so the goal is to show that p is a submersion. Fix x,y ∈ G and define φy : G→ G×G by
φy (z) = (zy,y). In this way φy

(
xy−1

)
= (x,y) and p(φy (z)) = z, i.e., p ◦ φy = idG and p

is a submersion. This shows that R is a properly embedded submanifold. Next observe
that if we use ψ : G×H → G×G defined by ψ (x,y) =

(
x,h−1x

)
, then the image of ψ is

precisely R and the composition with π1 is the projection G×H→ G which we know is a
submersion. Thus also π1|R becomes a submersion. □

4.5. The Lie Group Lie Algebra Correspondence

We saw at the very end of section 4.1 that a connected Lie subgroup H ⊂ G defines a
subalgebra of left invariant fields h⊂ g. The left translates of H form the coset space G/H.
As subsets of G they are all submanifolds that create a foliation of G. The corresponding
distribution consists of the left translates Dlg (TeH). As we shall see this construction sets
up a bijective correspondence between subalgebras and connected Lie subgroups.
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THEOREM 4.5.1. Let G be a Lie group. A subalgebra h ⊂ g is the Lie algebra for a
unique connected Lie subgroup H ⊂ G.

PROOF. The Lie algebra h consists of left invariant vector fields on G whose Lie
brackets also lie in h. As such they define an involutive distribution. By Frobenius’ theorem
there is a unique maximal integral submanifold through e ∈ G. This submanifold H ⊂ G
is by definition connected and the left translates lgH are all maximal integral submanifolds
for the distribution. Note that g∈H∩ lgH provided g∈H and consequently H = lgH. This
shows that group multiplication on G defines a multiplication H×H→H. As H×H→G
is smooth proposition 2.4.4 guarantees that multiplication is also smooth in H.

It follows from theorem 4.3.2 that H is the only connected Lie subgroup with TeH ≃
h. □

This theorem can be used to construct homomorphisms from Lie algebra homomor-
phisms.

THEOREM 4.5.2. Let G and H be connected Lie groups. Any Lie algebra homomor-
phism L : g→ h corresponds to a unique homomorphism φ : G̃→ H, where G̃→ G is the
universal cover of G.

PROOF. It suffices to prove this in case G is itself simply connected as all covers of a
Lie group have isomorphic Lie algebras. We start by observing that the graph of a smooth
homomorphism φ : G→ H

Graph(φ) = {(g,φ (g)) | g ∈ G} ⊂ G×H

is a Lie subgroup that is isomorphic to G, via inclusion g 7→ (g,φ (g)) and projection
(g,h) 7→ g. Similarly the graph of a Lie algebra homomorphism L : g 7→ h

Graph(L) = {(X ,L(X)) | X ∈ g} ⊂ g×h

is a subalgebra isomorphic to g.
The graph Graph(L) will by the previous theorem correspond to a unique maximal

connected subalgebra G′ ⊂ G×H. The projection onto G restricts to a homomorphism
π1|G′ = π : G′→ G. By construction the tangent space TeG′ is mapped isomorphically on
to TeG. Theorem 4.4.1 then tells us that π is a covering map. If we assume that G is simply
connected, then π becomes a smooth isomorphism and the inverse followed by projection
onto H defines the homomorphism whose differential corresponds to L. □

These results lead to a Lie group-Lie algebra correspondence. One missing piece is
Ado’s theorem which we will not prove.

THEOREM 4.5.3 (Ado). Each (complex) finite dimensional Lie algebra is a subalge-
bra of gl(n,R) or (gl(n,C)) for some n.

The simplest case of the theorem is when the Lie algebra has no center. The center

z= {X ∈ g | [X ,Y ] = adXY = 0, for all Y ∈ g}

is an ideal and is the kernel of the homomorphism:

ad : g → gl(g)

X 7→ adX .

An Abelian Lie algebra is clearly also a subalgebra as it can be identified with the space
of diagonal matrixes. However, it is not so easy to piece these two observations together
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as the quotient algebra g/z can also have a center. A good example is the Lie algebra of
upper triangular matrices.

Assuming Ado’s theorem we obtain

THEOREM 4.5.4. Each Lie group corresponds to a unique Lie algebra and each finite
dimensional Lie algebra corresponds to a unique simply connected Lie group.

4.6. Actions and Exercises

Let G be a Lie group and M a connected manifold. An action of G on M is a general-
ization of left translation on a Lie group. It is a smooth map

G×M → M

(g,x) 7→ gx

such that g1 (g2x) = (g1g2)x. It’ll be convenient to introduce the action map

A : G×M → M×M

(g,x) 7→ (gx,x)

Note that π2 ◦A(g,x) = x is a submersion.
The orbits are denoted by G · x = {gx | g ∈M} and generate an equivalence rela-

tion. The corresponding relation R ⊂ M ×M is in fact the image of the action map
R = A(G×M). The quotient or orbit space is denoted by G\M as we are acting on the
left. An action is transitive if R = M×M or equivalently G\M is one point. An action is
proper if A is proper, in particular, actions by compact groups are always proper.

The isotropy or stabilizer group at x ∈M is Gx = {g ∈ G | gx = x}. As such, Gx, is a
closed subgroup and consequently also a Lie group by theorem 4.3.3. An action is effective
if
⋂

x∈M Gx = {e}, i.e., only the identity acts trivially on M. An action is free if Gx = {e}
for all x ∈M.

(1) Show that if an embedded submanifold H ⊂ G of a Lie group is a subgroup,
then it is a closed subset of G. Recall that embedded submanifolds are in general
not closed subsets of the ambient space. Hint: Show that a slice neighborhood
around e left translates to a slice neighborhood around any point in H.

(2) Show that if a manifold has a group structure such that multiplication is smooth,
then the inverse operation is also smooth. Hint: Consider the smooth map
(x,y) 7→ (x,xy) and show that it is a bijection with non-singular differential at
(e,e).

(3) Show that if a subgroup H ⊂ G of a Lie group is an open subset, then it is also a
closed subset.

(4) Show that if a Lie group, G, is not connected, then the connected component,
G0, containing e is an open and closed subgroup.

(5) Let G be a connected Lie group. Show that G is generated by any neighborhood
U ∋ e. Hint A: Find a smaller neighborhood e ∈ V ⊂U such that V−1 = V and
consider

⋃
∞
m=1 V m, where V m =V m−1 ·V . Hint B: Select a path c : [0,1]→G with

c(0) = e and find a subdivision 0 = t0 < · · ·< tk = 1 such that (c(ti−1))
−1 c(ti)∈

U .
(6) Show that a continuous homomorphism between Lie groups is necessarily smooth.

(Hint: use the graph).
(7) Show that the homomorphism SU (2)→ SO(3) defined in section 4.2.5 is a sub-

mersion.
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(8) Consider the two Lie groups U (n) and SU (n)×S1.
(a) Show that they have isomorphic Lie algebras.
(b) Show that they are not isomorphic by showing that their centers are not

isomorphic.
(c) Show that they are diffeomorphic by finding a section s : S1 → U (n) for

det : U (n)→ S1, i.e., det◦s = idS1 .
(d) Show that there is a homomorphism SU (n)× S1 →U (n) that is an n-fold

covering map.
(9) Let Ḡ→G be a covering of Lie groups. Show that there is a natural isomorphism

between the Lie algebras of these Lie groups.
(10) This is a generalization of theorem 4.4.1Consider a smooth homomorphism φ :

G→ H, where H is connected. Show that this is a fibration when Dφ |e is sur-
jective and in particular induces a smooth structure on the group G/kerφ via H.
Hint A: Lift left invariant fields to left invariant fields and argue as in theorem
3.1.4. Hint B: Use exponential maps to find U ⊂ TeG that exp◦Dφ maps dif-
feomorphically on to a neighborhood of e ∈ H and observe that the preimage is
{gexpU | g ∈ kerφ} ≃ exp(Dφ (U))×kerφ .

(11) The group Gln+1 acts on FPn.
(a) Show that the action is not proper.
(b) Show that the action is transitive.
(c) Show that the isotropy groups are isomorphic to[

α αbt

0 αA

]
where α ∈ Gl1 = F×, b ∈ Fn, and A ∈ Gln.

(d) Show that any element that acts trivially is a homothety λ I, λ ∈ F−{0}.
(e) Show that the homotheties C = {λ I | λ ∈ F−{0}} are the center of Gln+1

and that Pln+1 = Gln+1/C is a Lie group that acts effectively on FPn. Pl
stands for “projective linear”, the abbreviation PSl is also used as Sl→ Pl
is a proper submersion.

(12) Let M = S1 and G the group with two elements that acts as a reflection in the
x-axis. Is R⊂ S1×S1 smoothly embedded?

(13) Show that if G\M is a smooth manifold such that M→ G\M is a submersion,
then R⊂M×M is properly embedded.

(14) Assume that the action of G on M is proper.
(a) Show that Gx is compact.
(b) Show that there is a proper embedding G/Gx→M whose image is G · x.
(c) Show that G\M is Hausdorff and second countable.

(15) Give an example of a free action of R on S1×S1 that is not proper.
(16) Show that SU (2)/SO(2) is diffeomorphic to S2 = CP1.
(17) Assume that an action of G on M is proper and free.

(a) Show that G\M is a smooth manifold such that M→G\M is a submersion.
(b) Show that M→ G\M is a fibration. Hint: Theorem 3.1.4 cannot be applied

directly, but the proof can be adapted by showing that vector fields can be
lifted to vector fields that are invariant under the action.

(18) Conjugation on a Lie group G defines what is called the adjoint action

Ad : G×G → G

(g,x) 7→ Adgx = gxg−1
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(a) Show that its differential with respect to x, Adg = DAdg|e, defines an action
on TeG = g.

(b) Show that taking the differential with respect to g, adX = DAdg|e, defines a
Lie algebra action on g, i.e., adX ◦ adY − adY ◦ adX = ad[X ,Y ].

(c) Show that adX (Y ) = [X ,Y ].



CHAPTER 5

Transversality and Incidence Theory

The goal of this chapter is to introduce transversality and use it to define several im-
portant invariants such as degree, winding number, Lefschetz number, and Euler charac-
teristic. In chapter 7 and 8 we will show that these invariants can also be calculated using
de Rham cohomology. We prove several profound results that have been used widely in
the literature: Brouwer’s fixed point theorem, the Jordan-Brouwer separation theorem, the
Borsuk-Ulam theorem, the Poincaré-Hopf and Lefschetz theorems, and finally the Hopf
degree theorem. Each section contains one or more of these results.

5.1. Preimages

We say that a map F : M→ N is transverse to a submanifold S⊂ N provided

TF(p)S+DF (TpM) = TF(p)N

for all p ∈M with the property that F (p) ∈ S. When M is itself a submanifold of N, then
F is the inclusion map. With this definition we obtain a very useful generalization of the
preimage theorem.

THEOREM 5.1.1. If F : M→ N is transverse to a (properly) embedded submanifold
S ⊂ N, then F−1 (S) ⊂ M is a (properly) embedded submanifold. When F−1 (S) ̸= /0 its
dimension satisfies:

codimF−1 (S) = dimM−dimF−1 (S) = dimN−dimS = codimS.

PROOF. The preimage of S will be a closed subset of M provided S is a closed subset
of N. To show the preimage is a submanifold fix p ∈ F−1 (S) and let q = F (p). Around
q we can select coordinates

(
y1, ...,yn

)
: U → Rn such that S∩U =

{
y1 = 0, ...,yk = 0

}
,

i.e., 0 ∈ Rk is a regular value for
(
y1, ...,yk

)
: U → Rk. Thus we have an open set F−1 (U)

around p such that F−1 (U)∩F−1 (S) = F−1 (U ∩S) is the preimage of 0 ∈Rk for the map
G =

(
y1 ◦F, ...,yk ◦F

)
. If G(x) = 0, then the kernel of DG|x consists of (DF |x)−1 (TF(x)S

)
.

Let Ex be a complement to (DF |x)−1 (TF(x)S
)
⊂ TxM. The fact that F is transverse to

S implies that DF |x (Ex)⊕ TF(x)S = TF(x)N. The differential of
(
y1, ...,yk

)
: U → Rk is

also surjective on DF |x (Ex) so it follows that DG|x : Ex → T0Rk is surjective (in fact an
isomorphism). This shows that 0 ∈ Rk is a regular value for G and consequently that
F−1 (S) is a submanifold of codimension k = codimS. □

COROLLARY 5.1.2. Let G : M→N be transverse to an embedded submanifold S⊂N.
A map F : L→M is transverse to G−1 (S)⊂M if and only if G◦F is transverse to S.

71
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PROOF. This is essentially the second part of the above proof. Select x ∈ L with
F (x) ∈ G−1 (S) and let Ex ⊂ TxL be a complement to

(DF |x)−1 (TF(x)G
−1 (S)

)
= (DF |x)−1

((
DG|F(x)

)−1 TG◦F(x)S
)

= (D(G◦F) |x)−1 (TG◦F(x)S
)
.

As G is transverse to S it follows that DF |x (Ex) is a complement to TF(x)G−1 (S) if and
only if D(G◦F) |x (Ex) is a complement to TG◦F(x)S. □

DEFINITION 5.1.3. Manifolds with boundary are defined like manifolds, but mod-
eled on open sets in Ln =

{
x ∈ Rn | x1 ≤ 0

}
. The boundary ∂M is the set of points that

correspond to elements in ∂Ln =
{

x ∈ Rn | x1 = 0
}
.

It is not hard to prove that if F : M→ R has a ∈ R as a regular value then F−1(−∞,a]
is a manifold with boundary. If M is oriented, then the boundary is oriented in such a way
that if we add the outward pointing normal to the boundary as the first basis vector then
we get a positively oriented basis for M. Thus ∂2, ...,∂n is the positive orientation for ∂Ln

since ∂1 points away from Ln and ∂1,∂2, ...,∂n is the usual positive orientation for Ln.
When F : M→ N, then we denote the restriction to the boundary as ∂F = F |∂M .

THEOREM 5.1.4. Let F : M→ N, where M has boundary. If S ⊂ N has no boundary
and both F and ∂F are transverse to S, then F−1 (S) is a submanifold with ∂

(
F−1 (S)

)
=

F−1 (S)∩∂M.

PROOF. The transversality assumptions for F and ∂F at x∈ (∂F)−1 (S) imply that we
can find a subspace Ex⊂ Tx∂M such that Ex⊕kerD∂F |x = Tx∂M and Ex⊕kerDF |x = TxM.
In particular, kerDF |x contains vectors that are not tangent to ∂M.

To see how this helps us we select coordinates around q = F (p) ∈ S, p ∈ ∂M, such
that S is the preimage of 0 ∈Rk. By also choosing coordinates around p we are reduced to
a situation where F : Lm→Rk and 0 ∈Rk is a regular value for both F and ∂F . By further
restricting around p ∈ ∂L we can assume that F extends to F̄ : Rm→ Rk where 0 ∈ Rk is
a regular value. The preimage F̄−1 (0)⊂ Rn is a submanifold and

F−1 (0) =
{

x ∈ F̄−1 (0) | x1 (x)≤ 0
}
.

Thus F−1 (0) becomes a manifold with boundary ∂F−1 (0) = F̄−1 (0)∩ ∂L provided 0
is a regular value for x1|F̄−1 . This is equivalent to F̄−1 (0) being transverse to ∂L. If
x ∈ F̄−1 (0)∩∂L, then we saw at the beginning of the proof that

kerDF |p = TxF̄−1 (0) = TxF−1 (0)

contains vectors that are not tangent to Tx∂M. This shows that F̄−1 (0) is transverse to
∂L. □

Before we can apply this to our first interesting result we need to classify one-dimensional
manifolds.

THEOREM 5.1.5. A connected one-dimensional manifold is diffeomorphic to either S1

or R when it has no boundary and either [0,1] or [0,∞) when it has boundary.

PROOF. If M is orientable, then it has a vector field that never vanishes. It can be
constructed locally to be nonzero and point in the positive direction and then using a parti-
tion of unity to create a global nonvanishing vector field. Any maximal integral curve will
cover the manifold and thus parametrize it. To see this, assume that c : (a,b)→ M is a
maximal integral curve, where 0 ∈ (a,b). Any x ∈M is connected to c(0) by a continuous
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path which is also a compact set C ⊂M. The integral curve must either lie in C as t → b
(or t → a) or leave C. In the latter case it will hit x. In the former, the integral curve will
have an accumulation point z as t → b (or t → a). However, there is also a nonstationary
integral curve through z which must overlap with c and thus up to translation coincide with
c. This shows that z lies in the image of c and thus that it was not a maximal integral curve.

If the manifold is not orientable, then the orientation covering has an involution that is
orientation reversing. However, any diffeomorphism on [0,∞) clearly fixes the boundary.
On [0,1] it either fixes the boundary points or reverses them, in the later case the interme-
diate value theorem guarantees an interior fixed point as it must cross the diagonal y = x.
When the manifold has no boundary we must in addition use that it is orientation reversing
to get a fixed point. For R the map is strictly decreasing and so is also forced to cross y = x.
On S1 we can lift the map to R where it will have a fixed point. □

COROLLARY 5.1.6. A compact manifold with boundary admits no retracts onto the
boundary.

PROOF. Consider a map F : M→ ∂M, such that F |∂M = id∂M . If p ∈ ∂M is a regular
value, then F−1 (p) ⊂ M is a one-dimensional manifold with ∂

(
F−1 (p)

)
= F−1 (p)∩

∂M = {p}. Thus F−1 (p) is noncompact and consequently M must also be noncompact.
□

COROLLARY 5.1.7 (Brouwer’s Fixed Point Theorem). Any map on the closed unit
ball in Euclidean space has a fixed point.

PROOF. Consider a map F : B̄→ B̄, where B̄⊂ Rn is the closed unit ball. If F has no
fixed points, then there is a unique line through p and F (p) for all p ∈ B̄. Let G(p) ∈ ∂ B̄
be the point on this line closest to p. We offer an explicit formula by solving

|t p+(1− t)F (p)|2 = 1.

This quadratic equation has no solutions on (0,1) as that corresponds to the point between
p and F (p) and there is a solution t0 ≤ 1 and another t1 ≥ 1. The latter corresponds to
G(p) = t1 p+(1− t1)F (p). When p ∈ ∂ B̄ we have G(p) = p so we can use the previous
corollary to obtain a contradiction. □

REMARK 5.1.8. This corollary uses that the function is smooth. As any continuous
function can be approximated by smooth functions we also obtain the more general results
for continuous functions.

5.2. Thom’s Transversality Theorem

Throughout the section we will consider maps from Mn (possibly with boundary) into
N (without boundary). We are interested in finding maps that are transverse to a specific
(properly) embedded submanifold S⊂ N.

LEMMA 5.2.1. Let L be a manifold without boundary and F : M×L→ N. If F and
∂F are transverse to S ⊂ N, then Fl : M→ N and ∂Fl : ∂M→ N are transverse to S for
almost all l ∈ L, where Fl (x) = F (x, l).

PROOF. Our assumptions allow us to conclude that S∗ = F−1 (S)⊂M×L is a (prop-
erly) embedded submanifold with boundary ∂S∗ = S∗ ∩ ∂M×L. Consider the restriction
of the projection onto L, π : S∗ → L. We claim that if l ∈ L is a regular value for π and
∂π , then Fl and ∂Fl are transverse to S. For simplicity we focus on Fl as the argument is
identical for ∂Fl .
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For the given l consider (x, l) ∈ S∗ and y = F (x, l) = Fl (x) ∈ S. By assumption

DF |(x,l) (TxM×TlL)+TyS = TyN.

For any fixed a ∈ TyN, there exists (w,e) ∈ TxM×TlL such that

DF |(x,l) (w,e)−a ∈ TyS.

Since l is a regular value for π : S∗→L we can also find (u,e)∈T(x,l)S∗ such that Dπ|(x,l) (u,e)=
e. Now DF |(x,l) (u,e) ∈ TyS as S∗ = F−1 (S). So if v = w−u ∈ TxM, then

DFl (v)−a = DF |(x,l) (v,0) = DF |(x,l) (w,e)−a−DF |(x,l) (u,e) ∈ TyS.

This shows that Fl is transverse to S⊂ N. □

This lemma can be used to prove the Borsuk-Ulam theorem. A map F : O⊂Rm→Rn

is said to be odd (or even), if O is invariant under x 7→ A(x) = −x and F ◦A = A ◦F (or
F ◦A = F). Note that all matrices in Matn×m induce odd maps.

THEOREM 5.2.2. The following statements are equivalent and true:
(1) If f : Sn→ Rn, then there exists x ∈ Sn such that f (x) = f (−x).
(2) If f : Sn→ Rn is odd, then there exists x ∈ Sn such that f (x) = 0.
(3) There is no odd map f : Sn→ Sn−1.

PROOF. We first establish equivalence and then prove (2).
Clearly (1) implies (2) and (2) implies (3). For (3) implies (1) simply note that if (1)

fails for some f , then

g(x) =
f (x)− f (−x)
| f (x)− f (−x)|

contradicts (3).
Let L = Matnn×(n+1) be the open set of rank n matrices. If B ∈ Matnn×(n+1), then

it induces an odd map B : Sn → Rn with exactly two zeros {±vB} both of which span
ker
(
B : Rn+1→ Rn

)
. Note that the rank n assumption also implies that 0 is a regular value

for B : Sn→ Rn.
Assume now that f : Sn→ Rn has no zeros and consider the linear homotopies

F (t,x,B) = HB (t,x) = t f (x)+(1− t)B(x) : [0,1]×Sn×Matnn×(n+1)→ Rn.

We claim that F is transverse to 0 ∈ Rn. Suppose F (t,x,B) = 0. As f has no zeros we
must have t < 1 and we can use that

DF |(t,x,B) (0,0,H) = (1− t)H (x) .

Since x ̸= 0 and t < 1 we can for any u ∈Rn = T0Rn find H ∈Matn×(n+1) = TBMatnn×(n+1)
such that u = (1− t)H (x). Thus F is actually a submersion when t < 1.

Lemma 5.2.1 then implies that there is a B ∈Matnn×(n+1) such that the homotopy HB

is transverse to 0 ∈ Rn. Let N = H−1
B (0). This a compact one-dimensional manifold

with ∂N = N ∩{0,1}× Sn showing that ∂N = {(0,±vB)}. Thus N is a union of circles
and one arc N0 that joins the two zeros {±vB} on the boundary. Note that the homotopy
is a homotopy of odd maps, HB (t,−x) = −HB (t,x). Thus A(N) = N and A(N0) = N0.
Now parametrize the arc N0 to be a unit speed curve c : [0,b]→ [0,1]× Sn ⊂ Rn+2 with
c(0) = (0,vB) and c(b) = (0,−vB). Since A is an isometry that preserves N0 we see that
A ◦ c is also a unit speed curve with A ◦ c(0) = (0,−vB) and A ◦ c(b) = (0,vB). In other
words A◦ c is simply c parametrized backwards:

A(c(s)) = c(b− s) .
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This shows that A
(
c
( b

2

))
= c
( b

2

)
∈ [0,1]×Sn which is impossible. □

Since L is locally path connected lemma 5.2.1 shows that any Fl is homotopic to nearby
maps that are transverse to S ⊂ N. This will allow us to show that any map is homotopic
to a nearby map that is transverse. We will prove a slightly more complicated version that
also works for maps that are sections, e.g., vector fields.

THEOREM 5.2.3 (Thom). Any map f : M→ N is homotopic to a nearby map that is
transverse to S ⊂ N. Moreover, if f is a section for π : N → M, i.e., π ◦ f = idM , then
the homotopy H : [0,1]×M→ N can be chosen so that all of the maps Ht : M→ N are
sections. Finally, if f is proper, then the homotopy is also proper.

PROOF. In case were f is a section note that the property π ◦ f = idM implies that
f : M → N becomes an embedding. Moreover, Dπ| f (x) : Tf (x)N → TxM is a surjection
and hence is a submersion on a neighborhood of f (M). This also shows that it is trans-
verse to each of the preimages of π . For the rest of the proof we will assume that N is a
neighborhood of f (M) on which π is a submersion.

Using a proper embedding N→Rk we can orthogonally project the coordinate vector
fields on to T N to obtain vector fields X1, ...,Xk on N that span the tangent space at every
point. We can further orthogonally project on to the tangent spaces of the preimages of π

to obtain vector fields Y1, ...,Yk on N that span the tangent spaces to the preimages of π .
Let Φ

t1
1 , ...,Φ

tk
k be the flows of either X1, ...,Xk or Y1, ...,Yk depending of which case we are

considering. For each y ∈ N, there exists 0 < ε (y)≪ 1, such that

B(0,ε (y)) → N,

(t1, ..., tk) 7→ Φ
t1
1 ◦ · · · ◦Φ

tk
k (y)

is a submersion to a neighborhood of y in N or in a preimage of π . The function ε (y) can
be chosen to be smooth as the existence of flows is locally uniform. We can then scale the
parameters si = ti/ε (y) to obtain maps

B(0,1) → N,

(s1, ...,sk) 7→ Φ
ε(y)s1
1 ◦ · · · ◦Φ

ε(y)sk
k (y)

that are submersions into N or preimages of π .
We claim that

F : M×B(0,1) → N,

(x,s1, ...sk) 7→ Φ
ε( f (x))s1
1 ◦ · · · ◦Φ

ε( f (x))sk
k ( f (x))

is transverse to S⊂N. Note that F(0,...,0) (x) = f (x). Moreover, the maps F(s1,...,sk) : M→N
are sections to π since the flows preserve preimages of π .

In case the vector fields span T N the map (s1, ...,sk) 7→ F (x,s1, ...,sk) is a submersion
for each x and in particular transverse to S. In case the vector fields only span the tangent
spaces to the preimages of π the whole map F becomes a submersion since each section
F(s1,...,sk) : M→ N is transverse to the preimages of π .

The previous lemma now guarantees a point (s1, ...sk) so that F(s1,...,sk) : M → N is
transverse to S. The homotopy is then defined by

H (t,x) = F (x, ts1, ..., tsk) .
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Finally, assume f is proper. First observe that as N ⊂ Rk is properly embedded it
follows that: yi→ ∞ in N if and only if yi→ ∞ in Rk. Moreover, as the vector fields Xi or
Yi all have norm ≤ 1 in T N ⊂ TRk we have that in the Euclidean distance:∣∣∣Φε(y)s1

1 ◦ · · · ◦Φ
ε(y)sk
k (y)− y

∣∣∣≤ kε (y) .

Thus yi → ∞ if and only if Φ
ε(yi)s1
1 ◦ · · · ◦Φ

ε(yi)sk
k (yi)→ ∞. As f is proper we have that

yi = f (xi)→∞ provided xi→∞ in M. This shows that also Φ
ε(yi)s1
1 ◦· · ·◦Φ

ε(yi)sk
k (yi)→∞.

In particular, each F(s1,...,sk) : M→ N is proper. This implies that the homotopy H (t,x) =
F (x, ts1, ..., tsk) is proper when f is proper. □

We obtain a series of useful consequences. The first is a relative version of the above
theorem.

THEOREM 5.2.4. If f : M→ N is transverse to S for all x ∈C∩ f−1 (S), where C⊂M
is closed, then the homotopy can be chosen so that H (t,x) = f (x) for all x ∈C and x 7→
H (1,x) is transverse to S⊂ N.

PROOF. We use the same notation as in theorem 5.2.3. Select a bump function λ :
M→ [0,1] such that λ−1 (0) =C. Define

m : M×B(0,1) → M×B(0,1) ,

(x,s) 7→
(
x,λ 2 (x)s

)
and note that

Dm(v,e) =
(
v,λ 2 (x)e+2λ (x)dλ (v)s

)
.

We can now define G = F ◦m so that both G(x,s) = f (x) and DG|(x,s) (v,e) = D f |x (v)for
x ∈C. This shows that G is transverse to S for all x ∈C∩ f−1 (S). For x ∈M−C we have

DG|(x,s) (0,e) = DF |(x,s)
(
0,λ 2 (x)e

)
showing that Gx : B(0,1)→ N becomes a submersion. □

COROLLARY 5.2.5. Let F : M → N. If ∂F : ∂M → N is transverse to S ⊂ N, then
there is a homotopy H : [0,1]×M → N, such that H (t,x) = ∂F (x) for all x ∈ ∂M and
x 7→ H (1,x) is transverse to S⊂M.

REMARK 5.2.6. In particular, if two maps are homotopic and transverse to S, there
there exists a homotopy between the maps that is also transverse to S.

COROLLARY 5.2.7. Any manifold admits a vector field that is transverse to the zero
section p 7→ 0p ∈ TpM.

COROLLARY 5.2.8. Any map F : M→M is homotopic to a map G : M→M such that

(idM,G) : M → M×M

x 7→ (x,G(x))

is transverse to the diagonal ∆ = {(p, p) | p ∈M}.

PROOF. Just use that (idM,F) is a section of the projection π1 : M×M→M on to the
first coordinate. □
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5.3. Mod 2 Intersection Theory

We start with some elementary observations about intersections of subspaces V k,W l ∈
Rn. They will always intersect in the origin and when k+ l > n they actually intersect in a
nontrivial subspace.

This leads to some observations about spheres and projective spaces. In S2 any two
great circles intersect in two points or coincide. However, we can always homotope one of
these great circles away from the other. This means that the fact that great circles intersect
is not a topological property. When we pass to the projective plane RP2, the great circles
become projective lines RP1 ⊂ RP2 and they will intersect in one point or coincide (2-
dimensional subspaces in R3 intersect in a line or coincide). In contrast to the sphere we
will show that the fact that projective lines intersect is a topological property and cannot
be changed via homotopies.

The general set-up in this section and the next is a map F : M→N where M is compact
and N is connected. We wish to study how F intersects a closed submanifold S ⊂ N.
When M has boundary we further assume that ∂F does not intersect S and, in particular, is
transverse to S. If we assume that F is transverse to S and that

dimM+dimS = dimN,

then F−1 (S) ⊂ M is a finite collection of points none of which lie on the boundary. We
define

I2 (F,S) = #F−1 (S) mod 2 =

{
0 if #F−1 (S) is even,
1 if #F−1 (S) is odd.

We proceed to show that this intersection number is a homotopy invariant of F . Note
by contrast that the number of preimages is not a homotopy invariant. In the next section
we will define a more subtle integer valued intersection number.

THEOREM 5.3.1. If F0,F1 : Mm → Nn are homotopic and transverse to Sn−m ⊂ N,
then I2 (F0,S) = I2 (F1,S). When ∂M ̸= /0, we assume that ∂F0 = ∂F1, does not intersect S,
and that the homotopy is fixed on ∂M.

PROOF. When ∂M ̸= /0 the space [0,1]×M is not a manifold with boundary. However,
we are assuming that any homotopy maps [0,1]× ∂M to a set that is disjoint from S.
Theorem 5.2.4 and its corollary can easily be reframed to work in this context. Thus we
obtain a homotopy H : [0,1]×M→N that is transverse to S and such that H ([0,1]×∂M)∩
S = /0. The preimage H−1 (S)⊂ [0,1]× intM is a compact one-manifold with boundary

∂H−1 (S) = H−1 (S)∩{0,1}× intM = {0}×F−1
0 (S)∪{1}×F−1

1 (S) .

As #∂H−1 (S) = #F−1
0 (S)+#F−1

1 (S) is even it follows that the two terms on the right have
the same parity. This proves the theorem. □

This immediately explains why projective lines can’t be homotopied away from each
other as they intersect in one point. The theorem also allows us to define the intersection
number of a map.

DEFINITION 5.3.2. If F : Mm→Nn and Sn−m ⊂N, then I2 (F,S) is defined as the mod
2 intersection number of any map that is homotopic to F and transverse to S. In case M has
boundary, ∂F does not intersect S and the homotopies are all ∂F when restricted to ∂M.

When Mm ⊂ Nn, then we define the intersection number as I2 (M,S) = I2 (i,S), where
i : M→ N is the inclusion map.
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We can now also place corollary 5.1.6 in a more general context. For this to be more
clear note that I2 (idM,{x}) = 1.

THEOREM 5.3.3. Let Bm+1 be a compact manifold with boundary ∂B = Mm and f :
Mm → Nn with Sn−m ⊂ Nn a closed submanifold. If f = ∂F, where F : B→ N, then
I2 ( f ,S) = 0.

PROOF. We can use theorem 5.2.3 to find a map G : B→ N that is homotopic to F
and such that both G and ∂G are transverse to S. The preimage G−1 (S) is a compact one-
manifold with an even number of boundary components ∂

(
G−1 (S)

)
= (∂G)−1 (S). Thus

0 = I2 (∂G,S) = I2 ( f ,S). □

REMARK 5.3.4. All of the above results also work for proper maps in case M is not
compact. Theorem 5.2.3 guarantees that proper maps are homotopic to proper maps that
are transverse through homotopies that are proper. Likewise theorems 5.3.1 and its more
general version 5.3.3 as long as we assume that the homotopy or extension map are proper.

DEFINITION 5.3.5. The mod 2 Euler characteristic of a manifold is defined as χ2 (M)=
I2 (X ,M0), where X : M→ T M is a vector field and M0 =

{
(p,0p) | p ∈M

}
the zero sec-

tion. Corollary 5.2.7 implies that this is well-defined as all vector fields are homotopy
equivalent.

Similarly corollary 5.2.8 shows that the mod 2 Lefschetz number of a map F : M→M,
L2 (F) = I2 ((idM,F) ,∆), is a well-defined homotopy invariant of F .

PROPOSITION 5.3.6. We have χ2 (M) = L2 (idM).

PROOF. We identify M with the diagonal ∆⊂M×M and T M with the normal bundle
T⊥ (∆) = {(v,−v) | v ∈ T M} to the diagonal in the product. For a vector field X on M we
obtain a section (X ,−X) of N (∆) that is homotopic to the zero section

∆0 =
{
((p, p) ,(0p,−0p)) | p ∈M

}
.

This tells us that

L2 (idM) = I2 ((idM, idM) ,∆) = I2 (∆,∆) = I2 (∆0,∆0) = I2 ((−X ,X) ,∆0) = I2 (X ,M0) .

□

The mod 2 Euler characteristic of a sphere is always 0. For odd dimensional spheres
this is because they admit a nonvanishing vector field. For even dimensional spheres we
can select such a nonvanishing field on the equator and extend it to the entire space creating
only two zeros. What is more interesting is that χ2

(
RP2n

)
= 1 as we can select a vector

field on S2n that is invariant under the antipodal map and has two zeros. In projective
space this yields a vector field with one zero. By the same construction we also see that
χ2
(
RP2n+1

)
= 0.

We can now prove another difficult result, the Jordan-Brouwer separation theorem.

THEOREM 5.3.7. If S⊂Rn+1 is a closed, connected, n-dimensional submanifold, then
Rn+1−S has two connected components.

Note that RPn ⊂ RPn+1 has a complement that is a disc and is thus connected. The
theorem holds with virtually the same proof when the ambient space Rn+1 is replaced with
a simply connected manifold. Note also that transversality can be used to show that the
complement of a submanifold of codim≥ 2 is always connected. Thus the complement of
a finite set in a connected manifold is connected when the manifold has dimension ≥ 2.
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PROOF. We start with the observation that I2 ( f ,S) = 0 for any closed curve f : S1→
Rn+1. This is where simple connectivity is used.

This simple observation implies that there exists a unit normal field X : S→Rn+1, i.e.,
X (p) ⊥ TpS for all p ∈ S. Note that at each point there are only two choices for this unit
normal and the existence is equivalent to saying that S is orientable.

First note that the space of unit normal vectors

UN
(
S⊂ Rn+1)= {v ∈ TpRn+1 | p ∈ S, v⊥ TpS, |v|= 1

}
is a two-fold covering space of S. We can now appeal to corollary 1.4.36 and obtain a sec-
tion S→UN

(
S⊂ Rn+1

)
provided the unique lift of a closed curve in S becomes a closed

curve in UN
(
S⊂ Rn+1

)
. Let c : [0,1]→ S be a curve, and X : [0,1]→ UN

(
S⊂ Rn+1

)
the unique lift. In case c(0) = c(1) we need to show that X (0) = X (1). If not, then
X (0) =−X (1). Consider the curve cε (t) = c(t)+ εX (t). Since X is nontrivial and trans-
verse to S there must be a small ε such that cε (t) does not intersect S. Now join the end
points c(0)+ εX (0) and c(1)+ εX (1) = c(0)− εX (0) by a straight line that intersects S
orthogonally and only in c(0) = c(1). This leads to a closed curve that intersects S only
once.

We can now create a tubular neighborhood, more like a band neighborhood, by consid-
ering H (s, p) = p+sX (p) on (−ε,ε)×S. As S is compact and X transverse to S the differ-
ential of H is an isomorphism at all points (0, p). Thus it is a diffeomorphism on a neigh-
borhood of {0}× S. By decreasing ε we obtain a diffeomorphism H : (−ε,ε)× S→U
onto a neighborhood of S.

This neighborhood allows us to deform curves c : [0,1]→Rn+1 between points p,q ∈
Rn+1− S to curves with a minimal number of intersections with S. Note that I2 (c,S) is
well-defined for curves with c(0) = p and c(1) = q and is invariant under homotopies
that fix p and q. We claim that given p,q ∈ Rn+1− S there is a curve that intersects S
transversely and intersects S in I2 (c,S) points, where c is any curve from p to q that is
transverse to S. In the tubular neighborhood U we can write c(t) = p(t)+ s(t)X (p(t))
and note that if c(t0) ∈ S, i.e., s(t0) = 0, then either it crosses from negative s to positive
s, or the other way around. We say that it has a positive or negative crossing. Now assume
that the first crossing t0 is positive, the last crossing tk can be negative or positive. If tk
is negative, then we can replace c on [−δ + t0, tk +δ ] by a curve in H ({−δ}×S) (this is
where connectivity of S is used) to obtain a new curve that does not intersect S. This gives
a curve that does not intersect S provided I2 (c,S) = 0. While if tk is positive we can replace
c on [−δ + t0, tk−δ ] by a curve in H ({−δ}×S) to obtain a new curve that intersects S in
only one point (at tk). This gives a curve that intersects S once when I2 (c,S) = 1.

We can now finish the proof. Fix p0 ∈ Rn+1−S and define

O0 or 1 =
{

p ∈ Rn+1−S | I2 (c,S) = 0 or 1
}
.

We claim that both sets are nonempty, open, and connected. Clearly p0 ∈O0. For O1 select
a shortest line segment from p0 to S. It’ll intersect S orthogonally and its continuation will
yield a slightly longer segment that intersects S orthogonally in exactly one point. Both
sets are open as any point p ∈Rn+1−S has a neighborhood B(p,δ )⊂Rn+1−S. Thus any
point in B(p,δ ) can be joined to p by a segment that doesn’t intersect S, and hence to p0
by a curve with the same intersection number as a curve from p0 to p. Finally, both sets are
connected since any two points p,q ∈O0 or 1 are joined to p0 by curves whose intersection
number with S have the same parity. This leads to a concatenated curve from p to q with
an even number of intersections with S. By the above argument it can be replaced with a
curve that doesn’t intersect S. □
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5.4. Oriented Intersection Theory

We refine the mod 2 intersection numbers from the last section to integer valued inter-
section numbers provided all of the manifolds involved in our standard set-up

F : M→ N ⊃ S

are oriented. We shall further assume that M is closed.

5.4.1. The Oriented Intersection Number. Recall that an orientation for a vector
space V is a choice of an equivalence class of ordered bases. It can be denoted [V ] or
[v1, ...,vn] if it refers to a specific ordered basis.

Given a subspace V0 ⊂ V that also comes with an orientation we can select a unique
orientation on a complement V0⊕V1 =V so that a positively oriented basis on V0 followed
by a positively oriented on V1 gives a positively oriented basis for V . We also write [V0]⊕
[V1] = [V ]. Note that could also select an orientation [V1]

′
such that [V1]

′
⊕ [V0] = [V ]. These

orientations agree unless both subspaces are odd dimensional as it takes dimV0 · dimV1
transpositions to switch the ordered bases from V0⊕V1 to V1⊕V0.

When M has boundary we orient the boundary by first declaring that outward pointing
vectors are positively oriented: [nx]⊕ [Tx∂M] = [TxM]. This is consistent with how Hn ={

x ∈ Rn | x1 ≤ 0
}

and its boundary are oriented when we use n = ∂1.
In case M = [0,1] we simply assign numbers ±1 to the points on the boundary. Thus

{1} is assigned a +1 while {0} gets a −1. Note that these signs cancel. Thus any compact
oriented one-manifold has the property that the sum of the signs assigned to the boundary
points is 0. This will be fundamental for homotopy invariance of oriented intersection
numbers.

Now suppose that F : M→N is transverse to S and that M,N,S are oriented manifolds.
We wish to assign an orientation to S∗ = F−1 (S). Select x ∈ S∗ and a complement Ex to
TxS∗ ⊂ TxM, Ex⊕TxS∗ = TxM. Since F is transverse we note that DF |x (Ex)⊕TxS = TxN.
Thus we select the orientation of this complement so that

[DF |x (Ex)]⊕ [TxS] = [TxN] .

Since Ex and DF |x (Ex) are isomorphic this also induces an orientation on Ex and thus we
can orient S so that

[Ex]⊕ [TxS] = [TxM] .

A slight consistency issue now develops when M has boundary and also ∂F is trans-
verse. Here ∂S∗ obtains two possible orientations, one as the boundary of S∗ which is ori-
ented by F and one simply via ∂F . We need to check what affects this possible difference
in orientations. Fix x ∈ ∂S∗ and start by noting that an outward pointing nx ∈ TxS∗ ⊂ TxM
is also outward pointing for M. Next we need a complement Ex to TxS∗ ⊂ TxM. We obtain
such a complement by selecting a complement Ex for Tx∂S∗ ⊂ Tx∂M, this will then also be
a complement for TxS∗ ⊂ TxM. We now have from S∗ that ∂S∗ gets oriented by via F by:

[Ex]⊕ [TxS∗] = [TxM] ,

[nx]⊕ [Tx∂S∗] = [TxS∗] .

In other words
[Ex]⊕ [nx]⊕ [Tx∂S∗] = [TxM] .

On the other hand via ∂F we obtain

[Ex]⊕ [Tx∂S∗]′ = [Tx∂M] ,
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where
[nx]⊕ [Tx∂M] = [TxM] ,

i.e.,
[nx]⊕ [Ex]⊕ [Tx∂S∗]′ = [TxM] .

Thus we conclude that

[nx]⊕ [Ex]⊕ [Tx∂S∗]′ = [Ex]⊕ [nx]⊕ [Tx∂S∗] .

Here the orientations [nx]⊕ [Ex] and [Ex]⊕ [nx] agree if dimEx is even, and are opposite
when dimEx is odd. This shows that we have the predictable relationship

[Tx∂S∗]′ = (−1)dimEx [Tx∂S∗] .

We can now define oriented intersection numbers. If F : M→ N is transverse to S and
Mm,Nn,Sn−m are oriented manifolds, then we assign a sign/orientation [x] = ±1 to each
x∈ F−1 (S) with the understanding that it is +1 precisely when the orientation of TxM = Ex
is mapped to the positive orientation for DF (TxM):

[x] = signdetDF |x,
where detDF |x is calculated with respect to positively oriented bases for TxM and DF (TxM).

THEOREM 5.4.1. When F = ∂G, where G : B→ N and B is compact and oriented,
then

∑
x∈F−1(S)

[x] = 0.

PROOF. By theorem 5.2.4 we can assume that G is transverse to S. Here G−1 (S)
is a compact one-manifold with ∂G−1 (S) = F−1 (S). Orientations assigned to points in
F−1 (S) differ by the same sign (−1)m depending on whether we use the definition from F
or as the boundary of G−1 (S). We conclude that they add up to 0 as they come in pairs of
opposite signs corresponding to each arc in G−1 (S). □

REMARK 5.4.2. This shows that two homotopic and transverse maps on a closed
manifold must have the same value for the sum ∑ [x]. Also note that as in remark 5.3.4 we
can generalize this theorem the the case where B is not compact provided G is proper.

DEFINITION 5.4.3. The oriented intersection number I (F,S) is defined as

I (F1,S) = ∑
x∈F−1

1 (S)

[x]

for any map F1 that is homotopic to F and transverse to S. This differs in absolute value
from #F−1 (S) by cancelling pairs of opposite signs, in particular

I (F,S) = I2 (F,S) mod 2.

When Mm ⊂ Nn we obtain two possible intersection numbers I (M,S) and I (S,M). Since

[TxM]⊕ [TxS] = (−1)dimM dimS [TxS]⊕ [TxM]

this intersection number vanishes when the submanifolds are odd dimensional and homo-
topic to each other.

Consider the intersection FPm,FPn−m ⊂ FPn. When the subspaces are in generic
position they will intersect in a point FP0. When F = C this is the oriented intersection
number. When F=R it is the mod 2 intersection number as at least one of the three spaces
is even dimensional and so not orientable.
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5.4.2. Degree and Winding Numbers. We can now also define the oriented degree
of a map F : Mn→ Nn between oriented manifolds where we in addition assume that N is
connected. Using remark 5.4.2 the degree for proper maps is also well-defined as long as
we modify all extensions and homotopies to be proper.

We start by considering the intersection numbers I (F,{q}), q ∈ N. We know from
lemma 1.4.29 that when q is a regular value, i.e., F is transverse to {q}, then some con-
nected neighborhood V is evenly covered: F−1 (V ) =

⋃
Ui, where F : Ui → V is a dif-

feomorphism. Thus DF preserves (or reverses) the orientation on Ui if it preserves (or
reverses) orientations at just one point. Thus I (F,{y}) = I (F,{q}) for all y ∈ V. Now for
a given F there is always a map homotopic to F that is transverse to {q}. So we can
again conclude that I (F,{y}) = I (F,{q}) for all y in a neighborhood of q. This means that
y 7→ I (F,{y}) is locally constant on N, and in particular constant when N is connected.

DEFINITION 5.4.4. The oriented degree for F : Mn→ Nn is well-defined as

degF = I (F,{q}) ,q ∈ N

when N is connected and F is proper.

We get several nice results using degree theory. The key observation is that the degree
of a map is a homotopy invariant as it is simply an intersection number. However, as we can
only compute degrees of proper maps it is important that the homotopies are through proper
maps. When working on closed manifolds this is not an issue. However, if the manifold is
Euclidean space, then all maps are homotopy equivalent, although not necessarily through
proper maps.

PROPOSITION 5.4.5. The identity map on a closed manifold is not homotopic to a
constant map.

PROOF. The constant map has degree 0 while the identity map has degree 1 on an
oriented manifold. In case the manifold isn’t oriented we can use the mod 2 degree. □

THEOREM 5.4.6. Even dimensional spheres do not admit non-vanishing vector fields.

PROOF. A nowhere vanishing vector field X on Sn can be scaled so that it is a unit vec-
tor field. If we consider it as a function X : Sn→ Sn ⊂Rn+1 then it is always perpendicular
to its foot point as TpSn ⊥ p in Rn+1. We can then create a homotopy

H (p, t) = pcos(πt)+Xp sin(πt) .

Since p ⊥ Xp and both are unit vectors the Pythagorean theorem shows that H (p, t) ∈ Sn

as well. When t = 0 the homotopy is the identity, and when t = 1 it is the antipodal map.
Since the antipodal map reverses orientations on even dimensional spheres it is not possible
for the identity map to be homotopic to the antipodal map. □

Next we offer two interesting results for proper maps. The first is related to corollary
1.4.38.

THEOREM 5.4.7. If F : M→ N is a proper nonsingular map of degree ±1 between
oriented connected manifolds, then F is a diffeomorphism.

PROOF. Since F is non-singular everywhere it either reverses or preserves orientations
at all points. Moreover by corollary 1.4.31 it is also a covering map. Thus |degF | =
#F−1 (y) for all y ∈ N. This shows that it must be a diffeomorphism. □

Next we offer an interesting and very broad extension of the Fundamental Theorem of
Algebra.
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THEOREM 5.4.8. Let F : M→ N be a proper map between oriented noncompact n-
manifolds, where N is connected. If F is nonsingular and orientation preserving outside a
compact set, then F is surjective.

PROOF. We assume that all critical points lie in the compact set C⊂M and consider a
value y ∈ F (M)−F (C). This is a regular value and by assumption degF = #F−1 (y)> 0.
In particular, F is surjective. □

REMARK 5.4.9. Note that when n = 1 the function f (x) = x2 is proper and nonsingu-
lar outside a compact set. When n≥ 2, it is often possible to ensure that M−C is connected
as long as M is itself connected. Thus it often suffices to assume that the map is proper and
nonsingular outside a compact set.

The classical winding number for curves in the plane is the number of times a closed
curve goes around a fixed point such as the origin. It can be calculated using degrees and
as we shall see later also with integration.

DEFINITION 5.4.10. Let F : Mn → Rn+1, where M is closed and oriented. When
z /∈ F (M) we define the winding number

W (F,z) = deg
(

F (x)− z
|F (x)− z|

: M→ Sn
)
.

While it is simply a degree, and the degree is simply an intersection number, it is convenient
to maintain these terminologies.

We note that W (F,z) = W (F− z,0) and that the winding number is a homotopy in-
variant under homotopies that map in to Rn+1−{z}.

The winding number can also be calculated in a different way as an intersection num-
ber and in return intersection numbers can be calculated as degrees.

THEOREM 5.4.11. Let G : Bn+1 → Rn+1 have 0 ∈ Rn+1 as a regular value. If B is
compact and oriented with boundary M = ∂B and F = ∂G does not contain 0 in its image,
then

W (F,0) = I (G,{0}) .

PROOF. We select pairwise disjoint coordinate balls Bx ≈ B(0,ε) around each x ∈
G−1 (0) such that G(h) = DG|xh+o(h).

Let Nn+1 =B−
⋃

x∈G−1(0) Bx. This is a new compact manifold with boundary M
⋃

x∈G−1(0) ∂Bx.
The boundaries ∂Bx come with two orientations. One from being the boundary of Bx and
the opposite from being part of the boundary of N. By theorem 5.4.1 we conclude that

0 = deg
(

G
|G|

: ∂N→ Sn
)
.

Here the degree is the sum of the degrees from decomposing the boundary as ∂N =
M
⋃

x∈G−1(0) ∂Bx but where the degrees from the restrictions to ∂Bx come with the opposite
sign. More precisely:

deg
(

G
|G|

: M→ Sn
)
= ∑

x∈G−1(0)

deg
(

G
|G|

: ∂Bx→ Sn
)
,

where ∂Bx is oriented as the boundary of Bx.
We now have to calculate the terms on the right. Since x ∈ G−1 (0) is regular the

differential DG|x is nonsingular. In particular, we can assume that Bx is so small that
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|o(h)| ≪ |DG|xh| for all h ∈ ∂Bx. Consequently, we obtain a homotopy from DG|xh to G
defined by

H (t,h) = DG|xh+ to(h) : [0,1]×∂Bx→ Rn+1−{0} .
This reduces the task to calculating the winding number of the differential. However, the
space of nonsingular matrices Gln (R) has two components. The orientation preserving
matrices contributing +1 and the orientation reversing matrices −1. This proves the theo-
rem. □

REMARK 5.4.12. In case 0 is not a regular value for G but still has a finite preimage
that lies in the interior we instead obtain the formula

W (F,0)= deg
(

G
|G|

: M→ Sn
)
= ∑

x∈G−1(0)

deg
(

G
|G|

: ∂Bx→ Sn
)
= ∑

x∈G−1(0)

W
(
G|∂Bx ,0

)
.

as the condition that each x ∈ G−1 (0) is regular is only used to calculate the local wind-
ing number and show that it agrees with the intersection number. Thus the total winding
number can be split up into local winding numbers.

The above theorem also gives us a new proof of a stronger version of the Borsuk-Ulam
theorem 5.2.2. Note that an even map on a sphere obviously has even degree.

THEOREM 5.4.13. An odd map F : Sn→ Sn has odd degree. In particular, there are
odd maps Sn→ Sn−1.

PROOF. We use induction on n. For n = 0 we have S0 = {±1}. As the map is odd
it is a bijection and so has degree ±1. When n > 0 select Sn−1 ⊂ Sn and y /∈ F

(
Sn−1

)
.

As F is odd and Sn−1 is invariant under the antipodal map also −y /∈ F
(
Sn−1

)
. We can

additionally assume that {±y} are regular values for F . Now project along great circles
through ±y onto the orthogonal equator Sn−1

y to obtain a new odd map

G(x) =
F (x)− (F (x) ,y)y
|F (x)− (F (x) ,y)y|

=
π ◦F
|π ◦F |

,

where π is the orthogonal projection along y in Euclidean space. Using counting and that
F is odd we obtain

degF = I (F,{y})

=
1
2

I (F,{±y})

= I
(

F |Sn
+
,{±y}

)
, where Sn

+ is the hemisphere with pole y

= I (π ◦F,0)
= degG,

where the previous theorem was used for the last equality. □

5.4.3. Lefschetz numbers and the Euler Characteristic. To define Lefschetz num-
bers and the Euler characteristic we need to select orientations for M×M and T M. A
closer look at how orientations are used tells us that the ambient space only needs to have
orientations defined along the submanifolds that the maps are intersecting. For ∆⊂M×M
we note that T(p,p)M×M = TpM×TpM comes with a canonical orientation: any choice of
an ordered basis e1, ...,em for TpM gives the same choice of orientation

(e1,0) , ...,(em,0) ,(0,e1) , ...,(0,em) .
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Similarly for M0 ⊂ T M, there is a natural identification T0pT M = TpM×T0PTpM = TpM×
TpM where the first factor corresponds to M.

DEFINITION 5.4.14. Let M be closed and oriented, F : M→M, and X a vector field.
The oriented Lefschetz number and Euler characteristic are defined by

L(F) = I ((idM,F) ,∆)

and
χ (M) = I (X ,M0) .

We can now reprove proposition 5.3.6.

PROPOSITION 5.4.15. For a closed and oriented manifold

L(idM) = χ (M) .

PROOF. The proof is the same after we note that the identification of T M with N (∆)
respects the orientation choices we have made. Given a positively oriented basis e1, ...,em
we assume that ∆ is oriented by (e1,e1) , ...,(em,em) and claim that N (∆) is oriented by
(e1,−e1) , ...,(em,−em). We use column operations to verify this, noting that adding mul-
tiples of vectors to other vectors can’t change orientations. Starting with

(e1,−e1) , ...,(em,−em) ,(e1,e1) , ...,(em,em)

we can add the last m vectors to the first m and obtain

(e1,0) , ...,(em,0) ,(e1,e1) , ...,(e1,em)

and then subtract the first m vectors from the last m vectors to get our standard basis

(e1,0) , ...,(em,0) ,(0,e1) , ...,(0,em) .

□

COROLLARY 5.4.16. For an odd dimensional manifold L(idM) = χ (M) = 0.

In order to do calculations we need a way of checking orientations at intersection
points.

LEMMA 5.4.17. Let M be closed and oriented and F : M→ M. The map (idM,F) :
M→M×M is transverse to ∆ at (p, p) if and only if DF |p : TpM→ TpM only has 0p as a
fixed point, i.e., +1 is not an eigenvalue for DF |p. Moreover, in this case the intersection
number is given by the sign of det

(
idTpM−DF |p

)
.

PROOF. Fix an oriented basis e1, ...,em for TpM and for convenience denote DF |p =A.
The tangent space to the graph of F is spanned by

(e1,A(e1)) , ...,(em,A(em))

so transversality comes down to checking if

(e1,A(e1)) , ...,(em,A(em)) ,(e1,e1) , ...,(em,em)

is a basis and the intersection number is determined by whether this is a positively oriented
basis. We subtract the first m vectors from the last m to obtain

(e1,A(e1)) , ...,(em,A(em)) ,(0,e1−A(e1)) , ...,(0,em−A(em)) .
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This can only be a basis if the last m vectors are linearly independent, i.e., det
(
idTpM−DF |p

)
̸=

0. Moreover, when this happens then suitable linear combinations of the last m vectors can
be used to obtain the basis

(e1,0) , ...,(em,0) ,(0,e1−A(e1)) , ...,(0,em−A(em))

which is positively oriented only if

e1−A(e1) , ...,em−A(em)

is positively oriented. □

REMARK 5.4.18. This lemma also shows that we don’t have to know or use the orien-
tation of TpM to calculate the intersection number as the sign of det

(
idTpM−DF |p

)
does

not depend on a choice of basis. This makes it particularly easy to calculate Lefschetz
numbers.

Let us calculate the Lefschetz numbers for linear maps on projective spaces. The first
general observation is that a map A∈Aut(V ) has a fixed point p∈P(V ) iff p is an invariant
one dimensional subspace for A. In other words fixed points for A on P(V ) correspond to
eigenvectors, but without information about eigenvalues.

We start with the complex case as it is a bit simpler. The claim is that any A ∈Aut(V )
with distinct eigenvalues is a Lefschetz map on P(V ) with L(A) = dimV. Since such maps
are diagonalizable we can restrict attention to V = Cn+1 and the diagonal matrix

A =

 λ0 0
. . .

0 λn


By symmetry we need only study the fixed point p = [1 : 0 : · · · : 0] . Note that the eigen-
values are assumed to be distinct and none of then vanish. To check the action of A on a
neighborhood of p we use the coordinates

[
1 : z1 : · · · : zn

]
and observe that

A
[
1 : z1 : · · · : zn] =

[
λ01 : λ1z1 : · · · : λnzn]

=

[
1 :

λ1

λ0
z1 : · · · : λn

λ0
zn
]
.

This is already (complex) linear in these coordinates so the differential at p must be repre-
sented by the complex n×n matrix

DA|p =


λ1
λ0

0
. . .

0 λn
λ0

 .
As the eigenvalues are all distinct 1 is not an eigenvalue of this matrix, showing that A really
is a Lefschetz map. Next we need to check the differential of det(I−DA|p) . Since Gln (C)
is connected it must lie in Gl+2n (R) as a real matrix, i.e., complex matrices always have
positive determinant when viewed as real matrices. Since DA|p is complex it must follow
that det(I−DA|p)> 0. So all local Lefschetz numbers are 1. This shows that L(A) = n+1.
Since Gln+1 (C) is connected any linear map is homotopic to a linear Lefschetz map and
must therefore also have Lefschetz number n+1.

In particular, we have shown that all invertible complex linear maps must have eigen-
vectors. Note that this fact is obvious for maps that are not invertible. This could be one
of the most convoluted ways of proving the Fundamental Theorem of Algebra. We used
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the fact that Gln (C) is connected. This in turn follows from the polar decomposition of
matrices, which in turn follows from the Spectral Theorem. Finally we observe that the
Spectral Theorem can be proven without invoking the Fundamental Theorem of Algebra.

The alternate observation that the above Lefschetz maps are dense in Gln (C) is also
quite useful in many situations.

The real projective spaces can be analyzed in a similar way but we need to consider
the parity of the dimension as well as the sign of the determinant of the linear map.

For A ∈ GL+
2n+2 (R) we might not have any eigenvectors whatsoever as A could be

n+ 1 rotations. Since GL+
2n+2 (R) is connected this means that L(A) = 0 on RP2n+1 if

A∈GL+
2n+2 (R) . On the other hand any A∈GL−2n+2 (R) must have at least two eigenvalues

of opposite sign. Since GL−2n+2 (R) is connected we just need to check what happens for a
specific

A =



1 0
0 −1

0 −1
1 0

. . .
0 −1
1 0


=

 1 0 0
0 −1 0
0 0 R


We have two fixed points

p = [1 : 0 : · · · : 0] ,
q = [0 : 1 : · · · : 0] .

For p we can quickly guess that

DAp =

[
−1 0
0 R

]
.

This matrix doesn’t have 1 as an eigenvalue and

det
(

I−
[
−1 0
0 R

])
= det

[
2 0
0 I−R

]

= det



2
1 1
−1 1

. . .
1 1
−1 1


= 2n+1.

So we see that the determinant is positive. For q we use the coordinates
[
z0 : 1 : z2 : · · · : zn

]
and easily see that the differential is [

−1 0
0 −R

]
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which also doesn’t have 1 as an eigenvalue and again gives us positive determinant for
I−DAq. This shows that L(A) = 2 if A ∈ GL−2n+2 (R) .

In case A ∈ Gl2n+1 (R) it is only possible to compute the Lefschetz number mod 2 as
RP2n isn’t orientable. We can select

A± =

[
±1 0
0 R

]
∈ GL±2n+1 (R)

with R as above. In either case we have only one fixed point and it is a Lefschetz fixed
point since DA±p =±R. Thus L(A±) = 1 and all A ∈ G(2n+1,R) have L(A) = 1.

This last example can also be used to calculate the Euler characteristic of even dimen-
sional spheres. In fact the matrix

A =

[
1 0
0 R

]
∈ SO(2n+1)

is orthogonal and preserves the sphere with two fixed points (±1,0, ...,0) and is homo-
topic to the identity map. The intersection numbers are both calculated as the sign of
det
(

idTpS2n −R
)
> 0. So the Lefschetz number and the Euler characteristic are both 2.

5.4.4. Isotopies and Poincaré-Hopf-Lefschetz. We start with a useful localization
procedure showing that any finite collection of points in a connected manifold lie in an
open set diffeomorphic to Rn.

DEFINITION 5.4.19. An isotopy is a homotopy of diffeomorphisms H : [0,1]×M→
M, i.e., for each t, the map x 7→ H (t,x) is a diffeomorphism. It is said to be compactly
supported if there is a compact set C ⊂M, such that H (t,x) = x for all t and x ∈M−C.
Note that we can alter any such homotopy, using a function λ : [0,1]→ [0,1], to a new
homotopy H (λ (t) ,x). If λ = 0 for t < ε and λ = 1 for t > 1− ε , then the new homo-
topy becomes stationary at the ends. This allows us to smoothly concatenate homotopies
provided H1 (1,x) = H2 (0,x).

PROPOSITION 5.4.20. If p,q ∈ Rn, then there exists a compactly supported isotopy
such that H (0,x) = x for all x ∈ Rn and H (1, p) = q.

PROOF. Simply select a suitable compactly supported function φ : Rn → [0,1] with
φ (p) = 1 and define

Ht (x) = H (t,x) = x+ tφ (x)(q− p) .

This map is proper since it is the identity outside a compact set, it is also nonsingular
provided |dφ |< 1

|q−p| . Thus corollary 1.4.38 shows that it is a diffeomorphism. □

LEMMA 5.4.21. Let M be connected and with dimM≥ 2. If p1, ..., pk ∈M are distinct
and q1, ...,qk ∈ M are distinct, then there exists a compactly supported isotopy such that
H (0,x) = x for all x ∈M and H (1, pi) = qi.

PROOF. The proof is by induction on k.
For k = 1 we create a relation by saying that p,q are related provided the statement of

the lemma holds. This is clearly an equivalence relation. The previous proposition shows
that the equivalence classes are open. The fact that M is connected then finishes the proof.

Now assume the statement holds for k− 1 points. Since dimM ≥ 2 we know that
M−{pk,qk} and M−{p1, ..., pk−1,q1, ...,qk−1} are connected. Therefore, there exist com-
pactly supported isotopies H on M−{pk,qk} and G on M−{p1, ..., pk−1,q1, ...,qk−1} that
are the identity when t = 0 and with H (1, pi) = qi, i = 1, ...,k− 1 and G(1, pk) = qk. As
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they are compactly supported they extend to all of M. Now H fixes pi,qi, i = 1, ...,k− 1
and G fixes pk,qk. We can then compose H (t,G(t,x)) to obtain the desired isotopy. □

COROLLARY 5.4.22. Any finite collection of points in a connected manifold lies in an
open set diffeomorphic to Rn.

PROOF. The above lemma settles this when n = dimM ≥ 2. When dimM = 1, it
follows from our classification of one-manifolds. □

Consider a vector field X on Rn where p is an isolated zero. Trivializing the tangent
bundle TRn = Rn×Rn we can think of X : Rn → Rn, where p is an isolated zero. We
define the index of X :

indpX =W
(
X |∂B(p,ε),0

)
.

Similarly, if a map F : Rn → Rn has an isolated fixed point p, then consider X (x) = x−
F (x) and define the Lefschetz number:

Lp (F) = indpX .

These definitions make sense for all small ε and by remark 5.4.12 will give the same answer
for all ε . In fact, instead of B(p,ε) we could have used any closed neighborhood, M,
around p with smooth boundary and with the property that p is the only zero or fixed point
in M. Both definitions also match the intersection numbers as discussed in the previous
subsection when everything is transverse.

We can now define the index of an isolated zero of a vector field and the Lefschetz
number of an isolated fixed point of a function on an oriented manifold. Simply select a
positively oriented chart around the point and then use the definition from Euclidean space.
It is easy to prove that any two positively oriented charts give the same number. We just
need to check that the definition in Euclidean space is independent of diffeomorphisms
that fix, say, the origin. Such maps have an expansion G(x) = DG|0x + o(x) and are
thus isotopic to DG|0 on a small neighborhood of the origin. As DG|0 is an orientation
preserving linear map it is in turn isotopic to the identity.

THEOREM 5.4.23 (Poincaré-Hopf). If X is a vector field with finitely many zeros on
an oriented compact oriented manifold, then

χ (M) = ∑
p,X(p)=0

indpX .

THEOREM 5.4.24 (Lefschetz). If F : M→M is a map with finitely many fixed points
on a compact oriented manifold, then

L(F) = ∑
p,F(p)=p

Lp (F) .

PROOF. The two proofs are virtually identical after restricting to an open set U ⊂M
diffeomorphic to Rn that contains all the zeros or fixed points. We focus on the second
as it is more general. As such, we consider a map F : M → M that has a finite number
of fixed points p1, ..., pk in the interior of a closed ball B = B̄(0,R) ⊂ Rn ≃U ⊂ M. To
calculate the relevant winding numbers we consider the auxiliary vector field X (x) = x−
F (x) on B whose zeros are precisely the fixed points of F . From remark 5.4.12 we have
for sufficiently small ε > 0 that

∑
i

Lpi (F) = ∑
i

W
(
X |∂B(pi,ε),0

)
=W (X |∂B,0) .
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We can now select a new function G : M→ M that is homotopic to F , agrees with F on
M− intB, and such that the graph of G is transverse to the diagonal. This implies that 0 is
a regular value for Y (x) = x−G(x). We can then invoke theorem 5.4.11 to conclude

∑
i

Lpi (F) =W (X |∂B,0) =W (Y |∂B,0) = I (Y,{0}) = L(G) = L(F) .

□

It is tempting to use the above constructions to define Lefschetz numbers for maps on
noncompact manifolds. But even on Rn this runs in to some trouble. Clearly all maps are
homotopic. However, there are maps without fixed points such as translations and maps
with nontrivial Lefschetz numbers such as rotations in the plane. The same issue occurs for
vector fields, as there exist vector fields that vanish only at the origin but with any integer
as index. Similar issues occur for vector fields on compact manifolds with boundary such
a closed ball in Rn.

Finally we give an outline of how the Euler characteristic ties in with the traditional
combinatorial definition. This works in all dimensions but is a little easier to define for
surfaces.

DEFINITION 5.4.25. A polygonal subdivision of a surface M is a decomposition M =
∪Pα such that each Pα is diffeomorphic to a polygon in the plane and such that Pα ∩Pβ is a
vertex or union of edges. The fact that M is a manifold without boundary means that each
edge is the edge of exactly two polygons.

With respect to such a decomposition it is easy to visualize a vector field that is tangent
to the edges, has a sink at each vertex, a saddle at exactly one interior point of each edge,
and a source at exactly one point in the interior of each polygon. As sinks and sources have
index 1, while saddles have index -1 we end up with the formula

χ (M) =V −E +F

where V is the number of vertices, E the number of edges, and F the number of polygons,
e.g., faces.

We shall in section 8.2 show a more general formula for the Euler characteristic and
Lefschetz number which only depends on the cohomology of the space. This formula
makes sense on a much broader class of compact spaces, but it is less obvious why a
map with nonzero Lefschetz number must have a fixed point. This topological Lefschetz
number is invariant under homotopies. In particular, translations have Lefschetz number 1
so compactness is a crucial assumption in order to guarantee fixed points.

5.4.5. Hopf’s Degree Theorem. The Hopf degree theorem states that maps from a
closed, connected, oriented n-manifold to the n-sphere are homotopic if and only if they
have the same degree. The same statement holds for nonorientable manifolds if we use the
mod 2 degree. Since the result is also important when n = 1 and has a much more direct
proof we start with that case.

THEOREM 5.4.26. A map F : S1→ S1 is homotopic to z 7→ zdegF .

PROOF. We can use the covering map π : R→ S1 given by the function θ 7→ e2πiθ of
period 1 to lift F to a map F̄ : R→ R such that F

(
e2πiθ

)
= e2πiF̄(θ). Clearly F̄ (θ +1)−

F̄ (θ) ∈ Z so it follows that it is a constant, say, k. We will show that F and z 7→ zk are
homotopic. In R we have an obvious linear homotopy

H̄ (t,θ) = (1− t) F̄ (θ)+ tkθ .
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Since
H̄ (t,θ +1)− H̄ (t,θ) = k

it induces a homotopy

H
(

t,e2πiθ
)
= e2πiH̄(t,θ)

between F and z 7→ zk. As the latter map has degree n the theorem follows. □

Before moving on to the general case we start with two easy extension results.

PROPOSITION 5.4.27. Let B⊂Rn be an open ball and N a manifold. If F :Rn−B→N
has the property that F |∂B : ∂B→ N is homotopic to a constant, then there is an extension
F̄ : Rn→ N that agrees with F on Rn−B.

PROOF. Let H (t,x) : [0,1]×∂B→N be a smooth homotopy with H (1,x) = F (x) and
H (0,x) = p for some p ∈ N. We can further assume that for t < ε we have H (t,x) = p
and for t > 1− ε we have H (t,x) = F (x). Parametrizing B by [0,1]×∂B→ B then shows
that H induces a smooth map on B that is F near the boundary and thus smoothly extends
F . □

LEMMA 5.4.28. Let B be a manifold with smooth boundary ∂B = M. Any map F :
M→ Rn extends to a smooth map G : B→ Rn where ∂G = M.

PROOF. We can assume that there is a proper embedding B ⊂ Rk and instead show
that we can extend F to be defined on all of Rk. The desired G is then gotten by restricting
to B.

Select a retract π : U →M on a tubular neighborhood U ⊃M and a bump function λ :
Rk→ [0,1] which is 1 on M (M is a closed subset as it is properly embedded) and 0 outside
a neighborhood V ⊃ M with V̄ ⊂ U . The extension is given by G(x) = λ (x)F (π (x)).
This is certainly an extension to U and as it vanishes outside V it is well-defined on all of
Rk. □

To prove the Hopf degree statement we start by considering maps of degree 0.

THEOREM 5.4.29. Let Mn be a closed, connected, oriented n-manifold. If F : Mn→ Sn

has degree 0, then F is homotopic to a constant map.

This has an immediate consequence

COROLLARY 5.4.30. Let Mn be a closed, connected, oriented n-manifold. If F : Mn→
Rn+1−{0} has W (F,0) = 0, then F is homotopic to a constant map in Rn+1−{0}.

PROOF. Theorem 5.4.29 shows that F
|F | : Mn→ Sn is homotopic to a constant. □

PROOF OF THEOREM 5.4.29. The proof is by induction on n and recall that we did
the full theorem when n = 1 above. For the purpose of the induction step note that the
above corollary holds in dimension n−1 provided the theorem holds in dimension n−1.

Consider a map F : Mn→ Sn of degree 0. If the map is not surjective, then it is clearly
homotopic to a constant map. Otherwise select two regular values p,q ∈ Sn and an open
set U ≃ Rn that contains F−1 (p) and is disjoint from F−1 (q), i.e., F |U : U → Sn−{q}.
We have diffeomorphisms A : Sn−{q}→Rn that map p to the origin and B : Rn→U with
the property that F−1 (p) ⊂ G(B(0,1)). The composition G = A ◦F ◦B : Rn→ Rn has 0
as a regular value so by assumption and theorem 5.4.11 we have

0 = degF = I (G,{0}) =W
(

G|Sn−1=∂B(0,1),0
)
.
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By induction it follows that G|Sn−1 : Sn−1→Rn−{0} is homotopically trivial. Proposition
5.4.27 then gives us an extension of G|Rn−B(0,1) to a map Ḡ : Rn→ Rn−{0}. This gives
us a map A−1 ◦ Ḡ ◦B−1 : U → Sn−{p,q} that agrees with F outside a compact set in U
and thus induces a map F̄ : Sn→ Sn−{p}.

Here Ḡ,G : Rn→ Rn are clearly homotopic via a linear homotopy that is independent
of t on Rn−B(0,1). Thus there is a similar homotopy of A−1 ◦ Ḡ◦B−1 and F |U that maps
into Sn−{q} and is independent of t outside a compact set. This shows that F and F̄ are
homotopic. As F̄ is not surjective it is homotopic to a constant. □

This theorem implies an important extension that is a partial converse to theorem 5.4.1.

COROLLARY 5.4.31. Let Nn+1 be a compact, connected, oriented manifold with
boundary. A map F : ∂N → Sn has an extension to G : N → Snwith ∂G = F, provided
degF = 0.

PROOF. By lemma 5.4.28 we can find an extension F̄ : N→ Rn+1 with ∂ F̄ = F . We
can further assume that 0 is a regular value for F̄ and that F−1 (0)⊂ B where B is an open
ball with smooth boundary ∂B. The map F̄ |∂B : ∂B→ Rn+1−{0} has winding number 0
by theorem 5.4.11 and is thus homotopic to a constant in Rn+1−{0}. By proposition 5.4.27
we can then extend F̄ : N−B→ Rn+1−{0} to a smooth map G : N→ Rn+1−{0}. This
map agrees with F on ∂N and can thus be normalized to create the desired extension. □

The full version of Hopf’s theorem now follows.

THEOREM 5.4.32. Let Mn be a connected, closed, and oriented manifold. Two maps
F0,F1 : M→ Sn are homotopic if they have the same degree.

PROOF. Let N = [0,1]×M with it natural orientation so that the boundaries have
opposite orientations. Thus F0,F1 yield a map ∂N → Sn of degree 0. We can then apply
the above corollary. □

Our final result follows along similar lines:

THEOREM 5.4.33. If M is a compact, connected, and oriented manifold, then χ (M) =
0 if and only if M admits a nowhere vanishing vector field.

PROOF. Clearly a nonzero vector field leads to vanishing Euler characteristic. Con-
versely select a vector field X that is transverse to the zero section and an open ball B with
smooth boundary such that these zeros are contained in B. On a neighborhood of B̄ we
can trivialize the tangent bundle and write X (x) = (x,F (x)). Now 0 is a regular value for
F : B̄→ Rn and

0 = χ (X) = I
(
F−1 (0) ,{0}

)
.

Thus F |∂B has a smooth extension to a map F̄ : B̄→ Rn −{0} that we can assume is
smoothly joined to X outside B. This gives us a nonvanishing vector field. □

5.5. Exercises

(1) Let S ⊂ Rn−{0} be a submanifold. Show that almost all k-dimensional sub-
spaces are transverse to S. Hint: consider the map(

α
1, ...,αk,v1, ...,vk

)
7→∑α

ivi

where v1, ...,vk are linearly independent.
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(2) Given maps between compact, connected, oriented n-manifolds:

L F→M G→ N

show that
deg(G◦F) = degGdegF.

(3) Let Mm,Nn ⊂ Rn+m+1 be two closed, oriented, disjoint submanifolds and define
the linking number

l (M,N) = deg
(
F : M×N→ Sn+m) , F (x,y) =

x− y
|x− y|

.

(a) Show that l (M,N) = (−1)(m+1)(n+1) l (N,M).
(b) Show that l (M,N) = 0 if M = ∂B, where B is compact, oriented, and dis-

joint from N.
(4) Starting with S1 show that there is a map of degree k on Sn for every integer k.
(5) What is the degree of a rational map p

q on CP1, where p,q ∈C [X ] have no roots
in common?

(6) Let M be a closed, connected, and oriented n-manifold. Show that there is a map
M→ Sn of degree k for every integer k.

(7) If M→ N is a k-fold covering of closed manifolds, then χ (M) = kχ (N).
(8) If M,N are manifolds, then χ (M×N) = χ (M)χ (N).
(9) Let M be connected and p1, ..., pk and q1, ...,qk two collections of distinct points

as in lemma 5.4.21. Show that if vi ∈ TpiM−{0} and wi ∈ TqiM−{0}, then
there is a compactly supported isotopy H from idM such that H1 (x) = H (1,x)
satisfies:

DH1|pi (vi) = wi.

(10) Calculate the intersection number of CPk,CPn−k ⊂ CPn.
(11) Let X be a vector field on C given by a complex polynomial that has no repeated

roots. What is the index at each zero?
(12) Calculate the indices at 0∈C of the vector fields given by X (z) = zm and X (z) =

z̄m, m = 1,2,3...
(13) Calculate the Lefschetz numbers at 0 ∈C of the maps F (z) = z− zm and F (z) =

z− z̄m, m = 1,2,3...
(14) Show that there are antipodal points on Earth with the same the temperature and

barometric pressure.
(15) Using theorem 3.2.8 and corollary 3.2.10 show that intersection numbers and

Lefschetz numbers are well-defined for continuous maps. Conclude that Brouwer’s
Fixed Point Theorem, The Borsuk-Ulam Theorem, and The Hopf Degree Theo-
rem hold for continuous maps.

(16) Let Ui ⊂Rn, i = 1, ...,n be open, bounded, and connected. Show that there exists
a hyperplane H that bisects the n open sets, i.e., if Rn = A∪B, where A∩B = H,
then

vol(Ui∩A) = vol(Ui∩B) , i = 1, ...,n.
Hint: You can use that Borsuk-Ulam holds for continuous functions.

(17) Assume Ln−1 ⊂Mn is properly embedded, both manifolds are connected, and M
is simply connected. Show that M−L has exactly two components.

(18) Consider the maps on CP2:

Fk ([z0 : z1 : z2]) =
[
zk

0 : zk
1 : zk

2

]
,
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F̄k ([z0 : z1 : z2]) =
[
z̄k

0 : z̄k
1 : z̄k

2

]
,

where k = 1,2,3, ...
(a) Show that if Uk is the group of the kth roots of unity then U3

k /∆ acts transi-
tively on the preimages of these maps, here ∆ = {(ζ ,ζ ,ζ ) | ζ ∈Uk}.

(b) Show that the degree is k2.
(c) What happens with the analogous question on RP2?
(d) Show that Fk is transverse to

CP1 =
{
[w0 : w1 : w2] ∈ CP2 | w0 +w1 +w2 = 0

}
and let M be the preimage so that we obtain a map Gk : M→ CP1.

(e) Show that U3
k /∆ acts transitively on the preimages of Gk.

(f) Show that except for three points where there are k preimages all other
points have k2 preimages.

(g) Use this to show that χ (M) = k (3− k) (hint: the image is the union of two
triangles whose vertices are the special three points with k preimages).

(h) Is Fk transverse to

CP1 =
{
[w0 : w1 : w2] ∈ CP2 | w0 = 0

}
?



CHAPTER 6

Basic Tensor Analysis

Recall from section 2.3.2 that (k, l)-tensors are sections of tensor bundles (T M)⊗k⊗
(T ∗M)⊗l . Here (1,0)-tensors are vector fields and (0,1)-tensors 1-forms. In section 2.2.2
the Lie derivative was introduced on functions and vector fields. Moreover, it was shown
that on vector fields it was the same the Lie bracket.

In this chapter we expand the constructions that involve tensors to include the exterior
derivative, orientations, and integration of forms. This will culminate in the general Stokes’
theorem and how it contains the three classical integral theorems.

6.1. The Lie Derivative

Let F : M→ N be a smooth map, the pull-back operation

F∗ : (T ∗N)⊗k→ (T ∗M)⊗k

is defined by
(F∗T )(v1, ...,vk) = T (DF (v1) , ...,DF (vk))

if T ∈
(

T ∗F(p)N
)⊗k

is a k-linear map on TF(p)N. This operation naturally extends to (0,k)-
tensors, i.e., sections of the respective bundles. There is also a corresponding push-forward

F∗ : (T M)⊗k→ (T N)⊗k

defined by
F∗ (v1⊗·· ·⊗k) = DF (v1)⊗·· ·⊗DF (vk) .

This operation however does not necessarily extend to sections when F is not injective or
surjective (try to push forward a vector field on M). In case F is a diffeomorphism the
push-forward is well-defined for sections, e.g., for a vector field

F∗ (X) |q = DF
(

X |F−1(q)

)
.

Let X be a vector field and Φt = Φt
X the corresponding locally defined flow on a

smooth manifold M. Thus Φt (p) is defined for small t and the curve t 7→ Φt (p) is the
integral curve for X that goes through p at t = 0. The Lie derivative of a tensor in the
direction of X is defined as the first order term in a suitable Taylor expansion of the tensor
when it is moved by the flow of X .

For a function f : M→ R we have

f
(
Φ

t (p)
)
= f (p)+ t (LX f )(p)+o(t) ,

where the Lie derivative LX f is just the directional derivative DX f = d f (X) . We can also
write this as

f ◦Φ
t = f + tLX f +o(t) ,

LX f = DX f = d f (X) .

95
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For a vector field Y((
Φ
−t)∗Y) |p = DΦ

−t (Y |Φt (p)
)
= Y |p + t (LXY ) |p +o(t) .

The Lie derivative of a (0,k)-tensor T is constructed as for a function(
Φ

t)∗T = T + t (LX T )+o(t)

or more precisely((
Φ

t)∗T
)
(Y1, ...,Yk) = T

(
DΦ

t (Y1) , ...,DΦ
t (Yk)

)
= T (Y1, ...,Yk)+ t (LX T )(Y1, ...,Yk)+o(t) .

PROPOSITION 6.1.1. If X is a vector field and T a (0,k)-tensor on M, then

(LX T )(Y1, ...,Yk) = DX (T (Y1, ...,Yk))−
k

∑
i=1

T (Y1, ...,LXYi, ...,Yk)

PROOF. We restrict attention to the case where k = 1. The general case is similar but
requires more notation. Using that

Y |Φt = DΦ
t (Y )+ tDΦ

t (LXY )+o(t)

we get ((
Φ

t)∗T
)
(Y ) = T

(
DΦ

t (Y )
)

= T
(
Y |Φt − tDΦ

t (LXY )
)
+o(t)

= T (Y )◦Φ
t − tT

(
DΦ

t (LXY )
)
+o(t)

= T (Y )+ tDX (T (Y ))− tT
(
DΦ

t (LXY )
)
+o(t) .

Thus

(LX T )(Y ) = lim
t→0

(
(Φt)∗T

)
(Y )−T (Y )
t

= lim
t→0

(
DX (T (Y ))−T

(
DΦ

t (LXY )
))

= DX (T (Y ))−T (LXY ) .

□

Finally we have that Lie derivatives satisfy all possible product rules. From the above
propositions this is already obvious when multiplying functions with vector fields or (0,k)-
tensors. However, it is less clear when multiplying tensors.

PROPOSITION 6.1.2. Let T1 and T2 be (0,ki)-tensors, then

LX (T1⊗T2) = (LX T1)⊗T2 +T1⊗ (LX T2) .

PROOF. Recall that for 1-forms and more general (0,k)-tensors the tensor product is
defined as

T1⊗T2
(
X1, ...,Xk1 ,Y1, ...,Yk2

)
= T1

(
X1, ...,Xk1

)
·T2
(
Y1, ...,Yk2

)
.

The proposition is then a simple consequence of the previous proposition and the product
rule for derivatives of functions. □

PROPOSITION 6.1.3. Let T be a (0,k)-tensor and f : M→ R a function, then

L f X T (Y1, ...,Yk) = f LX T (Y1, ...,Yk)+d f (Yi)
k

∑
i=1

T (Y1, ...,X , ...,Yk) .
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PROOF. We have that

L f X T (Y1, ...,Yk) = D f X (T (Y1, ...,Yk))−
k

∑
i=1

T
(
Y1, ...,L f XYi, ...,Yk

)
= f DX (T (Y1, ...,Yk))−

k

∑
i=1

T (Y1, ..., [ f X ,Yi] , ...,Yk)

= f DX (T (Y1, ...,Yk))− f
k

∑
i=1

T (Y1, ..., [X ,Yi] , ...,Yk)

+d f (Yi)
k

∑
i=1

T (Y1, ...,X , ...,Yk)

□

The case where X |p = 0 is of special interest when computing Lie derivatives. We
note that Φt (p) = p for all t. Thus DΦt : TpM→ TpM and

LXY |p = lim
t→0

DΦ−t (Y |p)−Y |p
t

=
d
dt

(
DΦ

−t) |t=0 (Y |p) .

This shows that LX = d
dt (DΦ−t) |t=0 when X |p = 0. From this we see that if θ is a 1-form,

then LX θ =−θ ◦LX at points p where X |p = 0.
The interior product is simply evaluation of a vector field in the first argument of a

tensor:
iX T (X1, ...,Xk) = T (X ,X1, ...,Xk)

We list 4 general properties of Lie derivatives on tensors that are easy to check:

L[X ,Y ] = LX LY −LY LX ,

LX ( f T ) = LX ( f )T + f LX T,

LX [Y,Z] = [LXY,Z]+ [Y,LX Z] ,

LX (iY T ) = iLXY T + iY (LX T ) .

6.2. The Exterior Derivative

6.2.1. General Properties. Forms are skew-symmetric p-tensors. The wedge prod-
uct was defined in section 2.3.1

Ω
p (M)×Ω

q (M) → Ω
p+q (M) ,

(ω,ψ) → ω ∧ψ.

This operation is bilinear and antisymmetric in the sense that:

ω ∧ψ = (−1)pq
ψ ∧ω.

The wedge product of a function and a form is simply standard multiplication.
The exterior derivative

d : Ω
p (Rn)→Ω

p+1 (Rn)
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is defined as follows

dω = d

(
∑

i1<···<ip

ωi1···ipdxi1 ∧·· ·∧dxip

)
= ∑

i1<···<ip

dωi1···ip ∧dxi1 ∧·· ·∧dxip

= ∑
j,i1<···<ip

∂ jωi1···ipdx j ∧dxi1 ∧·· ·∧dxip .

The same formula can be used in any coordinate system and thus also gives us an exterior
derivate on all smooth manifolds. To check that the formula doesn’t depend on the coordi-
nate system can be done with a brute force calculation or by collecting the properties that
characterize it.

PROPOSITION 6.2.1. The exterior derivative is uniquely defined by the properties
(1) d (ω1 +ω2) = dω1 +dω2.
(2) d (ω1∧ω2) = (dω1)∧ω2 +(−1)p

ω1∧dω2, for ω1 ∈Ωp (Rn).
(3) d (dω) = 0 or d2 = 0.
(4) d f (v) = Dv f , for f ∈C∞ (Rn) = Ω0 (Rn).

PROOF. (1) and (4) are obvious. This shows that for (2) we can assume that ω1 =
f1dxI and ω2 = f2dxJ , where dxI = dxi1 ∧·· ·∧dxip :

d
(

f1dxI ∧ f2dxJ) = d
(

f1 f2dxI ∧dxJ)
= d ( f1 f2)∧dxI ∧dxJ

= ((d f1) f2 + f1d f2)∧dxI ∧dxJ

= d f1∧dxI ∧ f2dxJ +(−1)p f1dxI ∧d f2∧dxJ

= d
(

f1dxI)∧ f2dxJ +(−1)p f1dxI ∧d
(

f2dxJ) .
For (3) we can similarly assume that ω = f dxI so that:

dω = ∑
j

∂ j f dx j ∧dxI .

This gives us

d2
ω = ∑

i, j
∂

2
i j f dxi∧dx j ∧dxI

= ∑
i ̸= j

∂
2
i j f dxi∧dx j ∧dxI

= ∑
i< j

(
∂

2
i j f −∂

2
ji f
)

dxi∧dx j ∧dxI

= 0.

Should there exist another exterior derivative d̄ with the same properties, then we need to
check that

d̄
(
dxI)= 0.

By (4) we have dxI = d̄xI . We can then use (3) to show that d̄
(
d̄xI
)
= 0 by induction on

the degree of the form as(
d̄
(
d̄xi1 ∧·· ·∧ d̄xip

)
= d̄2xi1 ∧ d̄xi2 ∧·· ·∧ d̄xip − d̄x1∧ d̄

(
d̄xi2 ∧·· ·∧ d̄xip

))
.

□
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This proposition leads to a new invariant formula for the exterior derivative.

PROPOSITION 6.2.2. If X0, ...,Xp ∈X (M) and ω ∈Ωp (M), then

dω (X0, ....,Xk) =
k

∑
i=0

(−1)i DXi

(
ω

(
X0, ..., X̂i, ...,Xk

))
−∑

i< j
(−1)i

ω

(
X0, ..., X̂i, ..., [Xi,X j] , ...,Xk

)
=

k

∑
i=0

(−1)i DXi

(
ω

(
X0, ..., X̂i, ...,Xk

))
+∑

i< j
(−1)i+ j

ω

(
[Xi,X j] ,X0, ..., X̂i, ..., X̂ j, ...,Xk

)
.

For a 1-form this becomes

dω (X ,Y ) = DX (ω (Y ))−DY (ω (X))−ω ([X ,Y ]) .

PROOF. First use lemma 2.3.4 to show that the right hand side defines a tensor. This
shows that it suffices to check the formula for a p-form of the type ω = f dx1 ∧ ·· · ∧ dxp.
In this case

dω =
n

∑
i=p+1

∂i f dxi∧dx1∧·· ·∧dxp.

We can then evaluate both sides on p+1 elements of a coordinate basis ∂1, ...,∂n. In this
case the right hand side only depends on the first term and we see that both sides vanish
unless the p+ 1 vectors are of the form ∂ j,∂1, ...,∂p for j > p. For this choice of vectors
the left hand side becomes ∂ j f and the right hand side

∂ j (ω (∂1, ...,∂p)) = ∂ j f .

□

Lie derivatives, interior products, wedge products and exterior derivatives when eval-
uated on forms together satisfy:

d (ω ∧ψ) = (dω)∧ψ +(−1)p
ω ∧ (dψ) ,

iX (ω ∧ψ) = (iX ω)∧ψ +(−1)p
ω ∧ (iX ψ) ,

LX (ω ∧ψ) = (LX ω)∧ψ +ω ∧ (LX ψ) ,

and

d ◦d = 0,
iX ◦ iX = 0,

LX = d ◦ iX + iX ◦d,

F∗ ◦d = d ◦F∗,

LX ◦d = d ◦LX .

The third property LX = d ◦ iX + iX ◦ d is also known a H. Cartan’s formula (son of the
geometer E. Cartan). It is behind the coordinate free definition of the exterior derivative
we gave above. If we know how d is defined on p-forms, then we can define d on (p+1)-
forms by

iX0 ◦d = LX0 −d ◦ iX0 .



6.2. THE EXTERIOR DERIVATIVE 100

6.2.2. Div, Grad, and Curl. We use the language of forms to explain some basic
concepts from multivariable calculus in R3.

The gradient of a function f is a vector field

∂x f ∂x +∂y f ∂y +∂z f ∂z.

This formula depends on using Cartesian coordinates unlike the formula for the differential

d f = ∂x f dx+∂y f dy+∂z f dz.

The volume form is the 3-form vol = dx∧ dy∧ dz. We shall explain in section 6.4
why it is natural to integrate form on manifolds. The divergence of a vector field X =
P∂x +Q∂y +R∂y is usually defined as

div(X) = ∂xP+∂yQ+∂zR.

Again this depends crucially on Cartesian coordinates. Again we have an alternate defini-
tion via the formula

LX vol = div(X)vol.
To check the validity we calculate

LX vol = LX (dx∧dy∧dz)

= (LX dx)∧dy∧dz+dx∧LX dy∧dz+dx∧dy∧LX dz.

Here
LX dx = LP∂x dx+LQ∂y dx+LR∂zdx

and if Y = P̄∂x + Q̄∂y + R̄∂y, then

(LX dx)(Y ) = DX (dx(Y ))−dx [X ,Y ]

= DX P̄−dx((DX P̄−DY P)∂x + · · ·)
= DY P.

Thus LX dx = dP and

(LX dx)∧dy∧dz = (∂xP)dx∧dy∧dz.

Similar calculations for the other two terms then show that

LX vol = div(X)vol.

While this formula still depends on our particular formula for the volume form it can be
used for other coordinates as long as we change the volume form to those coordinates.

H. Cartan’s formula for the Lie derivative of forms gives us a different way of finding
the divergence

div(X)vol = LX vol
= diX vol+ iX dvol
= diX vol.

In particular, div(X)vol is always exact.
This formula suggests that we should study the correspondence that takes a vector

field X to the 2-form iX vol.

iX vol = iX vol
= Pi∂x vol+Qi∂yvol+Ri∂zvol

= Pdy∧dz−Qdx∧dz+Rdx∧dy

= Pdy∧dz+Qdz∧dx+Rdx∧dy
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If we compose the grad and div operations we get the Laplacian:

div(grad f ) = ∆ f

The curl operation is a little more involved

curlX = (∂yR−∂zQ)∂x +(∂zP−∂xR)∂y +(∂xQ−∂yP)∂z..

Again we can use a more invariant correspondence by checking that:

d (Pdx+Qdz+Rdz) = icurlX vol.

If we define ωX =Pdx+Qdz+Rdz or better yet by ωX (v)=X ·v, then all the formulas
are:

ωgrad f = d f ,

icurlX vol = dωX ,

div(X)vol = diX vol.

Using that d ◦d = 0 on all forms we obtain the classical vector analysis formulas

curl(grad f ) = 0,
div(curlX) = 0,

from

icurl(grad f )vol = dωgrad f = dd f ,

div(curlX)vol = dicurlX vol = ddωX .

6.3. Orientability

Recall from section 2.3.1 that two ordered bases of a finite dimensional real vector
space are said to represent the same orientation if the transition matrix from one to the
other is of positive determinant. This evidently defines an equivalence relation with exactly
two equivalence classes. A choice of such an equivalence class is called an orientation for
the vector space.

Given a smooth manifold each tangent space has two choices for an orientation. Thus
we obtain a two fold covering map OM →M, where the preimage of each p ∈M consists
of the two orientations for TpM. A connected manifold is said to be orientable if the orien-
tation covering is disconnected. For a disconnected manifold, we simply require that each
connected component be connected. A choice of sheet in the covering will correspond to
a choice of an orientation for each tangent space. Using

∧n T M we similar see that M is
orientable if and only if

∧n T M is trivial.
To see that OM really is a covering just note that if we have a chart

(
x1,x2, ...,xn

)
: U ⊂

M→ Rn, where U is connected, then we have two choices of orientations over U, namely,
the class determined by the framing (∂1,∂2, ...,∂n) and by the framing (−∂1,∂2, ...,∂n) .
Thus U is covered by two sets each diffeomorphic to U and parametrized by these two
different choices of orientation. Observe that this tells us that Rn is orientable and has a
canonical orientation given by the standard Cartesian coordinate frame (∂1,∂2, ...,∂n) .

Orientability of real vector bundles can be defined in a similar way and be related to∧k E and a corresponding orientation two-fold covering map OE →M.
Note that since simply connected manifolds only have trivial covering spaces they

must all be orientable. Thus Sn, n > 1 is always orientable.
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An other important observation is that the orientation covering OM is an orientable
manifold since it is locally the same as M and an orientation at each tangent space has been
picked for us.

THEOREM 6.3.1. The following conditions for a connected n-manifold M are equiva-
lent.

1. M is orientable.
2. Orientation is preserved moving along loops.
3. M admits an atlas where the Jacobians of all the transitions functions are positive.
4. M admits a nowhere vanishing n-form.

PROOF. 1⇔ 2 : The unique path lifting property for the covering OM → M tells us
that orientation is preserved along loops if and only if OM is disconnected.

1⇒ 3 : Pick an orientation. Take any atlas (Uα ,Fα) of M where Uα is connected. As
in our description of OM from above we see that either each Fα corresponds to the chosen
orientation, otherwise change the sign of the first component of Fα . In this way we get
an atlas where each chart corresponds to the chosen orientation. Then it is easily checked
that the transition functions Fα ◦F−1

β
have positive Jacobian as they preserve the canonical

orientation of Rn.
3⇒ 4 : Choose a locally finite partition of unity (λα) subordinate to an atlas (Uα ,Fα)

where the transition functions have positive Jacobians. On each Uα we have the nowhere
vanishing form ωα = dx1

α ∧ ...∧dxn
α . Now note that if we are in an overlap Uα ∩Uβ then

dx1
α ∧ ...∧dxn

α

(
∂

∂x1
β

, ...,
∂

∂xn
β

)
= det

(
dxi

α

(
∂

∂x j
β

))
= det

(
D
(

Fα ◦F−1
β

))
> 0.

Thus the globally defined form ω = ∑λα ωα is always nonnegative when evaluated on(
∂

∂x1
β

, ..., ∂

∂xn
β

)
. What is more, at least one term must be positive according to the definition

of partition of unity.
4⇒ 1 : Pick a nowhere vanishing n-form ω. Define the two sets O± according to

whether ω is positive or negative when evaluated on a basis. This yields two disjoint open
sets in OM which cover all of M. □

The generalization for vector bundles only needs to be slightly reformulated.

THEOREM 6.3.2. Let E →M be a rank k real vector bundle over M. The following
conditions for a connected n-manifold M are equivalent.

1. E is orientable.
2. Orientation is preserved moving along loops.
3. E admits local trivializations that define the same orientations on intersections of

their domains.
4.
∧k E and

∧k E∗ admit nowhere vanishing sections, i.e., both bundles are trivial.

With this result behind us we can try to determine which manifolds are orientable and
which are not. Conditions 3 and 4 are often good ways of establishing orientability. To
establish non-orientability is a little more tricky. However, if we suspect a manifold to be
non-orientable then 1 tells us that there must be a non-trivial 2-fold covering map π : M̂→
M, where M̂ is oriented and the two given orientations at points over p ∈M are mapped to
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different orientations in M via Dπ . A different way of recording this information is to note
that for a two fold covering π : M̂→ M there is only one nontrivial deck transformation
A : M̂→ M̂ with the properties: A(x) ̸= x, A ◦A = idM, and π ◦A = π . With this is mind
we can show

PROPOSITION 6.3.3. Let π : M̂→M be a non-trivial 2-fold covering and M̂ an ori-
ented manifold. In this case M is orientable if and only if A preserves the orientation on
M̂.

PROOF. First suppose A preserves the orientation of M̂. Then given a choice of orien-
tation e1, ...,en ∈ TxM̂ we can declare Dπ (e1) , ...,Dπ (en) ∈ Tπ(x)M to be an orientation at
π (x) . This is consistent as DA(e1) , ...,DA(en) ∈ TI(x)M̂ is mapped to Dπ (e1) , ...,Dπ (en)

as well (using π ◦A = π) and also represents the given orientation on M̂ since A was as-
sumed to preserve this orientation.

Suppose conversely that M is orientable and choose an orientation for M. Since we
assume that both M̂ and M are connected the projection π : M̂ → M, being nonsingular
everywhere, must always preserve or reverse the orientation. We can without loss of gen-
erality assume that the orientation is preserved. Then we just use π ◦A = π as in the first
part of the proof to see that A must preserve the orientation on M̂. □

We can now use these results to check some concrete manifolds for orientability.
We already know that Sn, n > 1 are orientable, but what about S1? One way of check-

ing that this space is orientable is to note that the tangent bundle is trivial and thus a uniform
choice of orientation is possible. This clearly generalizes to Lie groups and other paral-
lelizable manifolds. Another method is to find a nowhere vanishing form. This can be
done on all spheres Sn by considering the n-form

ω =
n+1

∑
i=1

(−1)i+1 xidx1∧·· ·∧ d̂xi∧·· ·∧dxn+1

on Rn+1. This form is a generalization of the 1-form xdy− ydx, which is ± the angular
form in the plane. Note that if X = xi∂i denotes the radial vector field, then we have (see
also the section below on the classical integral theorems)

iX
(
dx1∧·· ·∧dxn+1)= ω.

From this it is clear that if v2, ...,vn form a basis for a tangent space to the sphere, then

ω (v2, ...,vn) = dx1∧·· ·∧dxn+1 (X ,v2, ...,vn+1)

̸= 0.

Thus we have found a nonvanishing n-form on all spheres regardless of whether or not they
are parallelizable or simply connected. As another exercise people might want to use one
of the several coordinate atlases known for the spheres to show that they are orientable.

Recall that RPn has Sn as a natural double covering with the antipodal map as a natural
deck transformation. Now this deck transformation preserves the radial field X = xi∂i and
thus its restriction to Sn preserves or reverses orientation according to what it does on Rn+1.
On the ambient Euclidean space the map is linear and therefore preserves the orientation
iff its determinant is positive. This happens iff n+ 1 is even. Thus we see that RPn is
orientable iff n is odd.
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6.4. Integration of Forms

We shall assume that M is an oriented n-manifold. Thus, M comes with a covering
of charts ϕα =

(
x1

α , . . . ,x
n
α

)
: Uα ←→ B(0,1)⊂ Rn such that the transition functions ϕα ◦

ϕ
−1
β

preserve the usual orientation on Euclidean space, i.e., det
(

D
(

ϕα ◦ϕ
−1
β

))
> 0. In

addition, we shall also assume that a partition of unity with respect to this covering is given.
In other words, we have smooth functions φα : M→ [0,1] such that φα = 0 on M−Uα and
∑α φα = 1. For the last condition to make sense, it is obviously necessary that the covering
be also locally finite.

Given an n-form ω on M we wish to define the integral:∫
M

ω.

When M is not compact, it might be necessary to assume that the form has compact support,
i.e., it vanishes outside some compact subset of M.

In each chart we can write

ω = fα dx1
α ∧·· ·∧dxn

α .

Using the partition of unity, we then obtain

ω = ∑
α

φα ω

= ∑
α

φα fα dx1
α ∧·· ·∧dxn

α ,

where each of the forms φα fα dx1
α ∧ ·· · ∧ dxn

α has compact support in Uα . Since Uα is
identified with Ūα ⊂ Rn, we simply declare that∫

Uα

φα fα dx1
α ∧·· ·∧dxn

α =
∫

Ūα

φα fα dx1 · · ·dxn.

Here the right-hand side is simply the integral of the function φα fα viewed as a function
on Ūα . We define ∫

M
ω = ∑

α

∫
Uα

φα fα dx1
α ∧·· ·∧dxn

α

whenever this sum converges. Using the standard change of variables formula for integra-
tion on Euclidean space, we see that this definition is indeed independent of the choice of
coordinates and partition of unity.

With these definitions behind us, we can now state and prove Stokes’ theorem for
manifolds with boundary.

THEOREM 6.4.1. Let M be an oriented n-manifold. For any ω ∈Ωn−1 (M) with com-
pact support we have ∫

M
dω =

∫
∂M

ω.

PROOF. If we use the trick

dω = ∑
α

d (φα ω) ,

then we see that it suffices to prove the theorem in the case M = Ln and ω has compact
support. In that case we can write

ω =
n

∑
i=1

fidx1∧·· ·∧ d̂xi∧·· ·∧dxn,
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The differential of ω is now easily computed:

dω =
n

∑
i=1

(d fi)∧dx1∧·· ·∧ d̂xi∧·· ·∧dxn

=
n

∑
i=1

(∂i fi)dxi∧dx1∧·· ·∧ d̂xi∧·· ·∧dxn

=
n

∑
i=1

(−1)i−1
∂i fidx1∧·· ·∧dxi∧·· ·∧dxn.

Thus, ∫
Ln

dω =
∫

Ln

n

∑
i=1

(−1)i−1
∂i fidx1∧·· ·∧dxn

=
n

∑
i=1

(−1)i−1
∫

Ln
∂i fidx1 · · ·dxn

=
n

∑
i=1

(−1)i−1
∫ (∫

(∂i fi)dxi
)

dx1 · · · d̂xi · · ·dxn.

Since each fi has compact support the fundamental theorem of calculus tells us that∫
∞

−∞

(∂i fi)dxi = 0, for i > 1,∫ 0

−∞

(∂1 f1)dx1 = f1
(
0,x2, ...,xn) .

Thus ∫
Ln

dω =
∫

∂Ln
f1
(
0,x2, ...,xn)dx2∧·· ·∧dxn.

Since dx1 = 0 when restricted to ∂Ln it follows that

ω|∂Ln = f1dx2∧·· ·∧dxn.

This proves the theorem. □

We get a very nice corollary out of Stokes’ theorem.

THEOREM. If M is a compact connected manifold with nonempty boundary, then there
is no retract r : M→ ∂M.

PROOF. Note that if ∂M is not connected such a retract clearly can’t exists so we need
only worry about having connected boundary.

If M is oriented and ω is a volume form on ∂M, then we have

0 <
∫

∂M
ω

=
∫

∂M
r∗ω

=
∫

M
d (r∗ω)

=
∫

M
r∗dω

= 0.

If M is not orientable, then we lift the situation to the orientation cover and obtain a con-
tradiction there. □
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We shall briefly discuss how the classical integral theorems of Green, Gauss, and
Stokes follow from the general version of Stokes’ theorem presented above.

Green’s theorem in the plane is quite simple.

THEOREM 6.4.2. (Green’s Theorem) Let Ω⊂R2 be a domain with smooth boundary
∂Ω. If X = P∂x +Q∂y is a vector field defined on a region containing Ω then∫

Ω

(∂xQ−∂yP)dxdy =
∫

∂Ω

Pdx+Qdy.

PROOF. Note that the integral on the right-hand side is a line integral which can also
be interpreted as the integral of the 1-form ω = Pdx1 +Qdx2 on the 1-manifold ∂Ω. With
this in mind we just need to observe that dω = (∂1Q−∂2P)dx1∧dx2 in order to establish
the theorem. □

Gauss’ Theorem is quite a bit more complicated, but we did some of the ground work
when we defined the divergence above.

THEOREM 6.4.3. (The divergence theorem or Gauss’ theorem) Let X be a vector field
defined on a compact domain M ⊂ R3 with smooth boundary and N the outward pointing
unit normal field to ∂M. If vol∂M = iNvol denotes the area form on the boundary, then∫

M
(divX)vol =

∫
∂M

X ·Nvol∂M

PROOF. We know that
divXvol = diX vol.

So by Stokes’ theorem it suffices to show that

(iX vol) |∂M = X ·Nvol∂M.

The orientation on Tp∂M is so that v2,v3 is a positively oriented basis for Tp∂M iff N,v2,v3
is a positively oriented basis for TpM. With such a choice of basis we have

iX vol(v2,v3) = vol(X ,v2,v3)

= vol((X ·N)N,v2,v3)

= X ·Nvol(N,v2,v3)

= (X ·N) iNvol(v2,v3)

= X ·Nvol∂M (v2,v3)

where we used that X− (X ·N)X , the component of X in Tp∂M, is a linear combination of
v2,v3 and therefore doesn’t contribute to the form. □

The divergence theorem can easily be generalized to domains in Rn and even Rie-
mannian manifolds with boundary. Stokes’ Theorem is specific to 3 dimensions. Classi-
cally it holds for an oriented surface S ⊂ R3 with smooth boundary but can be formulated
for oriented surfaces in oriented Riemannian 3-manifolds.

THEOREM 6.4.4. (Stokes’ theorem) Let S ⊂ R3 be an oriented compact surface with
boundary ∂S. If X is a vector field defined on a region containing S and N is the unit
normal field to S, then ∫

S
(curlX ·N) iNvol =

∫
∂S

ωX .
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PROOF. Recall that ωX is the 1-form defined by

ωX (v) = X · v.
This form is related to curlX by

dωX = icurlX vol.
So Stokes’ Theorem tells us that ∫

∂S
ωX =

∫
S

icurlX vol.

The integral on the right-hand side can now be understood in a manner completely anal-
ogous to our discussion of iX vol∂M in the divergence theorem. We note that N is chosen
perpendicular to TpS in such a way that N,v2,v3 ∈ TpM is positively oriented iff v2,v3 ∈ TpS
is positively oriented. Thus we have again that

volS = iNvol

and consequently
icurlX vol = curlX ·Nvol∂M.

□

6.5. Exercises

(1) Let f : Rn→ R be smooth and define ∇ f = grad f by d f (v) = v ·∇ f .
(a) Show that v ·w =

(
∑δ i jdxi⊗dx j

)
(v,w).

(b) Show that ∇ f = ∑δ i j∂i f ∂ j.
(c) Show that

L∇ f ∑δ
i jdxi⊗dx j = ∑∂

2
kl f dxk⊗dxl .

(2) Show that if ω = f · (−ydx+ xdy−dz), where f : R3→ (0,∞), then dω ̸= 0 on
all of R3.

(3) Show that the following relations hold when evaluated on forms:

iX ◦ iX = 0,
LX = d ◦ iX + iX ◦d,

F∗ ◦d = d ◦F∗,

LX ◦d = d ◦LX .

(4) Let

r =
√

∑(xi)2 .

(a) Show that the gradient is the unit radial field:

∇r =
∑xi∂i

r
.

(b) Show that on R2−{0}
dx∧dy = rdr∧dθ ,

where θ is any unit speed parametrization of part of S1 (1).
(c) Show that on Rn−{0}

vol := dx1∧·· ·∧dxn = rdr∧volSn−1(1),

where volSn−1(1) = (i∇rvol) |Sn−1(1).
(5) Let D be a rank k distribution on Mm.
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(a) Show that locally there is a trivialization of the tangent bundle X1, ...,Xm
such that X1, ...,Xk span D.

(b) Let ω1, ...,ωm be the 1-forms dual to X1, ...,Xm, i.e., ω i (X j) = δ i
j. Show

that ω i vanishes on D only when i = k + 1, ...,m and conclude that D =
∩m

i=k+1 kerω i.
(c) Let A = {ω ∈Ω(M) | ω|D = 0}. Show that A is an ideal that is locally

generated by ωk+1, ...,ωm, i.e. every element is locally of the form ∑
n
i=k+1 φiω

i,
φi ∈Ω∗ (U).

(d) Show that D is involutive if and only if there are 1-forms φ
j

i such that for
j = k+1, ...,n we have

dω
j =

n

∑
i=k+1

α
j

i ∧ω
i.

(e) Show more abstractly that D is involutive if and only if the exterior deriva-
tive preserves A , i.e., d (A )⊂A .

(6) Let ω ∈Ω1 (M) with dω = 0. Show that on a neighborhood of a point where ω

doesn’t vanish we have ω = d f . (A similar statement is true for all forms but the
proof a bit more involved.) Hint: Use the local version of the Frobenius theorem.

(7) Let ω ∈Ω1
(
M3
)

be a nowhere vanishing 1-form and D = kerω the correspond-
ing distribution of rank 2.
(a) Show that D is involutive if and only if ω ∧dω = 0.
(b) Show that D is involutive if and only if locally ω = gd f for functions f and

g > 0.
(8) Show that the Klein bottle and Möbius band are nonorientable by finding suitable

double covers that are oriented.
(9) Show that if

ω =
1
n

n

∑
i=1

(−1)i−1 xidx1∧·· ·∧ d̂xi∧·· ·∧dxn,

then dω = dx1∧·· ·∧dxn and use this to show that
1
n

voln−1Sn−1 (1) = volB(0,1) ,

where B̄(0,1) is the closed unit ball and Sn−1 (1) = ∂B(0,1).
(10) On Rn−{0} consider the (n−1)-form

ω = r−n
n

∑
i=1

(−1)i−1 xidx1∧·· ·∧ d̂xi∧·· ·∧dxn,

where r2 = ∑
n
i=1
(
xi
)2.

(a) Show that dω = 0.
(b) Show that ∫

Sn−1(ε)
ω = nvolB̄(0,1) ,

where B̄(0,1) is the closed unit ball and Sn−1 (ε) the sphere of radius ε

centered at the origin.



CHAPTER 7

Basic Cohomology Theory

7.1. De Rham Cohomology

Throughout we let M be an n-manifold. Using that d ◦ d = 0, we see that the exact
forms

Bp (M) = d
(
Ω

p−1 (M)
)

are a subset of the closed forms

Zp (M) = {ω ∈Ω
p (M) | dω = 0} .

The de Rham cohomology is defined as the quotient space:

H p (M) =
Zp (M)

Bp (M)
.

Given a closed form ψ, we let [ψ] denote the corresponding cohomology class.
The first simple property comes from the fact that any function with zero differential

must be locally constant. On a connected manifold we consequently have

H0 (M) = R.
Given a smooth map F : M→ N the pull-back operation on forms induces a map in

cohomology:

H p (N) → H p (M) ,

F∗ ([ψ]) = [F∗ψ] .

This definition is independent of the choice of ψ, since F∗ commutes with d.
The two key results that are needed for a deeper understanding of de Rham cohomol-

ogy are the Mayer-Vietoris sequence and homotopy invariance of the pull-back map.

LEMMA 7.1.1. (The Mayer-Vietoris Sequence) If M = A∪B for open sets A,B⊂M,
then there is a long exact sequence

· · · → H p (M)→ H p (A)⊕H p (B)→ H p (A∩B)→ H p+1 (M)→ ·· · .

PROOF. We start by defining a short exact sequence

0→Ω
p (M)→Ω

p (A)⊕Ω
p (B)→Ω

p (A∩B)→ 0.

The map Ωp (M)→ Ωp (A)⊕Ωp (B) is simply restriction ω 7→ (ω|A,ω|B) . The second
is given by (ω,ψ) 7→ (ω|A∩B−ψ|A∩B) . With these definitions it is clear that Ωp (M)→
Ωp (A)⊕Ωp (B) is injective and that the sequence is exact at Ωp (A)⊕Ωp (B) . It is a bit
less obvious why Ωp (A)⊕Ωp (B)→Ωp (A∩B) is surjective. To see this select a partition
of unity λA,λB with respect to the covering A,B. Given ω ∈ Ωp (A∩B) we see that λAω

defines a form on B and λBω defines a form on A. Consequently, (λBω,−λAω) 7→ ω.

109
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These maps induce maps in cohomology

H p (M)→ H p (A)⊕H p (B)→ H p (A∩B)

such that this sequence is exact. The connecting homomorphisms

δ : H p (A∩B)→ H p+1 (M)

are constructed using the diagram

0 → Ωp+1 (M) → Ωp+1 (A)⊕Ωp+1 (B) → Ωp+1 (A∩B) → 0
↑ d ↑ d ↑ d

0 → Ωp (M) → Ωp (A)⊕Ωp (B) → Ωp (A∩B) → 0.

If we take a form ω ∈ Ωp (A∩B) , then (λBω,−λAω) ∈ Ωp (A)⊕Ωp (B) is mapped onto
ω. If dω = 0, then

d (λBω,−λAω) = (dλB∧ω,−dλA∧ω)

∈ Ω
p+1 (A)⊕Ω

p+1 (B)

vanishes when mapped to Ωp+1 (A∩B) . So we obtain a well-defined form

δω =

{
dλB∧ω on A
−dλA∧ω on B

∈ Ω
p+1 (M) .

It is easy to see that this defines a map in cohomology that makes the Mayer-Vietoris
sequence exact.

The construction here is fairly concrete, but it is a very general homological construc-
tion. □

The first part of the Mayer-Vietoris sequence

0→ H0 (M)→ H0 (A)⊕H0 (B)→ H0 (A∩B)→ H1 (M)

is particularly simple since we know what the zero dimensional cohomology is. In case
A∩B is connected it must be a short exact sequence

0→ H0 (M)→ H0 (A)⊕H0 (B)→ H0 (A∩B)→ 0

so the Mayer-Vietoris sequence for higher dimensional cohomology starts with

0→ H1 (M)→ H1 (A)⊕H1 (B)→ ·· ·
To study what happens when we have homotopic maps between manifolds we have to

figure out how forms on the product [0,1]×M relate to forms on M. Since M potentially
has boundary we will instead investigate R×M.

On the product R×M we have the vector field ∂t tangent to the first factor and the
corresponding one-form dt. In local coordinates on R×M forms can be written

ω = aIdxI +bJdt ∧dxJ

if we use summation convention and multi index notation

aI = ai···ik ,

dxI = dxi1 ∧·· ·∧dxik

Given a < b we can integrate out the dt factor as follows

I b
a (ω) =

∫ b

a
ω =

∫ b

a
bJdt ∧dxJ =

(∫ b

a
bJdt

)
dxJ
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Thus giving a map
Ω

k+1 (R×M)→Ω
k (M)

To see that this is well-defined note that it can be expressed as

I b
a (ω) =

∫ 1

0
dt ∧ i∂t ω

since
i∂t (ω) = bJdxJ .

LEMMA 7.1.2. Let jt : M→ R×M be the inclusion map jt (x) = (t,x) , then

I b
a (dω)+dI b

a (ω) = j∗b (ω)− j∗a (ω) ,

where a < b.

PROOF. We can assume without loss of generality that a = 0 and b = 1 and define
I = I 1

0 . The key is to prove that

I (dω)+dI (ω) =
∫ 1

0
dt ∧L∂t ω

Given this it follows that the right hand side is∫ 1

0
dt ∧L∂t ω =

∫ 1

0
dt ∧L∂t

(
aIdxI +bJdt ∧dxJ)

=
∫ 1

0
dt ∧

(
∂taIdxI +∂tbJdt ∧dxJ)

=
∫ 1

0
dt ∧ (∂taI)dxI

=

(∫ 1

0
dt∂taI

)
dxI

= (aI (1,x)−aI (0,x))dxI

= j∗1 (ω)− j∗0 (ω)

The first formula follows by noting that

I (dω)+dI (ω) =
∫ 1

0
dt ∧ i∂t dω +d

(∫ 1

0
dt ∧ i∂t ω

)
=

∫ 1

0
dt ∧ i∂t dω +

∫ 1

0
dt ∧di∂t ω

=
∫ 1

0
dt ∧

(
i∂t dω +di∂t ω

)
=

∫ 1

0
dt ∧

(
L∂t ω

)
The one tricky move here is the identity

d
(∫ 1

0
dt ∧ i∂t ω

)
=
∫ 1

0
dt ∧di∂t ω

On the left hand side it is clear what d does, but on the right hand side we are computing
d of a form on the product. However, as we are wedging with dt this does not become an
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issue. Specifically, if d is exterior differentiation on R×M and dx exterior differentiation
on M, then

dx

(∫ 1

0
dt ∧ i∂t ω

)
= dx

(∫ 1

0
bJdt

)
∧dxJ

= ∑
i

∂
∫ 1

0 bJdt
∂xi ∧dxi∧dxJ

= ∑
i

∫ 1

0

∂bJ

∂xi dt ∧dxi∧dxJ

=

(∫ 1

0
dt ∧

(
∑

i

∂bJ

∂xi dxi

))
∧dxJ

=

(∫ 1

0
dt ∧ (dxbJ)

)
∧dxJ

=

(∫ 1

0
dt ∧ (dbJ−∂tbJdt)

)
∧dxJ

=

(∫ 1

0
dt ∧dbJ

)
∧dxJ

=
∫ 1

0
dt ∧di∂t ω

□

We can now establish homotopy invariance.

PROPOSITION 7.1.3. If F0,F1 : M→ N are smoothly homotopic, then they induce the
same maps on de Rham cohomology.

PROOF. The formula

I (dω)+dI (ω) = j∗1 (ω)− j∗0 (ω)

shows that j∗1 (ω)− j∗0 (ω) is exact provided dω = 0. In particular, j0 and j1 induce the
same maps in cohomology:

j∗0 = j∗1 : H∗ (R×M)→ H∗ (M) .

Assuming we have a homotopy H : [0,1]×M→ N, such that F0 = H ◦ j0 and F1 =
H ◦ j1 it follows that

F∗1 (ω)−F∗0 (ω) = (H ◦ j1)
∗ (ω)− (H ◦ j0)

∗ (ω) = 0.

Note that by using a smooth function λ :R→ [0,1] with λ (t) = 0 for t ≤ 0 and λ (t) = 1 for
t ≥ 1, we can always obtain a smooth map H (λ (t) ,x) : R×M→ N from a homotopy. □

COROLLARY 7.1.4. If two manifolds, possibly of different dimension, are homotopy
equivalent, then they have the same de Rham cohomology.

PROOF. This follows from having maps F : M→ N and G : N →M such that F ◦G
and G◦F are homotopic to the identity maps. □

LEMMA 7.1.5. (The Poincaré Lemma) The cohomology of a contractible manifold M
is

H0 (M) = R,
H p (M) = {0} for p > 0.
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In particular, convex sets in Rn have trivial de Rham cohomology.

PROOF. Being contractible is the same as being homotopy equivalent to a point. □

While we can’t definitely relate the cohomology of a covering space to its base there
is a simple relationship.

LEMMA 7.1.6. Let F : M→ N be a finite covering map, then

F∗ : H p (N)→ H p (M)

is an injection.

PROOF. The trick lies in finding a so called transgression map τ : Ωp (M)→ Ωp (N)
that commutes with exterior differentiation, d ◦ τ = τ ◦ d and such that τ ◦F∗ = idΩp(N).
This will induce a map τ∗ : H∗ (M)→ H∗ (N) such that τ∗ ◦F∗ = idH∗(N), which shows in
particular that F∗ is an injection.

While it’d be natural to try to average forms on M to make them descend to N, this
won’t work unless we have a finite group that acts transitively on the fibers. Instead we do
the averaging in N. If ω ∈ Ωp (M) and y ∈ N is covered by the points xi ∈M, i = 1, ...,k,
then we can push each of the linear forms ω|xi on TxiM via DF |xi to a linear p-form on TyN
and then define

τ (ω) |y =
1
k ∑

(
(DF |xi)

−1
)∗

ω|xi .

This yields a smooth form as each point in N is evenly covered by k diffeomorphic sets.
The composition property is immediate and the commutation with d follows from the fact
that d commutes with pull backs of maps, in this case the locally defined inverse of F . □

7.2. Examples of Cohomology Groups

We calculate the cohomology of spheres and projective spaces in two ways. First the
traditional way using Mayer-Vietoris and then by a completely different approach using
the large group of symmetries on these spaces.

7.2.1. Spheres. For Sn we use that

Sn = (Sn−{p})∪ (Sn−{−p}) ,
Sn−{±p} ≃ Rn,

(Sn−{p})∩ (Sn−{−p}) ≃ Rn−{0} .

Since Rn−{0} deformation retracts onto Sn−1 this allows us to compute the cohomology
of Sn by induction using the Mayer-Vietoris sequence. We start with S1, which is a bit
different as the intersection has two components. The Mayer-Vietoris sequence starting
with p = 0 looks like

0→ R→ R⊕R→ R⊕R→ H1 (S1)→ 0.

Showing that H1
(
S1
)
≃ R. For n ≥ 2 the intersection is connected so the connecting ho-

momorphism
H p−1 (Sn−1)→ H p (Sn)

must be an isomorphism for p≥ 1. Thus

H p (Sn) =

{
0, p ̸= 0,n,
R, p = 0,n.



7.2. EXAMPLES OF COHOMOLOGY GROUPS 114

7.2.2. Projective Spaces. For Pn we use the decomposition

Pn =
(
Pn−Pn−1)∪ (Pn− p) ,

where

p = [1 : 0 : · · · : 0] ,

Pn−1 = P
(

p⊥
)
=
{[

0 : z1 : · · · : zn] | (z1, ...,zn) ∈ Fn−{0}
}
,

and consequently

Pn− p =
{[

z : z1 : · · · : zn] | (z1, ...,zn) ∈ Fn−{0} and z ∈ F
}
≃ Pn−1,

Pn−Pn−1 =
{[

1 : z1 : · · · : zn] | (z1, ...,zn) ∈ Fn}≃ Fn,(
Pn−Pn−1)∩ (Pn− p) =

{[
1 : z1 : · · · : zn] | (z1, ...,zn) ∈ Fn−{0}

}
≃ Fn−{0} .

We have already identified P1 so we don’t need to worry about having a disconnected
intersection when F= R and n = 1. Using that Fn−{0} deformation retracts to the unit
sphere S of dimension dimRFn−1 we see that the Mayer-Vietoris sequence reduces to

0 → H1 (Pn)→ H1 (Pn−1)→ H1 (S)→ ···
· · · → H p−1 (S)→ H p (Pn)→ H p (Pn−1)→ H p (S)→ ···

for p ≥ 2. To get more information we need to specify the scalars and in the real case
even distinguish between even and odd n. First assume that F = C. Then S = S2n−1 and
CP1 ≃ S2. A simple induction then shows that

H p (CPn) =

{
0, p = 1,3, ...,2n−1,
R, p = 0,2,4, ...,2n. .

When F = R, we have S = Sn−1 and RP1 ≃ S1. This shows that H p (RPn) = 0 when
p = 1, ...,n−2. The remaining cases have to be extracted from the last part of the sequence

0→ Hn−1 (RPn)→ Hn−1 (RPn−1)→ Hn−1 (Sn−1)→ Hn (RPn)→ 0

where we know that

Hn−1 (Sn−1)= R.

This shows that Hn (RPn) is either 0 or R. Next we observe that the natural map

Hk (RPn)→ Hk (Sn)

is an injection by lemma 7.1.6. This means that we obtain the simpler exact sequence

0→ Hn−1 (RPn−1)→ Hn−1 (Sn−1)→ Hn (RPn)→ 0

From this we conclude that Hn (RPn)= 0 iff Hn−1
(
RPn−1)=R. Given that H1

(
RP1)=R

we then obtain the cohomology groups:

H p (RP2n)={ 0, p≥ 1,
R, p = 0,

H p (RP2n+1)={ 0, 2n≥ p≥ 1,
R, p = 0,2n+1.
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7.2.3. Invariant Cohomology. There is a very powerful general principle that allows
us to calculate the cohomology of all of the above spaces and more using only homotopy
invariance.

The general set-up is a manifold M with an action by a group G of diffeomorphisms.
The action of each group element g ∈ G will be denoted by

Ag : M → M

x 7→ Ag (x) = gx.

The G-invariant p-forms are defined by

Ω
p
G (M) =

{
ω ∈Ω

p (M) | A∗gω = ω for all g ∈ G
}
.

As A∗g ◦d = d ◦A∗g we obtain a complex

Ω
0
G (M)

d→Ω
1
G (M)

d→Ω
2
G (M)

d→ ···

and a corresponding G-invariant cohomology

H p
G (M) =

ker
(

Ω
p
G (M)

d→Ω
p+1
G (M)

)
im
(

Ω
p−1
G (M)

d→Ω
p
G (M)

) .
The inclusion

Ω
p
G (M)→Ω

p (M)

induces a natural map
H p

G (M)→ H p (M)

which need not be an isomorphism or even an injection.

EXAMPLE 7.2.1. On R consider the action that translates by integers Z ⊂ R. The
invariant 1-forms are simply the forms f (x)dx where f is a function with period 1. For
such a form to be exact with respect to invariant forms requires that f dx = dh for some
function h with period 1. This however implies that∫ 1

0
f dx = h(1)−h(0) = 0.

So if f ≡ 1, then [dx] ∈ H1
Z (R) creates a nontrivial cohomology class that is trivial in

H1 (R). In this case we have in fact that

H∗Z (R)≃ H∗ (R/Z) = H∗
(
S1) .

THEOREM 7.2.2. If G is a compact Lie group, in particular a finite group, then
H p

G (M)→ H p (M) is an injection. Moreover, if in addition G ⊂ G∗, where G∗ is a con-
nected Lie group that also acts on M, then H p

G (M)→ H p (M) is an isomorphism.

PROOF. Select a left invariant volume form volG on G. By compactness we can as-
sume for simplicity that

∫
G volG = 1. On a finite group integration is merely averaging over

the elements in the group.
Integration of vector valued functions on G allows us to create a left inverse to the

inclusion Ω
p
G (M)→Ωp (M). For ω ∈Ωp (M) fix a point x ∈M and average

(
A∗gω

)
|x over

g ∈ G:

ω̄|x =
∫

G

(
A∗gω

)
|xvolG.
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When ω ∈Ω
p
G (M) it follows that

ω̄|x =
∫

G

(
A∗gω

)
|xvolG =

∫
G

ω|xvolG = ω|x
∫

G
volG = ω|x.

Thus averaging really is a left inverse. To check that the averaged form is invariant we have
to use that the volume form is left invariant:

A∗hω̄ =
∫

G
A∗hA∗gωvolG

=
∫

G
A∗hgωl∗hvolG

=
∫

G
A∗lhgωl∗hvolG

=
∫

G

(
A∗gω

)
volG.

Finally note that averaging also commutes with the exterior derivative on forms

dω̄ =
∫

G
dA∗gωvolG =

∫
G

A∗gdωvolG = ¯dω.

Thus averaging also induces a left inverse in cohomology. In particular, the induced map
H p

G (M)→ H p (M) is an injection.
When the elements g∈G⊂G∗ are part of a larger connected group, a path from g to e

creates a homotopy from Ag to Ae = idM . Thus the cohomology classes satisfy
[
A∗gω

]
= [ω]

for all g ∈ G. This shows that [ω̄] = [ω] and in particular that H p
G (M)→ H p (M) is an

isomorphism. □

EXAMPLE 7.2.3. On S2n the antipodal map A is orientation reversing. Since A2 = idS2n

we can average over the group {idS2n ,A}. For any volume form ω ∈ Ω2n
(
S2n
)

we have∫
S2n A∗ω =−

∫
S2n ω . Thus averaging volume forms simply results in a form that integrates

to zero. As we shall see in section 7.5.1 this implies that the cohomology class of an
averaged volume form vanishes.

In order to calculate the cohomology of some basic examples it is convenient to reduce
the task. We will consider manifolds M with a transitive action of a compact connected Lie
group G, i.e., for each x,y ∈M there exists g ∈G such that Agx = gx = y. The isotropy at a
fixed point x ∈M is the closed subgroup H =

{
g ∈ G | Agx = gx = x

}
. Since each Ah fixes

x, when h ∈H, the differential DAh|x acts on TxM. Thus H induces a linear action on TxM.
Since the action is transitive any G-invariant form ω is completely determined by its value
at x. The linear form ω|x on TxM is in addition invariant under the action of H on TxM:

ω|x (v1, ...,vp) = ω|x (DAh|x (v1) , ...,DAh|x (vp))

for all v1, ...,vp ∈ TxM and h ∈ H. We claim that the converse is also true, i.e., any linear
form ωx on TxM that is invariant under the action of H extends to a G-invariant form on M.
Note that if y = gx = g′x, then g′ = gh, where h = g−1g′ ∈ H. We define

ω|y (DAg|x (v1) , ...,DAg|x (vp)) = ωx (v1, ...,vp)
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or more succinctly ω|y ◦DAg|x = ωx or equivalently ω|y = ωx ◦DAg−1 |y. This is well-
defined as

ω|y ◦DAg|x = ωx

= ωx ◦DAh|x
= ω|y ◦DAg|x ◦DAh|x
= ω|y ◦DAgh|x.

It is also easy to see that it is a G-invariant form.

EXAMPLE 7.2.4. We can use the action of SO(n+1) on Sn to calculate the cohomol-
ogy of spheres. The action is by orthogonal transformations of unit vectors in Rn+1 that
transform the standard basis e0, ...,en to the other positively oriented orthonormal bases of
Rn+1. In particular, the action is transitive on Sn. We fix x = e0 as the first basis vector in
the ambient Euclidean space. The elements of SO(n+1) that fix x can be identified with
SO(n). So we consider the action of SO(n) on TxSn = x⊥ = span{e1, ...,en}.

This reduces the problem to checking which constant coefficient p-forms

ω = ∑
i1<···<ip

ωi1···ipdxi1 ∧·· ·∧dxip , ωi1···ip ∈ R

on Rn are invariant under SO(n). Clearly constant functions and the standard volume form
have this property. So we have to consider the case where 0 < p < n. Evaluating on
ei1 , ...,eip we can select j ̸= i1, ..., ip and an element g ∈ SO(n) such that g(ei1) = −ei1 ,
g(e j) =−e j, g(ei) = ei, for i ̸= i1, j. This shows that

ωi1···ip = ω
(
ei1 , ...,eip

)
= ω

(
−ei1 , ...,eip

)
=−ωi1···ip .

Thus all linear p-forms that are SO(n) invariant vanish.
We conclude that Ω0

SO(n+1) (S
n)=R, Ω

p
SO(n+1) (S

n)= 0, for 0< p< n, and Ωn
SO(n+1) (S

n)=

R with a generator

∑
i
(−1)i dx0∧·· ·∧ d̂xi∧·· ·∧dxn.

This generator restricts to the standard volume form dx1∧·· ·∧dxn on TxSn. The invariant
0-forms are clearly all closed. This shows that the invariant n-forms are not exact when
n = 1. For n > 1 the n-forms can’t be exact as there are no nontrivial invariant (n−1)-
forms. This calculates the cohomology of Sn and agrees with the previous calculations:

H∗ (Sn)≃ H∗SO(n+1) (S
n) = Ω

∗
SO(n+1) (S

n) .

EXAMPLE 7.2.5. The previous example can be used to calculate the cohomology of
RPn also using the action of SO(n+1). We will think of points x ∈RPn as antipodal pairs
{±y} ∈ Sn. In this way TxRPn also becomes equivalence classes in T±ySn = {±y}⊥ where
(y,v) ∈ Sn×{y}⊥ ⊂ Sn×Rn+1 is identified with (−y,−v) ∈ Sn×{−y}⊥. The action of
g ∈ SO(n+1) on Sn becomes an action on T Sn:

g · (y,v) = (Agy,DAgv) = (gy,gv) .

As −g · (y,v) = g · (−y,−v) this also tells us how g acts on TRPn:

g · (±y,±v) = (±gy,±gv) .

As for Sn it follows that SO(n) fixes the point x = {±e0}, however, the full isotropy con-
sists of S (O(1)×O(n)) which has two components. The other component consists of the
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orthogonal transformations that send e0 to −e0 and act on span{e1, ...,en} with determi-
nant −1.

We thus immediately obtain: Ω0
SO(n+1) (RP

n) =R, Ω
p
SO(n+1) (RP

n) = 0, for 0 < p < n.
For Ωn

SO(n+1) (RP
n) the answer depends on the parity of n. In case n = 2k+ 1 is odd, the

antipodal map−I ∈ SO(2k+2) acts trivially on RP2k+1. The isotropy of x thus consists of
elements g ∈ SO(2k+1) and −Ig ∈ S (O(1)×O(2k+1)) in the other component. As the
actions of g and −Ig are the same on RP2k+1 we only need to consider the linear action of
SO(n) on Rn in order to understand the linear action of the isotropy on TxRP2k+1. As for
the sphere we conclude that Ω

2k+1
SO(2k+2)

(
RP2k+1

)
= R. When n = 2k is even the antipodal

map is not an element of SO(2k+1) and thus the action on RP2k is effective, i.e., no
element fixes all points. This means that the isotropy S (O(1)×O(2k)) is also effective
and in particular contains an element that is orientation reversing on TxRP2k, e.g., the
element that maps e0 to −e0, e1 to −e1, and fixes all other basis vectors (on RP2k+1 this
map preserves the orientation!). Since the linear volume form on Rn is not preserved by
orientation reversing orthogonal transformations we conclude that Ω2k

SO(2k+1)

(
RP2k

)
= 0.

All in all we have shown that

H p (RPn)≃ H p
SO(n+1) (RP

n) = Ω
p
SO(n+1) (RP

n) .

EXAMPLE 7.2.6. On complex projective space Pn we can use the transitive action of
U (n+1) that maps complex lines to complex lines in Cn+1. We use the standard com-
plex basis c0, ...,cn which gives a real basis e0, f0, ....,en, fn, where ci = ei +

√
−1 fi. The

isotropy at x = span{c0}= [1 : 0 : · · · : 0] is U (1)×U (n), where U (1) acts trivially as it is
simply multiplication by complex scalars on span{c0} and U (n) acts on the tangent space
in the way U (n) acts on Cn = span{c1, ...cn}.

We can then again simply check which constant coefficient forms on Cn are invariant
under U (n). Consider the unitary transformations gi ∈U (n) such that gi (ci) = −ci and
gi (c j) = c j for j ̸= i. Using these transformations it follows that a (p+q)-form, 0 <
p+ q < 2n, vanishes if it is evaluated on ei1 , ...,eip , f j1 , ..., f jq where one of eik (resp. f jl )
in the collection does not have its partner fik (resp. e jl ) in the collection. This means that
we can restrict attention to the cases where p = q and i1 = j1, ..., ip = jp. However, in all
of these cases the value ω

(
ei1 , ...,eip , fi1 , ..., fip

)
must be the same as permutations of the

complex basis vectors c1, ...,cn are also unitary transformations.
This shows that Ω

2p+1
U(n+1) (P

n) = 0 and Ω
2p
U(n+1) (P

n) = R with a generator that when
restricted to TxPn is given by(

n

∑
i=1

dxi∧dyi

)p

=

(
n
p

)
∑

i1<···<ip

dxi1 ∧dyi1 ∧·· ·∧dxip ∧dyip .

Since there are no invariant forms of odd degree all of the invariant forms of even degree
are closed but not exact. This calculates the cohomology of complex projective space
and in addition gives us generators [ω p] ∈ H2p that can be calculated from any generator
[ω] ∈ H2:

H∗ (Pn)≃ H∗U(n+1) (P
n) = Ω

∗
U(n+1) (P

n) .

EXAMPLE 7.2.7. The final example will be the torus T n = S1×·· ·×S1 ⊂ Cn which
acts on itself via multiplication of unit complex numbers in each factor. This action is also
transitive but has trivial isotropy. The 1-forms dθ i, i = 1, ...,n that are the standard volume
forms on the factors are invariant under this action as are all of their wedge products. This
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shows that

Ω
p
T n (T n) = span

{
dθ

i1 ∧·· ·∧dθ
ip | 1≤ i1 < · · ·< ip ≤ n

}
.

As these forms are all closed we have calculated the cohomology of T n to be

H∗ (T n)≃ H∗T n (T n) = Ω
∗
T n (T n) .

Based on this last example it is tempting to think that the cohomology of a connected
compact Lie group is equally simple. It is true that we can select a basis of left invariant 1-
forms and their wedge products to obtain similar spaces for Ω

p
G (G). However, these forms

are not necessarily closed. For example, if we evaluate the differential of a left invariant
1-form on left invariant fields we obtain

dω (X ,Y ) = DX ω (Y )−DY ω (X)−ω ([X ,Y ]) =−ω ([X ,Y ]) .

Thus the differential is dictated by the Lie algebra, which in case of the torus was Abelian.
Nevertheless with a good choice of basis for the Lie algebra it does become possible to
calculate the cohomology.

7.3. Axiomatic Cohomology

In this section we specify the most basic properties of cohomology theories for mani-
folds.

In section 7.1 we introduced the functor

M 7→ H∗ (M) = H0 (M)⊕H1 (M)⊕·· ·⊕Hn (M)

that maps an n-manifold to a graded vector space. The morphisms are the smooth maps
between manifolds and the functor is contravariant as F : M → N induces a pull-back
F∗ : H∗ (N)→ H∗ (M). Pull-back maps are natural in the sense that (G◦F)∗ = F∗ ◦G∗.
We established the basic, but not elementary, properties:

• (Point Axiom)
H∗ ({p}) = H0 ({p}) = R.

• (Mayer-Vietoris) If A,B ⊂M are open subsets, then we obtain a connecting ho-
momorphism δ : H∗ (A∩B)→ H∗+1 (A∪B) that yields a long exact sequence

· · · → H∗ (A∪B)→ H∗ (A)⊕H∗ (B)→ H∗ (A∩B)→ H∗+1 (A∪B)→ ·· · .
• (Homotopy Invariance) The projection π : R×M→M induces an isomorphism

H∗ (M)→ H∗ (R×M) .

The inclusions jt : M→R×M given by jt (x) = (t,x) all induce inverses to π in
cohomology.

The last statement clearly follows from homotopy invariance of de Rham cohomology
(proposition 7.1.3).

The above properties hold for all cohomology theories on topological spaces and es-
sentially characterize them. On manifolds, or even just for all (orientable) n-manifolds, we
can simplify these axioms to better align with theorem 1.3.8. This will also guide us in
how to establish several isomorphism results.

First we narrow down the category. The objects can be all manifolds, all n-manifolds,
or all oriented n-manifolds. The morphisms are the inclusion maps A⊂M of open sets in
manifolds. A cohomology functor on manifolds and inclusions

M 7→H ∗ (M) = H 0 (M)⊕H 1 (M)⊕·· ·⊕H n (M)
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is now only natural under inclusions:

j∗A⊂B ◦ j∗B⊂M = ( jB⊂M ◦ jA⊂B)
∗ = ( jA⊂M)∗ .

We impose the additional requirement that the cohomologies of diffeomorphic manifolds
are isomorphic. The modified axioms for (oriented) n-manifolds now become:

(1) (Poincaré Lemma)

H ∗ (Rn) = H 0 (Rn) = R.
(2) (Mayer-Vietoris) If A,B ⊂M are open subsets, then we obtain a connecting ho-

momorphism δ : H ∗ (A∩B)→H ∗+1 (A∪B) that yields a long exact sequence

· · · →H ∗ (A∪B)→H ∗ (A)⊕H ∗ (B)→H ∗ (A∩B)→H ∗+1 (A∪B)→ ·· · .
(3) (Countable Disjointness) If Aα ⊂M form a countable collection of pairwise dis-

joint open subsets, then

H ∗

(⋃
α

Aα

)
=×αH ∗ (Aα) .

We’ve already established all but the last property for de Rham cohomology. For last last
property just note that any form on the union naturally restricts to forms on each of the
open sets. Moreover, the form is exact iff it is exact on each set Aα .

The last axiom is really a countable version of Mayer-Vietoris for disjoint sets and is
necessary for when we wish to prove results for general noncompact manifolds. Note that
there is no homotopy invariance axiom, but the three axioms together actually imply homo-
topy invariance. In fact theorem 1.3.8 immediately implies that these properties uniquely
determines cohomology on n-manifolds. This is also known as the de Rham isomorphism
theorem.

THEOREM 7.3.1. Consider a cohomology theory H ∗on (oriented) n-manifolds that
satisfies (1),(2),(3) and a natural map H ∗ (M)→ H∗ (M) that respects inclusions:

H ∗ (M) → H∗ (M)
↓ ↓

H ∗ (A) → H∗ (A)

The map H ∗ (M)→ H∗ (M) is an isomorphism for all (oriented) n-manifolds provided it
is an isomorphism when M = Rn.

PROOF. Given that P(Rn) is true we still need to establish the other two conditions
in theorem 1.3.8. Assume that A,B ⊂M are open and that P(A), P(B), and P(A∩B) are
true. Using the Mayer-Vietoris property we obtain

H ∗−1 (A)⊕H ∗−1 (B) → H ∗−1 (A∩B) → H ∗ (A∪B) → H ∗ (A)⊕H ∗ (B) → H ∗ (A∩B)
↓ ↓ ↓ ↓ ↓

H∗−1 (A)⊕H∗−1 (B) → H∗−1 (A∩B) → H∗ (A∪B) → H∗ (A)⊕H∗ (B) → H∗ (A∩B)

Each square in this diagram is commutative and all vertical arrows, except for the middle
one, are assumed to be isomorphisms. It follows by a simple diagram chase that the middle
arrow is also an isomorphism. More precisely, the five lemma asserts that if we have a
commutative diagram:

A1 → A2 → A3 → A4 → A5
↓ ↓ ↓ ↓ ↓

B1 → B2 → B3 → B4 → B5
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where the two horizontal rows are exact and Ai → Bi are isomorphisms for i = 1,2,4,5,
then A3→ B3 is an isomorphism.

Finally assume that Aα ⊂ M are pairwise disjoint open sets and P(Aα) are true. It
follows that

H ∗
(⋃

Aα

)
=×H ∗ (Aα)≃×H∗ (Aα) = H∗

(⋃
Aα

)
and P(

⋃
Aα) is true. □

REMARK 7.3.2. Note that condition that H ∗ (Rn)→ H∗ (Rn) is an isomorphism is
almost trivial as the two vector spaces are isomorphic to R. Thus the natural map merely
has to be nontrivial for it to become an isomorphism.

The squares in the five-lemma were all assumed to be commutative. This depends on
how the horizontal maps in the Mayer-Vietoris sequence are defined. It can happen that a
sign makes the squares anti-commute, but this does not affect the validity of the statement.

EXAMPLE 7.3.3. We can check homotopy invariance by defining H ∗ (M)=H∗ (R×M)
and π∗ : H∗ (M)→H ∗ (M), where π : R×M→M is the projection. All the conditions
are easy to verify.

If instead we take products with a noncontractible space such as S1, then we can again
check that most of the conditions still hold, only (1) fails. In this way we can construct
cohomology theories where only the point axiom fails.

7.4. Generalized Cohomology Theories

We introduce several cohomology theories that can assist in calculating the cohomol-
ogy of spaces. Only compactly supported cohomology is needed for subsequent sections.

7.4.1. Compactly Supported Cohomology. Compactly supported cohomology is not
a cohomology theory in the sense of theorem 7.3.1. In the next section we will see how it
can be dualized to better fit in with cohomology. Here we establish the basic properties.

DEFINITION 7.4.1. Compactly supported cohomology is defined as follows: Let Ω
p
c (M)

denote the compactly supported p-forms. With this we have the compactly supported exact
and closed forms Bp

c (M)⊂ Zp
c (M) (note that d : Ω

p
c (M)→Ω

p+1
c (M)) and define

H p
c (M) =

Zp
c (M)

Bp
c (M)

.

Needless to say, for closed manifolds the two cohomology theories are identical. For
connected open manifolds, on the other hand, we have that the closed 0-forms must be
zero, as they also have to have compact support. Thus H0

c (M) = {0} if M has no compact
connected components.

Note that only proper maps F : M→N have the property that they map F∗ : Ω
p
c (N)→

Ω
p
c (M) . In particular, if A ⊂ M is open, we do not have a restriction map. Instead, we

observe that there is a natural inclusion Ω
p
c (A)→Ω

p
c (M) , which induces

H p
c (A)→ H p

c (M) .

Thus compactly supported cohomology looks more like a homology theory.
We start by establishing a version of the Poincaré lemma for this new cohomology

theory.
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LEMMA 7.4.2. The compactly supported cohomology of Euclidean space is

H p
c (Rn) =

{
R when p = n,
0 when p ̸= n.

PROOF. We focus on the case where p= n, the other cases will be handled in a similar
way.

First observe that for any oriented n-manifold, M, the map

Ω
n
c (M) → R,

ω 7→
∫

M
ω

vanishes on closed forms by Stokes’ theorem. Thus it induces a map

Hn
c (M) → R,

[ω] 7→
∫

M
ω.

It is also onto, since any form with the property that it is positive when evaluated on a
positively oriented frame is integrated to a positive number.

Case 1: M = Sn. We know that Hn (Sn) = R, so
∫

: Hn (Sn)→ R must be an isomor-
phism.

Case 2: M = Rn. We can think of M = Sn−{x} . Any compactly supported form ω

on M is thus also a form on Sn. Given that
∫

M ω = 0, we further note that
∫

Sn ω = 0. In
particular, ω must be exact on Sn. Let ψ ∈ Ωn−1 (Sn) be chosen such that dψ = ω. Use
again that ω is compactly supported to find an open disc U around x such that ω vanishes
on U and U ∪M = Sn. Then ψ is clearly closed on U and must by the Poincaré lemma be
exact. Thus, we can find θ ∈ Ωn−2 (U) with dθ = ψ on U. This form doesn’t necessarily
extend to Sn, but we can select a bump function λ : Sn → [0,1] that vanishes on Sn−U
and is 1 on some smaller neighborhood V ⊂U around x. Now observe that ψ−d (λθ) is
actually defined on all of Sn. It vanishes on V and clearly

d (ψ−d (λθ)) = dψ = ω.

The case for p-forms proceeds in a similar way using that H p (Sn) = 0 for 1 < p < n.
When p = 1, we obtain ω = dψ , where ψ ∈Ω0 (Sn). Thus ψ is constant in a neighborhood
of x and we can use ψ −ψ (x) as a function with compact support in Sn −{x} whose
differential is ω .

Finally H0
c (M) = 0 for all connected non-compact manifolds. □

This result together with the fact that compactly supported cohomology respects in-
clusions of compact sets indicates that for an n-manifold we should consider

H p (M) = Hom
(
Hn−p

c (M) ,R
)
.

This in fact defines a cohomology functor. Clearly, H ∗ is the same for diffeomorphic
manifolds and is contravariant under inclusions:

H p (M) = Hom
(
Hn−p

c (M) ,R
)
→ Hom

(
Hn−p

c (A) ,R
)
= H p (A) .

The above lemma tells us that the Poincaré lemma holds:

H ∗ (Rn) = H 0 (Rn) = Hom(Hn
c (Rn) ,R) = R.
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Since Ω∗c (
⋃

α Aα) = ⊕α Ω∗c (Aα) for a pairwise disjoint union of open sets Aα ⊂ M,
we also obtain

H ∗

(⋃
α

Aα

)
= Hom

(
Hn−∗

c

((⋃
α

Aα

))
,R

)

= Hom

(⊕
α

Hn−∗
c ((Aα)) ,R

)
= ×

α

Hom
(
Hn−∗

c ((Aα)) ,R
)

= ×
α

H ∗ (Aα) .

Finally we need a Mayer-Vietoris sequence for open sets A,B ⊂ M with M = A∪B.
This starts with the observation that we have exact sequences:

0 → Ω∗+1
c (A∩B) → Ω∗+1

c (A)⊕Ω∗+1
c (B) → Ω∗+1

c (M) → 0
↑ d ↑ d ↑ d

0 → Ω∗c (A∩B) → Ω∗c (A)⊕Ω∗c (B) → Ω∗c (M) → 0

where the horizontal arrows are defined by:

Ω
∗
c (A∩B) → Ω

∗
c (A)⊕Ω

∗
c (B) ,

[ω] 7→ ([ω] , [ω]) ,

and

Ω
∗
c (A)⊕Ω

∗
c (B) → Ω

∗
c (M) ,

([ωA] , [ωB]) 7→ [ωA−ωB] .

This certainly leads to a long exact Mayer-Vietoris sequence:

· · · → H∗c (A∩B)→ H∗c (A)⊕H∗c (B)→ H∗c (M)→ H∗+1
c (A∩B)→ ··· .

However, we can also dualize to obtain a short exact sequence that algebraically looks
similar (even with the sign choices) to the sequence used for Mayer-Vietoris:

0→Hom
(
Ω

n−p
c (M) ,R

)
→Hom

(
Ω

n−p
c (A) ,R

)
⊕Hom

(
Ω

n−p
c (B) ,R

)
→Hom

(
Ω

n−p
c (A∩B) ,R

)
→ 0

and differentials that map

d : Hom
(
Ω

n−p
c (M) ,R

)
→ Hom

(
Ω

n−p−1
c (M) ,R

)
= Hom

(
Ω

n−(p+1)
c (M) ,R

)
.

This gives us a connecting homomorphism δ : H ∗ (A∩B)→H ∗+1 (M) and a long exact
sequence

· · · →H ∗ (M)→H ∗ (A)⊕H ∗ (B)→H ∗ (A∩B)→H ∗+1 (M)→ ··· .

Finally we can also prove lemma 7.1.6 for compactly supported cohomology.

LEMMA 7.4.3. If F : M→ N is a finite covering map, then

F∗ : H p
c (N)→ H p

c (M)

is an injection.

PROOF. The proof uses the same transgression map after we note that it maps τ :
Ω

p
c (M)→Ω

p
c (N) since F takes compact sets to compact sets. □
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7.4.2. Relative Cohomology. Compactly supported cohomology can be used very
effectively to define relative cohomology and also simplifies the calculation of some of the
cohomology groups we have seen.

We start with the simplest and most important situation where S ⊂M is a closed sub-
manifold of a closed manifold.

PROPOSITION 7.4.4. If S⊂M is a closed submanifold of a closed manifold, then

(1) The restriction map i∗ : Ωp (M)→Ωp (S) is surjective.
(2) If θ ∈Ωp−1 (S) is closed, then there exists ψ ∈Ωp−1 (M) such that θ = i∗ψ and

dψ ∈Ω
p
c (M−S) .

(3) If ω ∈ Ωp (M) with dω ∈ Ω
p+1
c (M−S) and i∗ω ∈ Ωp (S) is exact, then there

exists θ ∈Ωp−1 (M) such that ω−dθ ∈Ω
p
c (M−S).

PROOF. Select a neighborhood S⊂U ⊂M that deformation retracts π : U → S. Then
i∗ : H p (U)→ H p (S) is an isomorphism. We also need a function λ : M → [0,1] that is
compactly supported in U and is 1 on a neighborhood of S.

1. Given ω ∈Ωp (S) let ω̄ = λπ∗ (ω) .
2. This also shows that d (λπ∗θ) = dλ ∧π∗θ +λdπ∗θ has compact support in M−S.
3. Conversely assume that ω ∈Ωp (M) has dω ∈Ω

p+1
c (M−S). By possibly shrinking

U we can assume that it is disjoint from the support of dω . Thus, dω|U = 0 since i : S→U
is an isomorphism in cohomology and we assume that i∗ω is exact, it follows that ω|U =
dψ for some ψ ∈Ωp−1 (U). Define θ = λψ and then note that

ω−dθ = ω−λdψ−dλ ∧ψ

= ω−λω|U −dλ ∧θ

∈ Ω
p
c (M−S) .

□

THEOREM 7.4.5. Assume S⊂M is a closed submanifold of a closed manifold, then

→ H p
c (M−S)→ H p (M)→ H p (S)→ H p+1

c (M−S)→

is a long exact sequence of cohomology groups.

PROOF. Part (1) of the above proposition shows that we have a short exact sequence

0 → Ω
p (M,S)→Ω

p (M)→Ω
p (S)→ 0,

Ω
p (M,S) = ker(i∗ : Ω

p (M)→Ω
p (S)) .

We claim that (2) and (3) show that the natural inclusion

Ω
p
c (M−S)→Ω

p (M,S)

induces an isomorphism H p
c (M−S)→ H p (M,S).

To show that it is injective consider ω ∈ Ω
p
c (M−S), such that ω = dθ , where θ ∈

Ωp−1 (M,S). We can apply (3) to θ to find ψ ∈Ωp−2 (M) such that θ−dψ ∈Ω
p−1
c (M−S).

This shows that ω = d (θ −dψ) for a form θ −dψ ∈Ω
p−1
c (M−S).

To show that it is surjective consider ω ∈Ωp (M,S) with dω = 0. By (3) we can find
θ ∈Ωp−1 (M) such that ω−dθ ∈Ω

p
c (M−S), but we don’t know that θ ∈Ωp−1 (M,S). To

fix that problem use (2) to find ψ ∈ Ωp−1 (M) such that i∗θ = i∗ψ and dψ ∈ Ω
p
c (M−S).

Then ω−d (θ −ψ) = (ω−dθ)−dψ ∈Ω
p
c (M−S) and θ −ψ ∈Ωp−1 (M,S). □



7.4. GENERALIZED COHOMOLOGY THEORIES 125

Good examples are Sn−1 ⊂ Sn with Sn−Sn−1 being two copies of Rn and Pn−1 ⊂ Pn

where Pn−Pn−1 ≃ Fn. This gives us a slightly different inductive method for computing
the cohomology of these spaces. Conversely, given the cohomology groups of those spaces,
it computes the compactly supported cohomology of Rn.

It can also be used on manifolds with boundary:

→ H p
c (intM)→ H p (M)→ H p (∂M)→ H p+1

c (intM)→

where we can specialize to M = Dn ⊂ Rn, the closed unit ball. The Poincaré lemma com-
putes the cohomology of Dn so we get that

H p+1
c (Bn)≃ H p (Sn−1) .

For general connected compact manifolds with boundary we also obtain some interesting
information.

THEOREM 7.4.6. If M is a connected compact n-manifold with boundary, then

Hn (M) = 0.

PROOF. If M is oriented, then we know that ∂M is also oriented and that

Hn (M,∂M) = Hn
c (intM)≃ R

Hn (∂M) = {0} ,
Hn−1 (∂M) ≃ Rk,

where k is the number of components of ∂M. The connecting homomorphism Hn−1 (∂M)→
Hn

c (intM) can be analyzed from the diagram

0 → Ωn (M,∂M) → Ωn (M) → Ωn (∂M) → 0
↑ d ↑ d ↑ d

0 → Ωn−1 (M,∂M) → Ωn−1 (M) → Ωn−1 (∂M) → 0

Evidently any ω ∈ Ωn−1 (∂M) is the restriction of some ω̄ ∈ Ωn−1 (M). Moreover, if
dω = 0, then we can further assume that dω̄ ∈ Ωn

c (intM). Stokes’ theorem then tells us
that ∫

M
dω̄ =

∫
∂M

ω̄ =
∫

∂M
ω.

This shows that the map Hn−1 (∂M)→Hn
c (intM) is nontrivial and hence surjective, which

in turn implies that Hn (M) = {0} .
If M is not orientable then we can use lemma 7.1.6 on the orientation covering. □

It is possible to extend the above long exact sequence to the case where M is non-
compact by using compactly supported cohomology on M. This gives us the long exact
sequence

→ H p
c (M−S)→ H p

c (M)→ H p (S)→ H p+1
c (M−S)→

It is even possible to also have S be non-compact if we assume that the embedding is proper
and then also use compactly supported cohomology on S

→ H p
c (M−S)→ H p

c (M)→ H p
c (S)→ H p+1

c (M−S)→

We can generalize even further to a situation where S is simply a compact subset of
M. In that case we define the deRham-Cech cohomology groups Ȟ p (S) using

Ω̌
p (S) =

{ω ∈Ωp (M)}
ω1 ∼ ω2 iff ω1 = ω2 on a ngbd of S

,
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i.e., the elements of Ω̌p (S) are germs of forms on M at S. We now obtain a short exact
sequence

0→Ω
p
c (M−S)→Ω

p
c (M)→ Ω̌

p (S)→ 0.

This in turn gives us a long exact sequence

→ H p
c (M−S)→ H p

c (M)→ Ȟ p (S)→ H p+1
c (M−S)→

Finally we can define a more general relative cohomology group. We take a differen-
tiable map F : S→M between manifolds. It could, e.g., be an embedding of S⊂M, but S
need not be closed. Define

Ω
p (F) = Ω

p (M)⊕Ω
p−1 (S)

and the differential

d : Ω
p (F) → Ω

p+1 (F)

d (ω,ψ) = (dω,F∗ω−dψ)

Note that d2 = 0 so we get a complex and cohomology groups H p (F) . These “forms” fit
into a sort exact sequence

0→Ω
p−1 (S)→Ω

p (F)→Ω
p (M)→ 0,

where the maps are just the natural inclusion and projection. When we include the differ-
ential we arrive at a large diagram where the left square is anti-commutative and the right
one commutative

0 → Ωp (S) → Ωp+1 (M)⊕Ωp (S) → Ωp+1 (M) → 0
↑ d ↑ (d,F∗−d) ↑ d

0 → Ωp−1 (S) → Ωp (M)⊕Ωp−1 (S) → Ωp (M) → 0

This still leads us to a long exact sequence

→ H p−1 (S)→ H p (F)→ H p (M)→ H p (S)→

The connecting homomorphism H p (M)→ H p (S) is in fact the pull-back map F∗ as can
be seen by a simple diagram chase.

In case i : S ⊂ M is an embedding we also use the notation H p (M,S) = H p (i) . In
this case it’d seem that the connecting homomorphism is more naturally defined to be
H p−1 (S)→ H p (M,S) , but we don’t have a short exact sequence

0→Ω
p (M)⊕Ω

p−1 (S)→Ω
p (M)→Ω

p (S)→ 0

hence the tricky shift in the groups.
We can easily relate the new relative cohomology to the one defined above. This

shows that the relative cohomology, while trickier to define, is ultimately more general and
useful.

PROPOSITION 7.4.7. If i : S ⊂M is a closed submanifold of a closed manifold, then
the natural map

Ω
p
c (M−S) → Ω

p (M)⊕Ω
p−1 (S)

ω → (ω,0)

defines an isomorphism
H p

c (M−S)≃ H p (i) .



7.4. GENERALIZED COHOMOLOGY THEORIES 127

PROOF. Simply observe that we have two long exact sequences

→ H p (i)→ H p (M)→ H p (S)→ H p+1 (i)→

→ H p
c (M−S)→ H p (M)→ H p (S)→ H p+1

c (M−S)→
where two out of three terms are equal. □

Now that we have a fairly general relative cohomology theory we can establish the
well-known excision property.

THEOREM 7.4.8. If M =U ∪V, where U and V are open, then the restriction map

H p (M,U)→ H p (V,U ∩V )

is an isomorphism.

PROOF. First select a partition of unity λU ,λV relative to U,V .
We start with injectivity. Take a class [(ω,ψ)] ∈ H p (M,U) , i.e.,

dω = 0,
ω|U = dψ.

If the restriction to (V,U ∩V ) is exact, then we can find (ω̄, ψ̄)∈Ωp−1 (V )⊕Ωp−2 (U ∩V )
such that

ω|V = dω̄,

ψ|U∩V = ω̄|U∩V −dψ̄.

Using that ψ̄ = λU ψ̄ +λV ψ̄ we obtain

(ψ +d (λV ψ̄)) |U∩V = (ω̄−d (λU ψ̄)) |U∩V ,

ψ +d (λV ψ̄) ∈ Ω
p−1 (U) ,

ω̄−d (λU ψ̄) ∈ Ω
p−1 (V ) .

Thus we have a form ω̃ ∈Ωp−1 (M) defined by ψ +d (λV ψ̄) on U and ω̄−d (λU ψ̄) on V.
Clearly dω̃ = ω and ψ = ω̃|U −d (λV ψ̄) so we have shown that (ω,ψ) is exact.

For surjectivity select (ω̄, ψ̄) ∈Ωp (V )⊕Ωp−1 (U ∩V ) that is closed:

dω̄ = 0,
ω̄|U∩V = dψ̄.

Using

ω̄|U∩V −d (λU ψ̄) = d (λV ψ̄) ,

ω̄−d (λU ψ̄) ∈ Ω
p (V ) ,

d (λV ψ̄) ∈ Ω
p (U)

we can define ω as ω̄−d (λU ψ̄) on V and d (λV ψ̄) on U. Clearly ω is closed and ω|U =
d (λV ψ̄) . Thus we define ψ = λV ψ̄ in order to get a closed form (ω,ψ) ∈ Ωp (M)⊕
Ωp−1 (U) . Restricting this form to Ωp (V )⊕Ωp−1 (U ∩V ) yields (ω̄−d (λU ψ̄) ,λV ψ̄)
which is not (ω̄, ψ̄) . However, the difference is exact:

(ω̄, ψ̄)− (ω̄−d (λU ψ̄) ,λV ψ̄) = (d (λU ψ̄) ,λU ψ̄)

= d (λU ψ̄,0) .

Thus [(ω,ψ)] ∈ H p (M,U) is mapped to [(ω̄, ψ̄)] ∈ H p (V,U ∩V ) . □
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7.5. Poincaré Duality and its Consequences

We explain several interesting results that follow from Poincaré Duality and begin
to connect the numerical invariants defined geometrically using transversality to algebraic
concepts in cohomology. We start by explaining Poincaré duality, then give some examples
of its consequences and finish by showing how it can be used to calculate the degree of a
map using integration.

7.5.1. Poincaré Duality. The last piece of information we need to understand is how
the wedge product acts on cohomology. It is easy to see that we have a map

H p (M)×Hq (M) → H p+q (M) ,

([ω] , [ψ]) 7→ [ω ∧ψ] .

This is well-defined as

(ω +dθ)∧ (ψ +dφ) = ω ∧ψ +d (θ ∧ (ψ +dφ))±d (ω ∧φ) .

Thus the wedge product induces a ring structure on H∗ (M) that in a suitable sense will
be shown to be dual to the intersection theory developed using transversality.To that end
we are particularly interested in understanding what happens in case p+q = n as that will
create a natural map from the cohomology functor H ∗ (M) to de Rham cohomology.

Note that this ring structure also gives us a well-defined map:

H p (M)×Hq
c (M)→ H p+q

c (M) .

When M is oriented and p+q = n we can in addition integrate to obtain a pairing:

H p (M)×Hq
c (M)→ Hn

c (M)
∫
→ R.

THEOREM 7.5.1 (Poincaré Duality). Let M be an oriented n-manifold. The pairing

H p (M)×Hn−p
c (M) → R,

([ω] , [ψ]) 7→
∫

M ω ∧ψ

is well-defined and non-degenerate. In particular, the two cohomology groups H p (M) and
Hn−p

c (M) are dual to each other and consequently have the same dimension when they are
finite dimensional.

PROOF. The bilinear form defines a linear map on all oriented n-manifolds:

H p (M)→ Hom
(
Hn−p

c (M) ,R
)
= H p (M) .

We claim that this map is an isomorphism for all orientable, but not necessarily connected,
manifolds. This will follow from theorem 7.3.1 provided we can show that it is an isomor-
phism when M = Rn. This case follows from the proof of lemma 7.4.2. □

There is also a map

Hn−p
c (M)→ Hom(H p (M) ,R)

which is an isomorphism when Hn−p
c (M) is finite dimensional, but not necessarily other-

wise. In fact the countable disjointness property generally fails in this case.
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7.5.2. Consequences of Poincaré Duality.

COROLLARY 7.5.2. If Mn is contractible, then

H p
c (M) =

{
R when p = n,
0 when p ̸= n.

THEOREM 7.5.3. On a closed oriented n-manifold M the cohomology groups H p (M)
and Hn−p (M) are isomorphic.

PROOF. This requires that we know that H p (M) is finite dimensional for all p.
First note that if O⊂Rk is a finite union of open boxes, then the de Rham cohomology

groups are finite dimensional. The proof of this uses Mayer-Vietoris and induction on the
number of boxes. Specifically if M = A∪B, where H∗ (A), H∗ (B), and H∗ (A∩B) are
finite dimensional, then also H∗ (M) is finite dimensional. To see this consider the part of
the long exact sequence:

H∗−1 (A∩B)→ H∗ (M)→ H∗ (A)⊕H∗ (B) .

Here the image of H∗−1 (A∩B)→ H∗ (M) is finite dimensional and as the sequence is
exact any complement to the image is mapped injectively into H∗ (A)⊕H∗ (B) and is thus
also finite dimensional. Next if B1, ...,Bk ⊂ Rk are boxes, then the intersection

Bk ∩ (B1∪·· ·∪Bk−1) = (Bk ∩B1)∪·· ·∪ (Bk ∩Bk−1)

consists of at most k−1 boxes. This allows us to complete the induction step.
This will give the result for M⊂Rk as we can find a tubular neighborhood M⊂U ⊂Rk

and a retract r : U →M, i.e., r|M = idM . Now cover M by open boxes that lie in U and use
compactness of M to find M ⊂ O ⊂U with O being a union of finitely many open boxes.
Since r|M = idM the retract r∗ : H p (M)→ H p (O) is an injection so it follows that H p (M)
is finite dimensional. □

Note that RP2 does not satisfy this duality between H0 and H2. In fact we always have

THEOREM 7.5.4. If M is a connected n-manifold that is not orientable, then

Hn
c (M) = 0.

PROOF. We use the two-fold orientation cover F : M̂ → M and the involution A :
M̂→ M̂ such that F = F ◦A. The fact that M is not orientable means that A is orientation
reversing. This implies that pull-back by A changes integrals by a sign:∫

M̂
η =−

∫
M̂

A∗η , η ∈Ω
n
c
(
M̂
)
.

To prove the theorem select ω ∈ Ωn
c (M) and consider the pull-back F∗ω ∈ Ωn

c
(
M̂
)
.

Since F = F ◦A this form is invariant under pull-back by A∫
M̂

F∗ω =
∫

M̂
A∗ ◦F∗ω.

On the other hand, as A reverses orientation we must also have∫
M̂

F∗ω =−
∫

M̂
A∗ ◦F∗ω.

Thus ∫
M̂

F∗ω = 0.
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This shows that the pull-back is exact

F∗ω = dψ, ψ ∈Ω
n−1
c
(
M̂
)
.

On the other hand, from lemma 7.4.3 we know that F∗ : Hn
c (M)→Hn

c
(
M̂
)

is an injection.
This shows the claim. □

COROLLARY 7.5.5. If M is an open connected n-manifold, then

Hn (M) = 0.

PROOF. By lemma 7.4.3 it suffices to prove this for orientable manifolds. In this case
it follows from Poincaré duality that

Hn (M)≃ Hom
(
H0

c (M) ,R
)
≃ 0.

□

There are many more interesting results for compactly supported cohomology. In case
of oriented manifolds Poincaré duality is a natural way of proving them, but without that
result one can often proven them using theorem 1.3.8. A good example is the compactly
supported version of homotopy invariance

H∗c (M)≃ H∗+1
c (R×M) .

7.5.3. Degrees of Maps. Given the simple nature of the top cohomology class of a
manifold, we see that maps between manifolds of the same dimension can act only by
multiplication on the top cohomology class. We shall see that this multiplicative factor is
in fact an integer, called the degree of the map.

To be precise, suppose we have two connected oriented n-manifolds M and N and also
a proper map F : M→ N. Then we get a diagram

Hn
c (N)

F∗→ Hn
c (M)

↓
∫

↓
∫

R d→ R.

Since the vertical arrows are isomorphisms, the induced map F∗ yields a unique map d :
R→ R. This map must be multiplication by some number, which we call the degree of F ,
denoted by degF. Clearly, the degree is defined by the property∫

M
F∗ω = degF ·

∫
N

ω.

From the functorial properties of the induced maps on cohomology we see that

deg(F ◦G) = deg(F)deg(G) .

PROPOSITION 7.5.6. If F : M→N is a diffeomorphism between oriented n-manifolds,
then degF =±1, depending on whether F preserves or reverses orientation.

PROOF. Note that our definition of integration of forms is independent of coordinate
changes. It relies only on a choice of orientation. If this choice is changed then the integral
changes by a sign. This clearly establishes the lemma. □

THEOREM 7.5.7. If F : M→ N is a proper map between oriented n-manifolds, then
degF is an integer and agrees with the oriented degree.
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PROOF. The proof will also give a recipe for computing the degree. By Sard’s theo-
rem there is a regular value y ∈ N. Lemma 1.4.29 there exists a neighborhood V around y
such that F−1(V ) =

⋃n
k=1 Uk, where Uk are mutually disjoint and F : Uk → V is a diffeo-

morphism. Now select ω ∈Ωn
c (V ) with

∫
ω = 1 and note that:

F∗ω =
k

∑
i=1

F∗ω|Ui ,

where each F∗ω|Ui has compact support in Ui. The above lemma now tells us that∫
Ui

F∗ω|Ui =±1.

Hence,

degF = degF ·
∫

N
ω

= degF ·
∫

U
ω

=
∫

M
F∗ω

=
k

∑
i=1

∫
Ui

F∗ω|Ui

is an integer. Here
∫

Ui
F∗ω|Ui =±1 depending simply on whether F preserves or reverses

the orientations at xi. Thus, the cohomologically defined degree also counts the number of
preimages for regular values with sign just as the oriented degree from section 5.4.2. □

On an oriented Riemannian manifold (M,g) we always have a canonical volume form
denoted by dvolg. Using this form, we see that the degree of a map between closed Rie-
mannian manifolds F : (M,g)→ (N,h) can be computed as

degF =

∫
M F∗ (dvolh)

vol(N)
.

In case F is locally a Riemannian isometry, we must have that:

F∗ (dvolh) =±dvolg.

Hence,

degF =±volM
volN

.

This gives the well-known formula for the relationship between the volumes of Riemannian
manifolds that are related by a finite covering map.

On Rn−{0} there is an interesting closed (n−1)-form

ω = r−n
n

∑
i=1

(−1)i+1 xidx1∧·· ·∧ d̂xi∧·· ·∧dxn,
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where r2 = ∑
n
i=1
(
xi
)2. If we restrict this to a sphere of radius ε around the origin, then∫

Sn−1(ε)
ω = ε

−n
∫

Sn−1(ε)

n

∑
i=1

(−1)i+1 xidx1∧·· ·∧ d̂xi∧·· ·∧dxn

= ε
−n
∫

B̄(0,ε)
d

(
n

∑
i=1

(−1)i+1 xidx1∧·· ·∧ d̂xi∧·· ·∧dxn

)
= ε

−n
∫

B̄(0,ε)
ndx1∧·· ·∧dxn

= nε
−nvolB̄(0,ε)

= nvolB̄(0,1)

= voln−1Sn−1 (1) .

More generally if F : Mn−1 → Rn−{0} is a smooth map, then it is clearly homotopic to
the map F1 : Mn−1→ Sn−1 (1) defined by F1 = F/ |F | so we obtain an integral formula for
the winding number

W (F,0) = degF1

=
1

voln−1Sn−1 (1)

∫
M

F∗1 ω

=
1

voln−1Sn−1 (1)

∫
M

F∗ω.

7.6. The Künneth-Leray-Hirsch Theorem

In this section we shall compute the cohomology of a fibration under certain simplify-
ing assumptions. We start with the trivial fiber bundles E = F×B. The standard projection
for any fiber bundle is denoted π : E → B and when the bundle is trivial we also have a
projection π̄ : E→ F on to the fiber.

THEOREM 7.6.1 (Künneth). If H∗ (F) is finite dimensional, then there is an isomor-
phism: ⊕

p+q=r
H p (F)⊗Hq (B)→ Hr (E)

where the map H p (F)⊗Hq (B)→ H p+q (E) is defined by ψ⊗ω 7→ π̄∗ (ψ)∧π∗ (ω).

PROOF. We fix F and use theorem 1.3.8 with the statement P(B) being that the theo-
rem is true.

When B = Rn, we have H∗ (B) = H0 (B) = R. Thus⊕
p+q=r

H p (F)⊗Hq (B) = Hr (F)

and the statement follows from homotopy invariance of cohomology.
For condition (2) in theorem 1.3.8 assume that the result holds for open sets A1,A2,A1∩

A2 ⊂ B, then we can use the same strategy as in the proof of theorem 7.3.1 to verify the
statement for A1∪A2.

Finally for condition (3), assume the statement holds for pairwise disjoint open sets:
Aα ⊂ B. We have to show it also holds for the union. This depends crucially on H p (F)
being finite dimensional as tensor products do not, in general, respect infinite products (see
example below). Specifically, we use that

Hom(Hom(H p (F) ,R) ,V )≃ Hom(Hom(H p (F) ,R) ,R)⊗V ≃ H p (F)⊗V.
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In particular, if V =×αVα , then

H p (F)⊗ (×αVα) = Hom(Hom(H p (F) ,R) ,×αVα)

= ×α Hom(Hom(H p (F) ,R) ,Vα)

= ×α (H p (F)⊗Vα) .

This leads us to the desired isomorphism:⊕
p+q=r

H p (F)⊗Hq
(⋃

Aα

)
=

⊕
p+q=r

H p (F)⊗ (×α Hq (Aα))

=
⊕

p+q=r
×α (H p (F)⊗Hq (Aα))

= ×α

⊕
p+q=r

(H p (F)⊗Hq (Aα))

= ×α Hk (
π
−1 (Aα)

)
= Hk

(
π
−1

(⋃
α

Aα

))
.

□

EXAMPLE 7.6.2. In case both factors have infinite dimensional cohomology the result
does not necessarily hold. Consider two 0-dimensional manifolds A,B, i.e., they are finite
or countable sets. Here H0 (A×B) is isomorphic the the space of functions A×B→ R,
while H0 (A)⊗H0 (B) consists of finite sums of elements of the form fA⊗ fB, where fC :
C→R. Thus the map H0 (A)⊗H0 (B)→H0 (A×B) is only an isomorphism when A or B
is finite. To address the construction in the above proof note that

H0 (A)⊗H0 (B) = H0 (A)⊗×b∈BH0 (b)

while

×b∈BH0 (A)⊗H0 (b) =×b∈BH0 (A)⊗R=×b∈BH0 (A) =×a∈A,b∈BR= H0 (A×B) .

Künneth’s theorem also has a direct counter part for compactly supported cohomol-
ogy: ⊕

p+q=r
H p

c (F)⊗Hq
c (B) = Hr

c (F×B)

as long as H∗c (F) is finite dimensional. The proof is similar with the caveat that homotopy
invariance is replaced by

H∗+n
c (F×Rn)≃ H∗c (F) .

We now assume that π : E → B is a submersion-fibration where the fibers are diffeo-
morphic to a manifold F . The key condition that is needed is that the restriction to any
fiber π−1 (p)∼= F is a surjection in cohomology

H∗ (E)→ N∗
(
π
−1 (p)

)
→ 0, for all p ∈ B.

In the case of a product this obviously holds since the projection π̄ : F×B→ F is a right
inverse to the inclusions F → F×{s} ⊂ F×B. The restriction assumption does not hold
in general, e.g., the fibration S3→ S2 is a good counter example.

It seems a daunting task to check the condition for all fibers in a general situation.
Assuming we know it is true for a specific fiber F = π−1 (p) we can select a neighborhood
A around p such that π−1 (A) = F×A. As long as A is contractible we see that π−1 (A) and
F are homotopy equivalent and so the restriction to any of the fibers over A will also give a
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surjection in cohomology. When B is connected a covering of such contractible sets shows
that H∗ (E)→ N∗

(
π−1 (x)

)
is a surjection for all x ∈ B. In fact, this construction gives us

a bit more. We assume that for a specific fiber F there is a subspace V ∗ ∈ H∗ (E) that is
isomorphic to H∗ (F). The construction then shows that V ∗ is isomorphic to H∗

(
π−1 (x)

)
for all x ∈ B as long as B is connected.

THEOREM 7.6.3 (Leray-Hirsch). Assume we have V ∗ ⊂H∗ (E) that is isomorphic to
H∗
(
π−1 (x)

)
via restriction for all x ∈ B. If H∗ (F) is finite dimensional, then there is an

isomorphism: ⊕
p+q=r

V p⊗Hq (B)→ Hr (E) ,

where the map V p⊗Hq (B)→ H p+q (E) is defined by ψ⊗ω 7→ ψ ∧π∗ (ω).

REMARK 7.6.4. Observe that for any map E → B the space H∗ (E) is naturally a
H∗ (B) module:

H∗ (B)×H∗ (E)→ H∗ (E)

via pull-back H∗ (B)→H∗ (E) and wedge product in H∗ (E). The statement of the theorem
can then be rephrased as offering a condition for when H∗ (E) is a free H∗ (B)-module.

PROOF. Note that for each open A⊂ B there is a natural restriction

V ∗ ⊂ H∗ (E)→ V ∗|A ⊂ H∗
(
π
−1 (A)

)
.

This shows that the assumption of the theorem holds for all of the bundles π−1 (A)→ A,
where A⊂ B is open.

With these constructions in mind we can employ the strategy from corollary 1.3.10.
To that end, restrict attention to open subsets A⊂M with the statement P(A) being that for
all r the map ⊕

p+q=r
V p|A⊗Hq (A)→ Hr (

π
−1 (A)

)
is an isomorphism.

To check condition (1) note that the statement holds for any A ⊂ B that is diffeomor-
phic to RdimB and where the bundle is trivial π−1 (A)∼= F×A. In particular, the statement
also holds for any box in A.

Condition (2) in corollary 1.3.10 is established as in theorem 7.6.1 and the proof of
theorem 7.3.1.

Finally for condition (3) we simply replace H p (F) with V p and proceed as in the
proof of theorem 7.6.1. □

In the general case of a fiber bundle the obvious generalization to a compactly sup-
ported result runs into some logistical problems. The best version uses forms on E that are
compactly supported on fibers Ω∗cv (E), thus Ω∗c (E) ⊂ Ω∗cv (E) ⊂ Ω∗ (E). This leads to a
cohomology theory H∗cv (E) that has the natural property that for A⊂ B there is a restriction
map H∗cv (E)→ H∗cv

(
π−1 (A)

)
. The proof from above can then be used again to show.

THEOREM 7.6.5. Assume we have V ∗cv ⊂ H∗cv (E) that is isomorphic to H∗c
(
π−1 (x)

)
via restriction for all x ∈ B. If H∗c (F) is finite dimensional, then there is an isomorphism:⊕

p+q=r
V p

cv⊗Hq (B)→ Hr
cv (E)

where the map V p
cv⊗Hq (B)→ H p+q

cv (E) is defined by ψ⊗ω 7→ ψ ∧π∗ (ω).
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The important special case is when B is compact where the formulation becomes more
natural.

COROLLARY 7.6.6. Assume that B is compact and V ∗c ⊂ H∗c (E) is isomorphic to
H∗c
(
π−1 (x)

)
via restriction for all x ∈ B. If H∗c (F) is finite dimensional, then there is an

isomorphism: ⊕
p+q=r

V p
c ⊗Hq (B)→ Hr

c (E)

where the map V p
c ⊗Hq (B)→ H p+q

c (E) is defined by ψ⊗ω 7→ ψ ∧π∗ (ω).

This corollary follows directly from Poincare duality when both E and B are ori-
ented. The corresponding V ∗ is defined via the Poincare duality isomorphism H∗ →
Hom(Hn−∗

c ,R), i.e., V p ≃ Hom
(
V n−p

c ,R
)

, where n = dimE.

7.7. Exercises

(1) Using theorem 3.2.8 and corollary 3.2.10 show that pull backs F∗ : H∗ (N)→
H∗ (M) are well-defined for continuous maps F : M→ N.

(2) Calculate the cohomology of the torus using Mayer-Vietoris and induction on
dimension.

(3) Calculate the cohomology of Sp×Sq using Mayer-Vietoris.
(4) Let ω ∈Ω1 (M).

(a) Define
∫

c ω for a piecewise smooth curve c : [a,b]→M.
(b) If dω = 0, then

∫
c0

ω =
∫

c1
ω , where c0,1 : [a,b]→M agree at the end points

and are homotopic via a homotopy that fixes the end points.
(c) Show that ω is exact provided

∫
c ω only depends on c(a) and c(b).

(d) Show that a simply connected manifold has H1 (M) = 0.
(5) Let G/H be a homogeneous space where G is compact and simply connected

and H is connected. Show that G/H is simply connected, e.g., SU (n)/SO(n) is
simply connected. Hint: Lift a loop based at the equivalence class H to a path in
G that begins and ends in H.

(6) Let G/H be an n-dimensional homogeneous space where G is compact and con-
nected. Show that:

dimH p (G/H)≤
(

n
p

)
.

(7) Let G/H be an n-dimensional homogeneous space where G is compact and con-
nected. Show that if the linear action of H on THG/H contains an orientation
reversing element, then Ωn

G (G/H) = 0 and G/H is not orientable.
(8) Let M be a closed n-manifold. Calculate H∗ (M−{p}) in terms of H∗ (M).
(9) Show that if F : M→ N is homotopic to a constant map then F∗ (ω) is exact for

any closed form ω on N.
(10) Show that if F : M → N admits a section s : N → M, i.e., F ◦ s = idN , then

F∗ : H∗ (N)→ H∗ (M) is an injection.
(11) Let G be a finite group that acts on M with trivial isotropy, i.e., if gx = x for any

x ∈M and g ∈ G, then g = e. Show that M→M/G defines a covering map and
that H∗ (M/G) = H∗G (M).

(12) Show that there is a natural isomorphism

H∗c (M)≃ H∗+1
c (R×M) .
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(13) Show that the cohomology of Sp×Sq is generated by a form ω1 ∈Ωp (Sp×Sq),
a form ω2 ∈Ωq (Sp×Sq), and ω1∧ω2. Hint: Use Künneth’s theorem or that the
action by SO(p+1)×SO(q+1) is transitive.

(14) Let M = T n = S1× ·· ·× S1 and let θ be a generator for H1
(
S1
)
. Define θi =

π∗i (θ), where πi : T n → S1 is the projection onto the ith factor. Use Künneth’s
theorem to show that H p (T n) has a basis of the form θi1 ∧·· ·∧θip , i1 < · · ·< ip.

Conclude that dimH p (T n) =
(n

p

)
.

(15) Show that if ω ∈Ω2 (CPn) generates H2 (CPn), then ωk generates H2k (CPn).
(16) Show that any map Sp+q→ Sp×Sq has degree 0.
(17) Let p,q ∈ N. Show that any map S2p× S2q → CPp+q has degree 0 unless p =

q = 1.
(18) Show that any map CPm → CPn, m > n, induces a trivial map Hk (CPn) →

Hk (CPm) for k > 0.
(19) Let M,N be closed oriented n-manifolds with N connected. Show that if F : M→

N has nonzero degree, then F∗ : N∗ (N)→ H∗ (M) is injective.
(20) A symplectic form ω ∈Ω2

(
M2n

)
is a closed form that is nondegenerate, i.e., for

every v the linear function w 7→ ω (w,v) is not trivial.
(a) Show ω ∈Ω2 (M) is nondegenerate if and only if dimM is even and ωn is a

volume form where 2n = dimM. Hint: This is linear algebra. Find a normal
form on a vector space for any skew-symmetric bilinear form.

(b) Show that when M is closed, then a symplectic form generates a nontrivial
element in cohomology.

(21) Let M4n+2 be closed and oriented. Show that dimH2n+1 (M) is even.
(22) Let S⊂Rn be a closed or properly embedded oriented submanifold of codimen-

sion 1.
(a) Use the long exact sequence for the pair (Rn,S) to show that the number of

components of Rn−S can be calculated with the formula:

dimH0 (Rn−S) = 1+dimHn−1
c (S) .

(b) Generalize (a) to the case where Rn is replaced by a connected oriented
manifold Mn with H1 (M) = 0.

(c) Give examples where (b) fails if one or both manifolds are not orientable.
(23) For a smooth function f : Mn→ R define

d f : Ω
p (M) → Ω

p+1 (M)

d f (ω) = dω +d f ∧ω

and

m f : Ω
p (M) → Ω

p (M)

m f (ω) = e f
ω.

(a) Show that d f = m− f ◦d ◦m f and d f ◦d f = 0.
(b) Show that the cohomology groups defined by d f are isomorphic to de Rham

cohomology.
(24) For a 1-form θ ∈Ω1 (M) define

dθ : Ω
p (M) → Ω

p+1 (M)

dθ (ω) = dω +θ ∧ω

(a) Show that if dθ = 0, then dθ ◦dθ = 0.
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(b) Show that if θ is closed but not exact, then the cohomology defined by dθ

is not necessarily isomorphic to de Rham cohomology. Hint: Show that the
dθ -cohomology of S1 is trivial.



CHAPTER 8

Intersection Theory Revisited

The goal of the chapter is to develop and cohomological approach to intersection num-
bers. This will allow us to calculate the Lefschetz numbers of maps on spheres, tori, and
projective spaces.

8.1. Intersection Theory and the Poincaré Dual

Let Sk ⊂ Nn be a closed oriented submanifold of an oriented manifold with finite di-
mensional de Rham cohomology. The codimension is denoted by m= n−k. By integrating
k-forms on N over S we obtain a linear functional Hk (N)→ R. By theorem 7.5.1 we have
Hom

(
Hk (N) ,R

)
≃ Hm

c (N). The Poincaré dual to this functional is the cohomology class[
ηN

S

]
∈ Hm

c (N) such that ∫
S

ω =
∫

N
η

N
S ∧ω

for all ω ∈ Hk (N) . Any representative ηN
S ∈

[
ηN

S

]
is called a Poincaré dual to S ⊂ N.

The obvious defect of this definition is that several natural submanifolds might not have
nontrivial duals for the simple reason that Hm

c (N) vanishes, e.g., N = Sn.
To find a nontrivial dual we observe that

∫
S ω only depends on the values of ω in a

neighborhood of S. Thus we can consider duals supported in any neighborhood U of S
in N, i.e.,

[
ηU

S

]
∈ Hm

c (U). We normally select a tubular neighborhood so that there is a
deformation retraction π : U → S, where the fibers π−1 (p) are diffeomorphic to Rm for all
p ∈ S. In particular,

π
∗ : Hk (S)→ Hk (U)

is an isomorphism and
[
ηU

S

]
∈Hm

c (U) is characterized as the dual to integration of k-forms
on S, i.e., for all ω ∈Ωk (S) we have∫

S
ω =

∫
U

η
N
S ∧π

∗ (ω) .

EXAMPLE 8.1.1. When S = p is a point integration over S is simply evaluation of
functions at p. The Poincaré dual is represented by any compactly supported n-form that
integrates to 1.

EXAMPLE 8.1.2. When S = S1 ⊂ S1×(−1,1)⊂ S2 we first note that
[
ηS2

S1

]
= 0 while[

η
S1×(−1,1)
S1

]
∈H1

c
(
S1× (−1,1)

)
where homotopy invariance implies that H1

c
(
S1× (−1,1)

)
≃

H0
c
(
S1
)
. The Poincaré dual can be represented by π∗2 η , where π2 : S1×(−1,1)→ (−1,1)

is the projection and η ∈Ω1
c ((−1,1)) any form with integral 1.

EXAMPLE 8.1.3. Consider the embedded submanifold Sp,q ⊂ T 2 = S1× S1 defined
by F

(
eiθ
)
=
(
eipθ ,eiqθ

)
, where p,q ∈ Z only have±1 as common divisors. Let dt = dθ

2π
∈

Ω1
(
S1
)

be the volume form with integral 1 and π1,2 : T 2→ S1 the projections onto the two

138
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factors. We obtain two forms η1,2 = π∗1,2 (dt) that generate H1
(
T 2
)

and yield a volume

form η1 ∧η2 that integrates to 1. To find a representative ηT 2

Sp,q
= αη1 +βη2 we simply

need to check that ∫
T 2

(αη1 +βη2)∧η1 =
∫

Sp,q

η1,∫
T 2

(αη1 +βη2)∧η2 =
∫

Sp,q

η2.

Here the left hand sides are −β and α respectively, while the left hand sides are p and q
respectively. Thus

η
T 2

Sp,q = qη1− pη2.

The dual gives us an interesting isomorphism called the Thom isomorphism. A more
general and abstract version was presented in corollary 7.6.6.

LEMMA 8.1.4 (Thom Isomorphism). Recall that k+m = n. If π : U → S is a tubular
neighborhood, then the map

H∗c (S) → H∗+m
c (U) ,

[ω] 7→
[
η

U
S ∧π

∗ (ω)
]

is an isomorphism.

PROOF. Using Poincaré duality twice we see that

H∗+m
c (U) ≃ Hom

(
Hn−∗−m (U) ,R

)
≃ Hom

(
Hk−∗ (S) ,R

)
≃ H∗c (S) .

Thus it suffices to show that the map

H∗c (S) → H∗+m
c (U)

[ω] 7→
[
η

N
S ∧π

∗ (ω)
]

is injective. When p = k this follows from the construction of the dual. For p < k select a
nontrivial [ω ∈ H p (S)]and using Poincaré duality τ ∈Hk−p (S), such that [ω ∧ τ] ∈Hk (S)
is nontrivial. This shows that

[
ηN

S ∧π∗ (ω)∧π∗ (τ)
]

is nontrivial. This in turn implies that[
ηN

S ∧π∗ (ω)
]

is nontrivial. □

The next goal is to find a characterization of ηU
S , this characterization is valid as long as

π : U → S is merely a retract with connected preimages, i.e., π ◦ i = idS, where i : S→ N is
the inclusion. However, we will only use it for tubular neighborhoods. The characterization
makes it possible to construct the dual in many situations and also shows why the Thom
isomorphism follows from corollary 7.6.6.

THEOREM 8.1.5. The dual is characterized as a closed form with compact support
that integrates to 1 along fibers π−1 (p) for all p ∈ S. In particular, when U is a tubular
neighborhood the dual generates the cohomology of the fibers H∗c

(
π−1 (p)

)
= H∗c (Rm).

PROOF. The characterization requires a choice of orientation for the fibers. It is cho-
sen so that Tpπ−1 (p)⊕ TpS and TpN have the same orientation (this is consistent with
[Guillemin-Pollack], but not with several other texts.) For ω ∈ Ωk (S) we note that π∗ω
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is constant on π−1 (p) , p ∈ S. Therefore, if η is a closed compactly supported form that
integrates to 1 along all fibers, then∫

U
η ∧π

∗
ω =

∫
S

∫
π−1(p)

η ∧π
∗
ω =

∫
S

ω

as desired.
Conversely we define

f : S→ R,

f (p) =
∫

π−1(p)
η

U
S

and note that ∫
S

ω =
∫

U
η

U
S ∧π

∗
ω =

∫
S

f ω

for all ω. Since the support of ω can be chosen to be in any open subset of S, this shows
that f = 1 on S. □

Unless explicitly stated, we assume that duals of submanifolds are calculated inside
tubular neighborhoods. Given the structure of the dual on the fibers we shall generally use
the notation ηS with the implicit assumption that it is defined in some tubular neighborhood
of S. Note that tubular neighborhoods are constructed to be naturally diffeomorphic to a
tube around the zero section of a normal bundle of S ⊂ N (theorem 3.2.6). With that in
mind it is natural to focus attention on oriented vector bundles E→ S with oriented base S.

COROLLARY 8.1.6. If F : S′ → S is a map between closed oriented manifolds and
π : E→ S is an oriented m-dimensional vector bundle, then

F∗
(
η

E
S
)
= η

F∗(E)
S′ .

PROOF. The pullback vector bundle is given by

F∗ (E) =
{
(x,v) ∈ S′×E | F (x) = π (v)

}
and thus has the same the same fibers as E. This also naturally orients F∗ (E). When
restricting F∗

(
ηE

S

)
to a fiber F∗ (E)x ≃ EF(x) we see that∫

F∗(E)x

F∗
(
η

E
S
)
=
∫

EF(x)

η
E
S = 1.

Theorem 8.1.5 then implies the claim. □

COROLLARY 8.1.7. If F : M → N is proper and transverse to S, then for suitable
tubular neighborhoods we have

[F∗ (ηS)] =
[
ηF−1(S)

]
.

PROOF. We can assume that both M and N are embedded in Euclidean space so that
the tangent spaces come with inner product structures. The key is simply to observe that
if T⊥ (S⊂ N) is the normal bundle, then the pullback bundle F∗T⊥ is isomorphic to the
normal bundle T⊥

(
F−1 (S)⊂M

)
. Since F is transverse to S it follows that each fiber

T⊥x F−1 (S) is mapped to a subspace DF
(
T⊥x F−1 (S)

)
that is a complement to TF(x)S ⊂

TF(x)N. We can then orthogonally project it onto T⊥F(x)S to obtain an isomorphism

projT⊥S ◦DF |T⊥F−1(S) : T⊥x F−1 (S)→ F∗
(

T⊥F(x)S
)
.
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This isomorphism is orientation preserving as the orientation on T⊥x F−1 (S) is chosen to
agree with the orientation for DF

(
T⊥x F−1 (S)

)
as in section 5.4.1. □

A special interesting case of naturality occurs for submanifolds.

COROLLARY 8.1.8. If Sk1
1 ,Sk2

2 ⊂ N are compact, transverse and oriented, then with
suitable orientations on S1∩S2 the dual is given by

[ηS1 ∧ηS2 ] = [ηS1∩S2 ] .

PROOF. We have the inclusions S1 ∩ S2 ⊂ S1 ⊂ U and ηS1∩Ss = i∗ (ηS2) since the
inclusion i : S1→ N is transverse to S2. Thus for ω ∈Ωn−k1−k2 (N) we see that∫

N
ηS1 ∧ηS2 ∧ω =

∫
S1

i∗ (ηS2 ∧ω) =
∫

S1

η
S1
S1∩Ss

∧ i∗ (ω) =
∫

S1∩Ss

ω

showing that ηS1 ∧ηS2 represents the dual to S1∩Ss ⊂ N. □

We can also apply the naturality of the dual to obtain a new formula for intersection
numbers.

COROLLARY 8.1.9. If dimM+dimS = dimN, and F : M→ N is proper, then

I (F,S) =
∫

M
F∗ (ηS) =

∫
M

F∗
(
η

N
S
)
.

PROOF. We can assume that F is transverse to S as in corollary 8.1.7. Here F−1 (S)
is a finite collection of points and its normal bundle F−1 (S) is simply the tangent spaces
at these points. Similarly, the pullback bundle F∗

(
T⊥S

)
consists of finitely many vector

spaces that can be identified with the tangent spaces to M via projT⊥S ◦DF . The orientation
of the fibers T⊥x F−1 (S)≃ F∗

(
T⊥S

)
x ≃ T⊥F(x)S are chosen so that the isomorphisms are ori-

entation preserving. This might not agree with the orientation of TxM (as in section 5.4.1)
thus assigning signx = ±1 as an orientation for each x ∈ F−1 (S). The sum of these signs
is precisely the intersection number. Next identify T⊥x F−1 (S) with a tubular neighborhood
V ⊃F−1 (S), i.e., a finite collection of pairwise disjoint discs Vx, and use proposition 1.4.22
to select a tubular neighborhood U ⊃ S corresponding to T⊥S such that F−1 (U)⊂V . The
orientation choice of x gives us the crucial difference between integrating F∗

(
ηT⊥S

S

)
and

F∗
(
ηU

S

)
: ∫

T⊥x F−1(S)
F∗
(

η
T⊥S
S

)
= signx

∫
Vx

F∗
(
η

U
S
)

and thus

I (F,S) =
∫

V
F∗
(
η

U
S
)
.

Finally,

I (F,S) =
∫

V
F∗
(
η

U
S
)
=
∫

M
F∗
(
η

N
S
)
,

since ηS ∈Ωm
c (U)⊂Ωm

c (N) can be used as a representative for
[
ηN

S

]
. □

Note the the integral vanishes when F doesn’t intersect S or when
[
ηN

S

]
= 0. The

advantage of this formula is that the right-hand side can be calculated even when F isn’t
transverse to S. As both sides are invariant under proper homotopies of F this gives us a
more general way of calculating intersection numbers.
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8.2. The Hopf-Lefschetz Formulas

We are going to relate the Euler characteristic and Lefschetz numbers to the cohomol-
ogy of the space.

THEOREM 8.2.1. (Hopf-Poincaré) If M is a closed oriented n-manifold, then

χ (M) = I (∆,∆) = ∑(−1)p dimH p (M) .

PROOF. If we consider the map

(id, id) : M→ ∆,

(id, id)(x) = (x,x) ,

then the Euler characteristic can be computed as the intersection number

χ (M) = I (∆,∆)

= I ((id, id) ,∆)

=
∫

M
(id, id)∗

(
η

M×M
∆

)
.

Thus we need a formula for the Poincaré dual η∆ = η
M×M
∆

. To find this formula we use
Künneth’s formula for the cohomology of the product. To this end select a basis ωi for the
cohomology theory H∗ (M) as well as a dual basis τi, i.e.,∫

M
ωi∧ τ j = δi j,

where the integral is assumed to be zero if the form ωi∧ τ j doesn’t have degree n.
By Künneth’s theorem π∗1 (ωi)∧π∗2 (τ j) is a basis for H∗ (M×M) . The dual basis is

up to a sign given by π∗1 (τk)∧π∗2 (ωl) as we can see by calculating∫
M×M

π
∗
1 (ωi)∧π

∗
2 (τ j)∧π

∗
1 (τk)∧π

∗
2 (ωl)

= (−1)degτ j degτk

∫
M×M

π
∗
1 (ωi)∧π

∗
1 (τk)∧π

∗
2 (τ j)∧π

∗
2 (ωl)

= (−1)degτ j(degτk+degωl)
∫

M×M
π
∗
1 (ωi)∧π

∗
1 (τk)∧π

∗
2 (ωl)∧π

∗
2 (τ j)

= (−1)degτ j(degτk+degωl)

(∫
M

ωi∧ τk

)(∫
M

ωl ∧ τ j

)
= (−1)degτ j(degτk+degωl) δikδl j

Clearly this vanishes unless i = k and l = j.
This can be used to compute η∆ for ∆⊂M×M. We assume that

η∆ = ∑ci jπ
∗
1 (ωi)∧π

∗
2 (τ j) .

On one hand ∫
M×M

η∆∧π
∗
1 (τk)∧π

∗
2 (ωl)

= ∑ci j

∫
M×M

π
∗
1 (ωi)∧π

∗
2 (τ j)∧π

∗
1 (τk)∧π

∗
2 (ωl)

= ∑ci j (−1)degτ j(degτk+degωl) δkiδ jl

= ckl (−1)degτl(degτk+degωl)
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While on the other hand the fact that (id, id) : M→ ∆ is a map of degree 1 tells us that

∫
M×M

η∆∧π
∗
1 (τk)∧π

∗
2 (ωl) =

∫
∆

π
∗
1 (τk)∧π

∗
2 (ωl)

=
∫

M
(id, id)∗ (π∗1 (τk)∧π

∗
2 (ωl))

=
∫

M
τk ∧ωl

= (−1)deg(τk)deg(ωl) δkl .

Thus

ckl (−1)degτl(degωl+degτk) = (−1)degτk degωl δkl

or in other words ckl = 0 unless k = l and in that case

ckk = (−1)degτk(2degωk+degτk)

= (−1)degτk degτk

= (−1)degτk .

This yields the formula

η∆ = ∑(−1)degτi π
∗
1 (ωi)∧π

∗
2 (τi) .

The Euler characteristic can now be computed as follows

χ (M) =
∫

M
(id, id)∗

(
η

M×M
∆

)
=

∫
M
(id, id)∗

(
∑(−1)degτi π

∗
1 (ωi)∧π

∗
2 (τi)

)
= ∑(−1)degτi

∫
M

ωi∧ τi

= ∑(−1)degτi

= ∑(−1)p dimH p (M) .

□

A generalization of this leads us to a similar formula for the Lefschetz number of a
map F : M→M.

THEOREM 8.2.2. (Lefschetz) If F : M→M, then

L(F) = I (graph(F) ,∆) = ∑(−1)p tr(F∗ : H p (M)→ H p (M)) .
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PROOF. This time we use the map (id,F) : M→ graph(F) sending x to (x,F (x)) to
compute the Lefschetz number

I (graph(F) ,∆) =
∫

M
(id,F)∗η∆

=
∫

M
(id,F)∗

(
∑(−1)degτi π

∗
1 (ωi)∧π

∗
2 (τi)

)
= ∑(−1)degτi

∫
M

ωi∧F∗τi

= ∑(−1)degτi

∫
M

ωi∧Fi jτ j

= ∑(−1)degτi Fi jδi j

= ∑(−1)degτi Fii

= ∑(−1)p tr(F∗ : H p (M)→ H p (M)) .

□

The definition I (graph(F) ,∆) for the Lefschetz number is not consistent with [Guillemin-Pollack].
But if we use their definition, then the formula we just established would have a sign
(−1)dimM on it. This is a very common confusion in the general literature.

8.3. Examples of Lefschetz Numbers

It is in fact true that tr(F∗ : H p (M)→ H p (M)) is always an integer, but to see this
requires that we know more algebraic topology. In the cases we study here this can be
established directly. Two cases where we do know this to be true are when p = 0 or
p = dimM and M is compact, connected and oriented, in those cases

tr
(
F∗ : H0 (M)→ H0 (M)

)
= 1,

tr(F∗ : Hn (M)→ Hn (M)) = degF.

8.3.1. Spheres and Real Projective Spaces. The simplicity of the cohomology of
spheres and odd dimensional projective spaces now immediately give us the Lefschetz
number in terms of the degree.

When F : Sn → Sn we have L(F) = 1 + (−1)n degF. This confirms that any map
without fixed points must be homotopic to the antipodal map and therefore have degree
(−1)n+1 .

When F : RP2n+1 → RP2n+1 we have L(F) = 1− deg(F) . This also conforms with
our feeling for what happens with orthogonal transformations. Namely, if F ∈ Gl+2n+2 (R),
then it is possible to not have a fixed point as F : R2n+2→R2n+2 might not have an eigen-
vector. On the other hand, if F ∈Gl−2n+2 (R), then there should be at least two fixed points.

The even dimensional version F : RP2n→ RP2n is a bit trickier as the manifold isn’t
orientable and thus our above approach doesn’t work. However, as the only nontrivial
cohomology group is when p = 0 we would expect the mod 2 Lefschetz number to be 1
for all F. When F ∈ Gl2n+1 (R) , this is indeed true as such maps have an odd number of
real eigenvalues. For general F we can lift to a map F̃ : S2n→ S2n satisfying the symmetry
condition

F̃ (−x) =±F̃ (x) .
The sign ± must be consistent on the entire sphere. If it is + then we have that F̃ ◦A = F̃ ,

where A is the antipodal map. This shows that deg F̃ · (−1)2n+1 = deg F̃ , and hence that
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deg F̃ = 0. In particular, F̃ and also F must have a fixed point. If the sign is − and we
assume that F̃ doesn’t have a fixed point, then the homotopy to the antipodal map

H (x, t) =
(1− t) F̃ (x)− tx∣∣(1− t) F̃ (x)− tx

∣∣
must also be odd

H (−x, t) =
(1− t) F̃ (−x)− t (−x)∣∣(1− t) F̃ (−x)− t (−x)

∣∣
= − (1− t) F̃ (x)− t (x)∣∣(1− t) F̃ (x)− t (x)

∣∣
= −H (x, t) .

This implies that F is homotopic to the identity on RP2n and thus L(F) = L(id) = 1.

8.3.2. Tori. Next let us consider M = T n. The torus is a product of n circles. If we let
dθ be a generator for H1

(
S1
)

and dθi = π∗i (dθ), where πi : T n→ S1 is the projection onto
the ith factor, then example 7.2.7 or Künneth’s formula (theorem 7.6.1) tells us that H p (T n)
has a basis of the form dθi1 ∧ ·· · ∧ dθip , i1 < · · · < ip. Thus F∗ is entirely determined by
knowing what F∗ does to dθi. We write F∗ (dθi) = αi jdθ j. The action of F∗ on the basis
dθi1 ∧·· ·∧dθip , i1 < · · ·< ip is

F∗
(
dθi1 ∧·· ·∧dθip

)
= F∗ (dθi1)∧·· ·∧F∗

(
dθip

)
= αi1 j1dθ j1 ∧·· ·∧αip jpdθ jp

=
(
αi1 j1 · · ·αip jp

)
dθ j1 ∧·· ·∧dθ jp

this is zero unless j1, ..., jp are distinct. Even then, these indices have to be reordered thus
introducing a sign. Note also that there are p! ordered j1, ..., jp that when reordered to
be increasing are the same. To find the trace we are looking for the “diagonal” entries,
i.e., those j1, ..., jp that when reordered become i1, ..., ip. If S (i1, ..., ip) denotes the set of
permutations of i1, ..., ip then we have shown that

trF∗|H p(T n) = ∑
i1<···<ip

∑
σ∈S(i1,...,ip)

sign(σ)αi1σ(i1) · · ·αipσ(ip).

This leads us to the formula

L(F) =
n

∑
p=0

(−1)p
∑

i1<···<ip

∑
σ∈S(i1,...,ip)

sign(σ)αi1σ(i1) · · ·αipσ(ip).

We claim that this can be simplified considerably by making the observation

det(δi j−αi j) = ∑
σ∈S(1,...,n)

sign(σ)
(
δ1σ(1)−α1σ(1)

)
· · ·
(
δnσ(n)−αnσ(n)

)
= ∑

σ∈S(1,...,n)
sign(σ)(−1)p

αi1σ(i1) · · ·αipσ(ip)δip+1σ(ip+1) · · ·δinσ(in),

where in the last sum
{

i1, ..., ip, ip+1, ..., in
}
= {1, ...,n} . Since the terms vanish unless the

permutation fixes ip+1, ..., in we have shown that

L(F) = det(δi j−αi j) .

Finally we claim that the n×n matrix [αi j] has integer entries. To see this first lift F
to F̃ : Rn → Rn and think of T n = Rn/Zn where Zn is the usual integer lattice. Let ei be
the canonical basis for Rn and observe that ei ∈ Zn. The fact that F̃ is a lift of a map in T n
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means that F̃ (x+ ei)− F̃ (x) ∈ Zn for all x and i = 1, ...,n. Since F̃ is continuous we see
that

F̃ (x+ ei)− F̃ (x) = F̃ (ei)− F̃ (0) = Aei ∈ Zn

For some A = [ai j] ∈Matn×n (Z) . We can then construct a linear homotopy

H (x, t) = (1− t) F̃ (x)+ t (Ax) .

Since

H (x+ ei, t) = (1− t) F̃ (x+ ei)+ tA(x+ ei)

= (1− t)
(
F̃ (x)+Aei

)
+ t (Ax+Aei)

= (1− t)
(
F̃ (x)

)
+ t (Ax)+Aei

= H (x, t)+Aei

we see that this defines a homotopy on T n as well. Thus showing that F is homotopic to
the linear map A on T n. This means that F∗ = A∗. Since A∗ (dθi) = a jidθ j, we have shown
that [αi j] is an integer valued matrix.

8.3.3. Complex Projective Space. The cohomology groups of Pn = CPn vanish in
odd dimensions and are one dimensional in even dimensions. The trace formula for the
Lefschetz number therefore can’t be too complicated. It turns out to be even simpler and
completely determined by the action of the map on H2 (Pn) , analogously with what hap-
pened on tori. To establish this we need to show that any generator [ω] ∈ H2 (Pn) has the
property that

[
ωk
]
∈ H2k (Pn) is a generator (see also example 7.2.6 for a different proof).

We can use induction on n to show this. Fix Pn−1 ⊂ Pn and recall from section 7.2 that
H2k (Pn)→ H2k

(
Pn−1

)
is an isomorphism for k ≤ n− 1. We can now use the induction

hypothesis to claim that
[
ωk|Pn−1

]
∈ H2k

(
Pn−1

)
are nontrivial for k ≤ n−1. This in turn

shows that
[
ωk
]
∈ H2k (Pn) are nontrivial for k ≤ n−1. Finally, since the duality pairing

H2 (Pn)×H2(n−1) (Pn) → H2n (Pn) ,

([ω1] , [ω2]) 7→ [ω1∧ω2]

is nondegenerate it follows that [ωn] =
[
ω ∧ωn−1

]
∈ H2n (Pn) is a generator.

Now let F : Pn→ Pn and define λ by F∗ (ω) = λω. Then F∗
(
ωk
)
= λ kωk and

L(F) = 1+λ + · · ·+λ
n.

If λ = 1 this gives us L(F) = n+1, which was the answer we got for maps from Gln+1 (C) .
In particular, the Euler characteristic χ (Pn) = n+ 1. When λ ̸= 1, the formula simplifies
to

L(F) =
1−λ n+1

1−λ
.

Since λ is real we note that this can’t vanish unless λ = −1 and n+ 1 is even. Thus all
maps on P2n have fixed points, just as on RP2n. On the other hand P2n+1 does admit a map
without fixed points, it just can’t come from a complex linear map. Instead we just select
a real linear map without fixed points that still yields a map on P2n+1

I
([

z0 : z1 : · · ·
])

=
[
−z̄1 : z̄0 : · · ·

]
.

If I fixes a point then

−λ z̄1 = z0,

λ z̄0 = z1
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which implies

−|λ |2 zi = zi

for all i. Since this is impossible the map does not have any fixed points.
Finally we should justify why λ is an integer. Let F1 = F |P1 : P1 → Pn and observe

that

λ [ω] = [F∗ (ω)] = [F∗1 (ω)] .

We now claim that F1 is homotopic to a map P1→ P1. To see this note that F1
(
P1
)
⊂ Pn

is compact and has measure 0 by Sard’s theorem. Thus we can find p /∈ im(F1)∪ P1.
This allows us to deformation retract Pn − p to a Pn−1 ⊃ P1. This Pn−1 might not be
perpendicular to p in the usual metric, but one can always select a metric where p and P1

are perpendicular and then use the Pn−1 that is perpendicular to p. Thus F1 : P1 → Pn is
homotopic to a map F2 : P1 → Pn−1. We can repeat this argument until we obtain a map
Fn : P1→ P1 homotopic to the original F1. This implies that

λ [ω] = [F∗ (ω)] = [F∗n (ω)]

and consequently λ = deg(Fn).
The next two examples show two different approaches to finding a specific form ω .

The first example is an abstract construction that yields a unique form, the second offers a
concrete calculation of the form in coordinates.

EXAMPLE 8.3.1. The form ω that generates H2
(
P2
)

can be constructed to have the
property that

∫
P1 ω = 1 for all P1 ⊂ Pn. Recall that we showed in example 7.2.6 that

the space of U (n+1) invariant 2-forms is 1-dimensional. So it is clear that we can find
ω ∈Ω2

U(n+1) (P
n) such that

∫
P1 ω = 1 for a specific P1 ⊂ Pn. However, U (n+1) also acts

transitively on the space of P1s in Pn. Specifically, a P1 corresponds to a complex subspace
of dimension 2 in Cn+1 and for any two such subspaces there is a unitary transformation
that takes one into the other. This shows that our chosen 2-form also integrates to 1 on all
other P1 ⊂ Pn.

EXAMPLE 8.3.2. With a bit of complex analysis notation we obtain a more concrete
construction.

Using the submersion Cn+1 − {0} → Pn that sends
(
z0, ...,zn

)
to
[
z0 : · · · : zn

]
we

should be able to construct ω on Cn+1−{0}. A bit of auxiliary notation is needed to
define the desired 2-form ω on Cn+1−{0}:

dzi = dxi +
√
−1dyi,

dz̄i = dxi−
√
−1dyi,

∂ f
∂ zi =

1
2

(
∂ f
∂xi −

√
−1

∂ f
∂yi

)
,

∂ f
∂ z̄i =

1
2

(
∂ f
∂xi +

√
−1

∂ f
∂yi

)
∂ f =

∂ f
∂ zi dzi,

∂̄ f =
∂ f
∂ z̄i dz̄i.
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The factor 1
2 and strange signs ensure that the complex differentials work as one would

think

dz j
(

∂

∂ zi

)
=

∂ z j

∂ zi = δ
j

i =
∂ z̄ j

∂ z̄i = dz̄ j
(

∂

∂ z̄i

)
,

dz j
(

∂

∂ z̄i

)
= 0 = dz̄ j

(
∂

∂ zi

)
More generally we can define ∂ω and ∂̄ω for complex valued forms by simply computing
∂ and ∂̄ of the coefficient functions just as the local coordinate definition of d, specifically

∂
(

f dzi1 ∧·· ·∧dzip ∧dz̄ j1 ∧·· ·∧dz̄ jq
)

= ∂ f ∧dzi1 ∧·· ·∧dzip ∧dz̄ j1 ∧·· ·∧dz̄ jq ,

∂̄
(

f dzi1 ∧·· ·∧dzip ∧dz̄ j1 ∧·· ·∧dz̄ jq
)

= ∂̄ f ∧dzi1 ∧·· ·∧dzip ∧dz̄ j1 ∧·· ·∧dz̄ jq .

With this definition we see that

d = ∂ + ∂̄ ,

∂
2 = ∂̄

2 = ∂ ∂̄ + ∂̄ ∂ = 0

and the Cauchy-Riemann equations for holomorphic functions can be stated as

∂̄ f = 0.

Working on Cn+1−{0} define

Φ(z) = log |z|2

= log
(
z0z̄0 + · · ·+ znz̄n)

and

ω =

√
−1

2π
∂ ∂̄Φ.

As |z|2 is invariant under U (n+1) the form ω will also be invariant. If we multiply z ∈
Cn+1−{0} by a nonzero scalar λ then

Φ(λ z) = log
(
|λ z|2

)
= log |λ |2 + log |z|2

= log |λ |2 +Φ(z)

so when taking derivatives the constant log |λ |2 disappears. This shows that the form ω

becomes invariant under multiplication by complex scalars and so defines a form on Pn.
That said, it is not possible to define Φ on all of Pn. We give a local coordinate representa-
tion below. It is called the potential, or Kähler potential, of ω. Note that the form is exact
on Cn+1−{0} since

∂ ∂̄ =
(
∂ + ∂̄

)
∂̄ = d∂̄ .

To show that ω is a nontrivial element of H2 (Pn) it suffices to show that
∫
P1 ω ̸= 0.

By deleting a point from P1 we can coordinatize it by C. Specifically we consider

P1 =
[
z0 : z1 : 0 : · · · : 0

]
,
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and coordinatize P1−{[0 : 1 : 0 : · · · : 0]} by z 7→ [1 : z : 0 : · · · : 0] . Then

ω =

√
−1

2π
∂ ∂̄ log(1+ zz̄)

=

√
−1

2π

(
∂

(
zdz̄

1+ |z|2

))

=

√
−1

2π

 ∂ (zdz̄)

1+ |z|2
−
(

∂

(
1+ |z|2

))
∧ zdz̄(

1+ |z|2
)2


=

√
−1

2π

 dz∧dz̄

1+ |z|2
− (z̄dz)∧ zdz̄(

1+ |z|2
)2


=

√
−1

2π

 dz∧dz̄

1+ |z|2
− |z|

2 dz∧dz̄(
1+ |z|2

)2


=

√
−1

2π

dz∧dz̄(
1+ |z|2

)2

=

√
−1

2π

d
(
x+
√
−1y

)
∧d
(
x−
√
−1y

)
(1+ x2 + y2)2

=

√
−1

2π

2
√
−1dy∧dx

(1+ x2 + y2)2

=
1
π

dx∧dy

(1+ x2 + y2)2

=
1
π

rdr∧dθ

(1+ r2)2

If we delete the π in the formula this is the volume form for the sphere of radius 1
2 in

stereographic coordinates, or the volume form for that sphere in Riemann’s conformally
flat model. Specifically, ∫

P1
ω =

∫
P1−{[0:1:0:···:0]}

ω

=
∫
C

1
2π
√
−1

dz̄∧dz(
1+ |z|2

)2

=
∫
R2

1
π

dx∧dy

(1+ x2 + y2)2

=
1
π

∫
∞

0

∫ 2π

0

rdr∧dθ

(1+ r2)2

=
∫

∞

0

2rdr

(1+ r2)2

= 1.
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This tells us that the concretely defined form is the unique form described abstractly
in the previous example.

We can more generally calculate ω in the coordinates z =
(
z1, ...,zn

)
∈Cn correspond-

ing to points
[
1 : z1 : · · · : zn

]
∈ Pn.

ω =

√
−1

2π
∂ ∂̄ log

(
1+ z1z̄1 + · · ·+ znz̄n)

=

√
−1

2π
∂ ∂̄ log

(
1+ |z|2

)
=

√
−1

2π

(
∂

(
∂̄ |z|2

1+ |z|2

))

=

√
−1

2π

 ∂ ∂̄ |z|2

1+ |z|2
− ∂ |z|2∧ ∂̄ |z|2(

1+ |z|2
)2


=

√
−1

2π

(
1+ |z|2

)2

((
1+ |z|2

)
∂ ∂̄ |z|2−∂ |z|2∧ ∂̄ |z|2

)

and in coordinates

ω =

√
−1

2π
∂ ∂̄ log

(
1+ |z|2

)
=

√
−1

2π

∂ 2 log
(

1+ |z|2
)

∂ zi∂ z̄ j dzi∧dz̄ j

=

√
−1

2π
Fi j̄dzi∧dz̄ j.

Here the matrix
[
Fi j̄
]

is Hermitian and in fact positive definite. The entries are given by

Fi j̄ =

(
1+ |z|2

)
δi j− z j z̄i(

1+ |z|2
)2 .

Here
[
z j z̄i
]
= z · z∗, where z∗ is the adjoint of the column matrix z. The kernel of z ·

z∗ consists of all the vectors orthogonal to z and z is an eigenvector with eigenvalue
|z|2. This gives the eigenspace decomposition for

[
Fi j̄
]
. Specifically, n− 1 eigenvectors

with eigenvalue 1
1+|z|2

and one eigenvector with eigenvalue 1

(1+|z|2)
2 . Thus det

[
Fi j̄
]
=(

1+ |z|2
)−n−1

.
We can now calculate

ω
n =

(√
−1

2π

)n (
Fi j̄dzi∧dz̄ j)n

=

(√
−1

2π

)n (
Fi1 j̄1 · · ·Fin j̄ndzi1 ∧dz̄ j1 ∧·· ·∧dzin ∧dz̄ jn

)
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Now note that this vanishes unless all of the indices i1, ..., in, as well as j1, ..., jn, are dis-
tinct. After rearraging we obtain

ω
n =

(√
−1

2π

)n

sign(i1, ..., in)sign( j1, ..., jn)Fi1 j̄1 · · ·Fin j̄ndz1∧dz̄1∧·· ·∧dzn∧dz̄n

=

(√
−1

2π

)n

n!det
[
Fi j̄
]

dz1∧dz̄1∧·· ·∧dzn∧dz̄n

=
n!

πn
(

1+ |z|2
)n+1 dx1∧dy1∧·· ·∧dxn∧dyn

and∫
Pn

ω
n =

∫
Pn−Pn−1

ω
n =

∫
R2n

πn!

 1

π

(
1+ |z|2

)
n+1

dx1∧dy1∧·· ·∧dxn∧dyn > 0.

This shows that ωn is a volume form and that ωk ∈ H2k (Pn) is a generator for all k =
0, ...,n.

8.4. Exercises

(1) Show that a map F : S2× S2 → CP2 has even degree. Hint: Use suitable ω ∈
Ω2
(
CP2

)
and ω ′ ∈ Ω2

(
S2
)

that can be used to generate volume forms on CP2

and S2×S2.
(2) Show that there are classes in H1

(
T 2
)

which are not duals to closed 1-dimensional
submanifolds of T 2.

(3) Show that if E →M is a vector bundle with dimEx = m, x ∈M, then H∗c (M) ≃
H∗+m

c (E), provided M and E are oriented manifolds. Show that the Möbius band
is a counterexample in case E is not orientable.



CHAPTER 9

Characteristic Classes

9.1. The Euler Class

We are interested in studying duals and in particular Euler classes in the special case
where we have a vector bundle π : E → M and M is thought of a submanifold of E by
embedding it into E via the zero section. The total space E is assumed oriented in such
a way that a positive orientation for the fibers together with a positive orientation of M
gives us the orientation for E. The dimensions are set up so that the fibers of E→M have
dimension m.

The dual ηE
M ∈ Hm

c (E) is in this case usually called the Thom class of the bundle
E → M. The embedding M ⊂ E is proper so by restriction to M this dual defines a class
[e(E)] = i∗

(
ηE

M
)
∈Hm (M) called the Euler class (note that we only defined duals to closed

submanifolds so Hc (M) = H (M) .) Since all sections s : M→ E are homotopy equivalent
we see that e(E) = s∗ηM. This immediately proves a very interesting theorem.

THEOREM 9.1.1. If a bundle π : E→M has a nowhere vanishing section then e(E) =
0.

PROOF. Let s : M→ E be a section and consider C · s for a large constant C. Then the
image of C ·s must be disjoint from the compact support of ηM and hence s∗ (ηM) = 0. □

This Euler class is also natural

PROPOSITION 9.1.2. Let F : N→M be a map that is covered by a vector bundle map
F̄ : E ′→ E, i.e., F̄ is a linear orientation preserving isomorphism on fibers. Then

e
(
E ′
)
= F∗ (e(E)) .

An example is the pull-back vector bundle is defined by

F∗ (E) = {(p,v) ∈ N×E | π (v) = F (q)} .

Reversing orientation of fibers changes the sign of ηE
M and hence also of e(E). Using

F = id and F̄ (v) =−v yields an orientation reversing bundle map when k is odd, showing
that e(E) = 0. Thus we usually only consider Euler classes for even dimensional bundles.

The Euler class can also be used to detect intersection numbers. In case M and the
fibers have the same dimension, we can define the intersection number I (s,M) of a section
s : M→ E with the zero section or simply M. The formula is

I (s,M) =
∫

M
s∗ (e(E))

=
∫

M
e(E)

since all sections are homotopy equivalent to the zero section.

152
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In the special case of the tangent bundle to an oriented manifold M we already know
that the intersection number of a vector field X with the zero section is the Euler character-
istic. Thus

χ (M) = I (X ,M) =
∫

M
e(T M)

This result was first proven by Hopf and can be used to compute χ using a triangula-
tion. This is explained in [Guillemin-Pollack] and [Spivak].

THEOREM 9.1.3. The Euler class is characterized by

η
E
M ∧π

∗ (eE
M
)
= η

E
M ∧η

E
M ∈ H2m

c (E) .

In particular, eE
M = 0 if m is odd.

PROOF. Since π∗
(
eE

M
)

and ηE
M represent the same class in Hm (E) we have that

π
∗ (eE

M
)
−η

E
M = dω.

Then

η
E
M ∧π

∗ (eE
M
)
−η

E
M ∧η

E
M = η

E
M ∧ (dω)

= d
(
η

E
M ∧ω

)
.

Since ηE
M ∧ω is compactly supported this shows that ηE

M ∧π∗
(
eE

M
)
= ηE

M ∧ηE
M .

Moreover, as the map

Hm (M) → H2m
c (E) ,

e 7→ η
E
S ∧π

∗ (e)

is injective, it follows that that the relation ηE
S ∧π∗ (e) = ηE

S ∧ηE
S implies that e = eE

M . In
particular, eS = 0 when ηE

S ∧ηE
S = 0. This applies to the case when m is odd as

η
E
S ∧η

E
S =−η

E
S ∧η

E
S .

□

The Euler class has other natural properties when we do constructions with vector
bundles.

THEOREM 9.1.4. Given two vector bundles E → M and E ′ → M, the Whitney sum
has Euler class

e
(
E⊕E ′

)
= e(E)∧ e

(
E ′
)
.

PROOF. As we have a better characterization of duals we start with a more general
calculation.

Let π : E →M and π ′ : E ′→M′ be bundles and consider the product bundle π×π ′ :
E×E ′→M×M′. With this we have the projections π1 : E×E ′→ E and π2 : E×E ′→ E ′.
Restricting to the zero sections gives the projections π1 : M×M′→M and π2 : M×M′→
M′. We claim that

ηM×M′ = (−1)n·m′
π
∗
1 (ηM)∧π

∗
2 (ηM′) ∈ Hm+m′

c
(
E×E ′

)
.

Note that since the projections are not proper it is not clear that π∗1 (ηM)∧ π∗2 (ηM′) has
compact support. However, the support must be compact when projected to E and E ′ and
thus be compact in E ×E ′. To see the equality we select volume forms ω ∈ Hn (M) and
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ω ′ ∈ Hn′ (M′) that integrate to 1. Then π∗1 (ω)∧π∗2 (ω
′) is a volume form on M×M′ that

integrates to 1. Thus it suffices to compute∫
E×E ′

π
∗
1 (ηM)∧π

∗
2 (ηM′)∧

(
π×π

′)∗ (
π
∗
1 (ω)∧π

∗
2
(
ω
′))

=
∫

E×E ′
π
∗
1 (ηM)∧π

∗
2 (ηM′)∧π

∗
1 (π

∗ (ω))∧π
∗
2
((

π
′)∗ (

ω
′))

= (−1)n·m′
∫

E×E ′
π
∗
1 (ηM)∧π

∗
1 (π

∗ (ω))∧π
∗
2 (ηM′)∧π

∗
2
((

π
′)∗ (

ω
′))

= (−1)n·m′
(∫

E
ηM ∧π

∗ (ω)

)(∫
E ′

ηM′ ∧
(
π
′)∗ (

ω
′))

= (−1)n·m′ .

When we consider Euler classes this gives us

e
(
E×E ′

)
= π

∗
1 (e(E))∧π

∗
2
(
e
(
M′
))
∈ Hm+m′

c
(
M×M′

)
.

The sign is now irrelevant since e(M′) = 0 if m′ is odd.
The Whitney sum E⊕E ′→M of two bundles over the same space is gotten by tak-

ing direct sums of the vector space fibers over points in M. This means that E ⊕ E ′ =
(id, id)∗ (E×E ′) where (id, id) : M→M×M since

(id, id)∗
(
E×E ′

)
=
{(

p,v,v′
)
∈M×E×E ′ : π (v) = p = π

′ (v′)}= E⊕E ′.

Thus we get the formula
e
(
E⊕E ′

)
= e(E)∧ e

(
E ′
)
.

□

This implies

COROLLARY 9.1.5. If a bundle π : E → M admits an orientable odd dimensional
sub-bundle F ⊂ E, then e(E) = 0.

PROOF. We have that E = F ⊕E/F or if E carries an inner product structure E =
F⊕F⊥. Now orient F and then E/F so that F⊕E/F and E have compatible orientations.
Then e(E) = e(F)∧ e(E/F) = 0. □

Note that if there is a nowhere vanishing section, then there is a 1 dimensional ori-
entable subbundle. So this recaptures our earlier vanishing theorem. Conversely any ori-
entable 1 dimensional bundle is trivial and thus yields a nowhere vanishing section.

A meaningful theory of invariants for vector bundles using forms should try to avoid
odd dimensional bundles altogether. The simplest way of doing this is to consider vector
bundles where the vector spaces are complex and then insist on using only complex and
Hermitian constructions. This will be investigated further below.

The trivial bundles Rm⊕M all have e(Rm⊕M) = 0. This is because these bundles are
all pull-backs of the bundle Rm⊕{0} , where {0} is the 1 point space.

To compute e(τ (Pn)) recall that τ (Pn) is the conjugate of Pn+1−{p} → Pn which
has dual ηPn = ω. Since conjugation reverses orientation on 1 dimensional bundles this
shows that e(τ (Pn)) =−ω.

Since χ (Pn) = n+1 we know that e(TPn) = (n+1)ωn.
We go on to describe how the dual and Euler class can be calculated locally. Assume

that M is covered by sets Uk such that E|Uk is trivial and that there is a partition of unit λk
relative to this covering.
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First we analyze what the dual restricted to the fibers might look like. For that purpose
we assume that the fiber is isometric to Rm. We select a volume form ψ ∈ Ωm−1

(
Sm−1

)
that integrates to 1 and a bump function ρ : [0,∞)→ [−1,0] that is −1 on a neighborhood
of 0 and has compact support. Then extend ψ to Rm−{0} and consider

d (ρψ) = dρ ∧ψ.

Since dρ vanishes near the origin this is a globally defined form with total integral∫
Rm

dρ ∧ψ =
∫

∞

0
dρ

∫
Sm−1

ψ

= (ρ (∞)−ρ (0))
= 1.

Each fiber of E carries such a form. The bump function ρ is defined on all of E by ρ (v) =
ρ (|v|) , but the “angular” form ψ is not globally defined. As we shall see, the Euler class
is the obstruction for ψ to be defined on E. Over each Uk the bundle is trivial so we do get
a closed form ψk ∈ Ωm−1

(
S
(
E|Uk

))
that restricts to the angular form on fibers. As these

forms agree on the fibers the difference depends only on the footpoints:

ψk−ψl = π
∗
φkl ,

where φkl ∈Ωm−1 (Uk ∩Ul) are closed. These forms satisfy the cocycle conditions

φkl = −φlk,

φki +φil = φkl .

Now define

εk = ∑
i

λiφki ∈Ω
m−1 (Uk)

and note that the cocycle conditions show that

εk− εl = ∑
i

λiφki−∑
i

λiφli

= ∑
i

λi (φki−φli)

= ∑
i

λiφkl

= φkl .

Thus we have a globally defined form e = dεk on M since d (εk− εl) = dφkl = 0. This will
turn out to be the Euler form

e = d

(
∑

i
λiφki

)
= ∑

i
dλi∧φki.

Next we observe that

π
∗
εk−π

∗
εl = ψk−ψl

so

ψ = ψk−π
∗
εk
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defines a form on E. This is our global angular form. We now claim that

η = d (ρψ)

= dρ ∧ψ +ρdψ

= dρ ∧ψ−ρπ
∗dεk

= dρ ∧ψ−ρπ
∗e

is the dual. First we note that it is defined on all of E, is closed, and has compact support.
It yields e when restricted to the zero section as ρ (0) = −1. Finally when restricted to a
fiber we can localize the expression

η = dρ ∧ψk−dρ ∧π
∗
εk−ρπ

∗e.

But both π∗εk and π∗e vanish on fibers so η , when restricted to a fiber, is simply the form
we constructed above whose integral was 1. This shows that η is the dual to M in E and
that e is the Euler class.

We are now going to specialize to complex line bundles with a Hermitian structure on
each fiber. Since an oriented Euclidean plane has a canonical complex structure this is the
same as studying oriented 2-plane bundles. The complex structure just helps in setting up
the formulas.

The angular form is usually denoted dθ as it is the differential of the locally defined
angle. To make sense of this we select a unit length section sk : Uk → S

(
E|Uk

)
. For v ∈

S
(
E|Uk

)
the angle can be defined by

v = hk (v)sk = e
√
−1θk sk.

This shows that the angular form is given by

dθk = −
√
−1

dhk

hk

= −
√
−1d loghk.

Since we want the unit circles to have unit length we normalize this and define

ψk =−
√
−1

2π
d loghk.

On Uk ∩Ul we have that

hlsl = v = hksk

So

(hl)
−1 hksk = sl .

But (hl)
−1 hk now only depends on the base point in Uk ∩Ul and not on where v might be

in the unit circle. Thus

π
∗gkl = gkl ◦π = hk (hl)

−1

where gkl : Uk ∩Ul → S1 satisfy the cocycle conditions

(gkl)
−1 = glk

gkigil = gkl .
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Taking logarithmic differentials then gives us

−
√
−1

2π
π
∗ dgkl

gkl
= −

√
−1

2π
π
∗d log(gkl)

=

(
−
√
−1

2π
d log(hk)

)
−
(
−
√
−1

2π
d log(hl)

)
=

(
−
√
−1

2π

dhk

hk

)
−
(
−
√
−1

2π

dhl

hl

)
.

Thus

εk = −
√
−1

2π
∑

i
λid log(gki) ,

ψ =

(
−
√
−1

2π

dhk

hk

)
−π

∗
εk

e = dεk

= d

(√
−1

2π
∑

i
λid log(gki)

)

=

√
−1

2π
∑

i
dλi∧d log(gki)

This can be used to prove an important result.

LEMMA 9.1.6. Let E→M and E ′→M be complex line bundles, then

e
(
hom

(
E,E ′

))
= −e(E)+ e

(
E ′
)
,

e
(
E⊗E ′

)
= e(E)+ e

(
E ′
)
.

PROOF. Note that the sign ensures that the Euler class vanishes when E = E ′.
Select a covering Uk such that E and E ′ have unit length sections sk respectively tk on

Uk. If we define Lk ∈ hom(E,E ′) such that Lk (sk) = tk, then hk is a unit length section of
hom(E,E ′) over Uk. The transitions functions are

gklsk = sl ,

ḡkltk = tl .

For hom(E,E ′) we see that

Ll (sk) = hk (glksl)

= glkLl (sl)

= glktl
= glkḡkltk
= (gkl)

−1 ḡkltk

Thus

Ll = (gkl)
−1 ḡklLk.
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This shows that

e
(
hom

(
E,E ′

))
= −

√
−1

2π
∑

i
dλi∧d log

(
(gki)

−1 ḡki

)
=

√
−1

2π
∑

i
dλi∧d log(gki)−

√
−1

2π
∑

i
dλi∧d log(ḡki)

= −e(E)+ e
(
E ′
)
.

The proof is similar for tensor products using

sl⊗ tl = (gklsk)⊗ (ḡkltk)

= gkl ḡkl (sk⊗ tk) .

□

9.2. Characteristic Classes

All vector bundles will be complex and for convenience also have Hermitian struc-
tures. Dimensions etc will be complex so a little bit of adjustment is sometimes necessary
when we check where classes live. Note that complex bundles are always oriented since
Glm (C)⊂ Gl+2m (R) .

We are looking for a characteristic class c(E) ∈ H∗ (M) that can be written as

c(E) = c0 (E)+ c1 (E)+ c2 (E)+ · · · ,
c0 (E) = 1 ∈ H0 (M) ,

c1 (E) ∈ H2 (M) ,

c2 (E) ∈ H4 (M) ,

...
cm (E) ∈ H2m (M) ,

cl (E) = 0, l > m

For a 1 dimensional or line bundle we simply define c(E) = 1+ c1 (E) = 1+ e(E) . There
are two more general properties that these classes should satisfy. First they should be
natural in the sense that

c(E) = F∗
(
c
(
E ′
))

where F : M→M′ is covered by a complex bundle map E→ E ′ that is an isomorphism on
fibers. Second, they should satisfy the product formula

c
(
E⊕E ′

)
= c(E)∧ c

(
E ′
)

=
m+m′

∑
p=0

p

∑
i=0

ci (E)∧ cp−i
(
E ′
)

for Whitney sums.
There are two approaches to defining c(E) . In [Milnor-Stasheff] an inductive method

is used in conjunction with the Gysin sequence for the unit sphere bundle. This approach
is explained in the next section. The other method is more abstract, clean, and does not
use the Hermitian structure. It is analogous to the construction of splitting fields in Galois
theory and is due to Grothendieck.
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First we need to understand the cohomology of H∗ (P(E)) . Note that we have a natural
fibration π : P(E)→M and a canonical line bundle τ (P(E)) . The Euler class of the line
bundle is for simplicity denoted

e = e(τ (P(E))) ∈ H2 (P(E)) .

The fibers of P(E)→M are Pm−1 and we note that the natural inclusion i : Pm−1→ P(E)
is also natural for the tautological bundles

i∗ (τ (P(E))) = τ
(
Pm−1)

thus showing that

i∗ (e) = e
(
τ
(
Pm−1)) .

As e
(
τ
(
Pm−1

))
generates the cohomology of the fiber we have shown that the Leray-Hirch

formula for the cohomology of the fibration P(E)→M can be applied. Thus any element
ω ∈ H∗ (P(E)) has an expression of the form

ω =
m

∑
i=1

π
∗ (ωi)∧ em−i

where ωi ∈ H∗ (M) are unique. In particular we can write:

0 = (−e)m +π
∗ (c1 (E))∧ (−e)m−1 + · · ·+π

∗ (cm−1 (E))∧ (−e)+π
∗ (cm (E))

=
m

∑
i=0

π
∗ (ci (E))∧ (−e)m−i

This means that H∗ (P(E)) is an extension of H∗ (M) with a unique monic polynomial

pE (t) = tm + c1 (E) tm−1 + · · ·+ cm−1 (E) t + cm (E)

such that pE (−e) = 0. Moreover, the total Chern class is defined as

pE (1) = c(E) = 1+ c1 (E)+ · · ·+ cm (E) .

The reason for using −e rather than e is that −e restricts to the form ω on the fibers of
P(E) .

THEOREM 9.2.1. Assume that we have vector bundles E →M and E ′→M′ both of
rank m, and a smooth map F : M→M′ that is covered by a bundle map that is fiberwise
an isomorphism. Then

c(E) = F∗
(
c
(
E ′
))

.

PROOF. We start by selecting a Hermitian structure on E ′ and then transfer it to E by
the bundle map. In that way the bundle map preserves the unit sphere bundles. Better yet,
we get a bundle map

π
∗ (E)→

(
π
′)∗ (E ′)

that also yields a bundle map

τ (P(E))→ τ
(
P
(
E ′
))

.

Since the Euler classes for these bundles is natural we have

F∗
(
e′
)
= e
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and therefore

0 = F∗
(

m

∑
i=0

ci
(
E ′
)
∧
(
−e′
)m−i

)

=
m

∑
i=0

F∗ci
(
E ′
)
∧ (−e)m−i

Since ci (E) are uniquely defined by

0 =
m

∑
i=0

ci (E)∧ (−e)m−i

we have shown that

ci (E) = F∗ci
(
E ′
)
.

□

The trivial bundles Cm⊕M all have c(Cm⊕M) = 1. This is because these bundles are
all pull-backs of the bundle Cm⊕{0} , where {0} is the 1 point space.

To compute e(τ (Pn)) recall that τ (Pn) is the conjugate of Pn+1−{p} → Pn which
has dual ηPn = ω. Since conjugation reverses orientation on 1 dimensional bundles this
shows that e(τ (Pn)) =−ω.

The Whitney sum formula is established by proving the splitting principle.

THEOREM 9.2.2. If a bundle π : E →M splits E = L1⊕·· ·⊕Lm as a direct sum of
line bundles, then

c(E) =
m

∏
i=1

(1+ e(Li)) .

PROOF. We pull back all classes to E without changing notation. We know that
c(E) = pE (1) so it suffices to identify pE with the monic polynomial of degree m de-
fioned by p(t) = ∏

m
i=1 (t + e(Li)). To prove this we need to show that

p(−e) =
m

∏
i=1

(−e+ e(Li)) = 0.

Note that we can identify−e+e(Li) with the Euler class of hom(τ,Li). With that in mind:

m

∏
i=1

(−e+ e(Li)) = e

(
m⊕

i=1

Hom(τ,Li)

)
= e(Hom(τ,L1⊕·· ·⊕Lm))

= e(Hom(τ,E))

= e
(

Hom
(

τ,τ⊕ τ
⊥
))

= e(Hom(τ,τ))∧ e
(

Hom
(

τ,τ⊥
))

= 0.

Where the last equality follows from the fact that Hom(τ,τ) has the identity map as a
nowhere vanishing section. □
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The splitting principle can be used to compute c(TPn) . First note that TPn≃Hom
(

τ (Pn) ,τ (Pn)⊥
)
.

Thus

TPn⊕C = Hom
(

τ (Pn) ,τ (Pn)⊥
)
⊕C

= Hom
(

τ (Pn) ,τ (Pn)⊥
)
⊕Hom(τ (Pn) ,τ (Pn))

= Hom
(

τ (Pn) ,τ (Pn)⊥⊕ τ (Pn)
)

= Hom
(
τ (Pn) ,Cn+1)

= Hom(τ (Pn) ,C)⊕·· ·⊕Hom(τ (Pn) ,C) .

Thus

c(TPn) = c(TPn⊕C)
= (1+ω)n+1 .

This shows that

ci (TPn) =

(
n+1

i

)
ω

i

which conforms with

e(TPn) = cn (TPn) = (n+1)ω
n.

We can now finally establish the Whitney sum formula.

THEOREM 9.2.3. For two vector bundles E→M and E ′→M we have

c
(
E⊕E ′

)
= c(E)∧ c

(
E ′
)
.

PROOF. First we repeatedly projectivize so as to create a map Ñ→M with the prop-
erty that it is an injection on cohomology and the pull-back of E to Ñ splits as a direct sum
of line bundles. Then repeat this procedure on the pull-back of E ′ to Ñ until we finally get
a map F : N→M such that F∗ is an injection on cohomology and both of the bundles split

F∗ (E) = L1⊕·· ·⊕Lm,

F∗
(
E ′
)

= K1⊕·· ·⊕Km′

The splitting principle together with naturality then implies that

F∗
(
c
(
E⊕E ′

))
= c

(
F∗
(
E⊕E ′

))
= c(L1)∧·· ·∧ c(Lm)∧ c(K1)∧·· ·∧ c(Km′)

= c(F∗ (E))∧ c
(
F∗
(
E ′
))

= F∗c(E)∧F∗c
(
E ′
)

= F∗
(
c(E)∧ c

(
E ′
))

.

Since F∗ is an injection this shows that

c
(
E⊕E ′

)
= c(E)∧ c

(
E ′
)
.

□
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9.3. The Gysin Sequence

This sequence allows us to compute the cohomology of certain fibrations where the
fibers are spheres. As we saw above, these fibrations are not necessarily among the ones
where we can use the Hirch-Leray formula. This sequence uses the Euler class and will
recapture the dual, or Thom class, from the Euler class.

We start with an oriented vector bundle π : E → M. It is possible to put a smoothly
varying inner product structure on the vector spaces of the fibration, using that such bundles
are locally trivial and gluing inner products together with a partition of unity on M. The
function E→ R that takes v to |v|2 is then smooth and the only critical value is 0. As such
we get a smooth manifold with boundary

D(E) = {v ∈ E : |v| ≤ 1}

called the disc bundle with boundary

S (E) = ∂D(E) = {v ∈ E : |v|= 1}

being the unit sphere bundle and interior

intD(E) = {v ∈ E : |v|< 1} .

Two different inner product structures will yield different disc bundles, but it is easy to see
that they are all diffeomorphic to each other. We also note that intD(E) is diffeomorphic
to E, while D(E) is homotopy equivalent to E. This gives us a diagram

→ H p
c (intD(E)) → H p (D(E)) → H p (S (E)) → H p+1

c (intD(E)) →
↓ ↑ ↕ ↑

→ H p
c (E) → H p (E) → H p (S (E)) 99K H p+1

c (E) →
where the vertical arrows are simply pull-backs and all are isomorphims. The connecting
homomorphism

H p (S (E))→ H p+1
c (intD(E))

then yields a map
H p (S (E)) 99K H p+1

c (E)

that makes the bottom sequence a long exact sequence. Using the Thom isomorphism

H p−m (M)→ H p
c (E)

then gives us a new diagram

→ H p−m (M)
e∧−→ H p (M) → H p (S (E)) 99K H p+1−m (M) →

↓ ηM ∧π∗ (·) ↕ ↕ ↓
→ H p

c (E) → H p (E) → H p (S (E)) → H p+1
c (E) →

Most of the arrows are pull-backs and the vertical arrows are isomorphisms. The first
square is commutative since π∗i∗ (ηM) = π∗ (e) is represented by ηM in Hm (E) . This
is simply because the zero section I : M → E and projection π : E → M are homotopy
equivalences. The second square is obviously commutative. Thus we get a map

H p (S (E)) 99K H p+1−m (M)

making the top sequence exact. This is the Gysin sequence of the sphere bundle of an
oriented vector bundle. The connecting homomorphism which lowers the degree by m−1
can be constructed explicitly and geometrically by integrating forms on S (E) along the
unit spheres, but we won’t need this interpretation.
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The Gysin sequence also tells us how the Euler class can be used to compute the
cohomology of the sphere bundle from M.

To come full circle with the Leray-Hirch Theorem we now assume that E → M is a
complex bundle of complex dimension m and construct the projectivized bundle

P(E) =
{
(p,L) | L⊂ π

−1 (p) is a 1 dimensional subspace
}

This gives us projections
S (E)→ P(E)→M.

There is also a tautological bundle

τ (P(E)) = {(p,L,v) | v ∈ L} .
The unit-sphere bundle for τ is naturally identified with S (E) by

S (E) → S (τ (P(E))) ,
(p,v) → (p,span{v} ,v) .

This means that S (E) is part of two Gysin sequences. One where M is the base and
one where P(E) is the base. These two sequences can be connected in a very interesting
manner.

If we pull back E to P(E) and let

τ
⊥ =

{
(p,L,w) | w ∈ L⊥

}
be the orthogonal complement then we have that

π
∗ (e(E)) = e(π∗ (E)) = e(τ (P(E)))∧ e

(
τ
⊥
)
∈ H∗ (P(E)) .

Thus we obtain a commutative diagram

H p−2 (P(E)) e(τ)∧·−→ H p (P(E))
↘ ↗ ↘ ↗

H p−1 (S (E)) ↑ e
(
τ⊥
)
∧π∗ (·) ↑ π∗ H p (S (E))

↗ ↘ ↗ ↘
H p−2m (M)

e(E)∧·−→ H p (M)

What is more we can now show in two ways that

span
{

1,e, ...,em−1}⊗H∗ (M)→ H∗ (P(E))
is an isomorphism. First we can simply use the Leray-Hirch result by noting that the classes
1,e, ...,em−1 when restricted to the fibers are the usual cohomology classes of the fiber Pm.
Or we can use diagram chases on the above diagram.

9.4. Further Study

There are several texts that expand on the material covered here. The book by [Guillemin-Pollack]
is the basic prerequisite for the material covered in the early chapters. The cohomology
aspects we cover here correspond to a simplified version of [Bott-Tu]. Another text is
the well constructed [Madsen-Tornehave], which in addition explains how characteristic
classes can be computed using curvature. The comprehensive text [Spivak, vol. V] is also
worth consulting for many aspects of the theory discussed here. For a more topological ap-
proach we recommend [Milnor-Stasheff]. Other useful texts are listed in the references.
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