
Additions to Linear Algebra

Peter Petersen

September 26, 2012

Abstract
In this document we’ve added corrections as well as included several

sections that expand upon the material in the text.

1 Corrections
This is were typos will be listed.

59
10

Should read M =
�

(↵
1

, ...,↵

n

) 2 Fn : ↵
j1 = · · · = ↵

j

n�k

= 0
 

103
2

Should read ker (L) = im (L0)
o

Hint for Exercise 2.6.12.b. Many people seem to think that this problem
can only be done using quotient spaces. Here are a few hints towards a solution
that does not use quotient spaces. First observe that �

L

= µ

L

, see also Exercise
2.6.7. Let M ⇢ V be an L-invariant subspace. Let p = µ

L|
M

and factor �

L

=
µ

L

= p · q. Show that M ⇢ ker (p (L)). If M 6= ker (p (L)) select a complement
V = ker (p (L))�N and consider the corresponding block decomposition

L =



A B

0 C

�

where A corresponds to the restriction of L to ker (p (L)). Let r be the char-
acteristic polynomial for C. Show that L is a root of p · r by showing that
r (L) () ⇢ ker (p (L)). Show that µ

L

= p · r and reach a contradiction.
Ignore Exercise 3.3.14

2 Additional Exercises
Exercise 23 gives a beautiful effective algorithm for the Jordan-Chevalley de-
composition for linear operators over any field of characteristic 0.

1. Show directly that an upper triangular matrix

A =

2

6

6

6

4

↵

11

⇤ ⇤
0 ↵

22

⇤
...

. . . ⇤
0 0 · · · ↵

nn

3

7

7

7

5
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is a root of its characteristic polynomial.

2. Show that a linear operator on a finite dimensional complex vector space
admits a basis so that it’s matrix representation is upper triangular. Hint:
Decompose the vector space in to a direction sum of an eigenspace and a
complement and use induction on dimension.

3. Let L : V ! V be a linear operator, where V is not necessarily finite
dimensional. If p 2 F [t] has a factorization p = p

1

· · · p
k

where the factors
p

i

are pairwise relative prime, then

ker (p (L)) = ker (p
1

(L))� · · ·� ker (p
k

(L))

4. Hint: Start with k = 2. The use induction on k and that p

k

is relatively
prime to p

1

· · · p
k�1

.

5. Show that if a linear operator on a finite dimensional vector space is ir-
reducible, i.e., it has no nontrivial invariant subspaces, then its minimal
polynomial is irreducible.

6. Show that if a linear operator on a finite dimensional vector space is in-
decomposable, i.e., the vector space cannot be written as a direct sum
of nontrivial subspaces, then the minimal polynomial is a power of an
irreducible polynomial.

7. Assume that L : V ! V has minimal polynomial m
L

(t) = (t� 1)
3

(t� 2)

and �

L

(t) = (t� 1)
3

(t� 2)
3

. Find the Jordan canonical form for L.

8. Assume that L : V ! V has minimal polynomial m
L

(t) = (t� 1)
3

(t� 2)

and �

L

(t) = (t� 1)
4

(t� 2)
3

. Find the Jordan canonical form for L.

9. Find the Jordan canonical form for the following matrices

(a)

2

6

6

4

0 1 0 0
8 0 1 0
0 0 0 1
�16 0 0 0

3

7

7

5

(b)

2

6

6

4

0 1 0 0
0 0 1 0
0 0 0 1
1 �2 0 2

3

7

7

5

(c)

2

6

6

4

0 0 0 �1
1 0 0 0
0 1 0 2
0 0 1 0

3

7

7

5

10. Find the Jordan canonical form for the following matrices
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(a)

2

6

6

4

0 1 0 �1
0 0 1 �1
0 0 0 0
0 0 0 0

3

7

7

5

(b)

2

6

6

4

0 1

2

�1 �3
0 0 0 �2
0 0 0 �1
0 0 0 0

3

7

7

5

(c)

2

6

6

4

�1 �1 0 0
1 1 0 0
2 2 0 0
1 1 0 0

3

7

7

5

11. Find the Jordan canonical form and also a Jordan basis for D = d

dt

on
each of the following subspaces defined as kernels.

(a) ker
⇣

(D � 1)
2

(D + 1)
2

⌘

.

(b) ker
⇣

(D � 1)
3

(D + 1)
⌘

.

(c) ker
�

D

2 + 2D + 1
�

.

12. Find the Jordan canonical form on P

3

for each of the following operators.

(a) L = T �D, where T (f) (t) = tf (t) .

(b) L = D � T.
(c) L = T �D2 + 3D + 1.

13. For �

1

,�

2

,�

3

2 C decide which of the matrices are similar (the answer
depends on how the �s are related to each other)

2

4

�

1

1 0
0 �

2

1
0 0 �

3

3

5

,

2

4

�

1

0 0
0 �

2

0
0 0 �

3

3

5

,

2

4

�

1

1 0
0 �

2

0
0 0 �

3

3

5

,

2

4

�

1

0 0
0 �

2

1
0 0 �

3

3

5

,

2

4

�

1

0 1
0 �

2

0
0 0 �

3

3

5

14. For each n give examples of n⇥n matrices that are similar but not unitarily
equivalent.

15. Let L : V ! V be a linear operator with

�

L

(t) = (t� �

1

)
n1 · · · (t� �

k

)
n

k

,

m

L

(t) = (t� �

1

)
m1 · · · (t� �

k

)
m

k

.
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If m
i

= 1 or n

i

�m

i

 1 for each i = 1, ..., k, then the Jordan canonical
form is completely determined by �

L

and m

L

. (Note that for some i we
might have m

i

= 1, while for other j the second condition n

j

�m

j

 1
will hold.)

16. Let L : R2 ! R2 be given by


↵ ��
� ↵

�

with respect to the standard

basis. Find the rational canonical form and the basis that yields that
form.

17. Let A 2 Mat
n⇥n

(R) satisfy A

2 = �1Rn

. Find the rational canonical form
for A.

18. Find the real rational canonical forms for the differentiation operator

D : C1 (R,R)! C

1 (R,R)

on each of the following kernels of real functions.

(a) ker
⇣

�

D

2 + 1
�

2

⌘

.

(b) ker
⇣

�

D

2 +D + 1
�

2

⌘

.

19. Let L : V ! V be a linear operator.

(a) If m

L

(t) = p (t) and p is irreducible, then L is semi-simple, i.e.,
completely reducible, i.e., every invaraint subspace has an invariant
complement. Hint: Use that

V = C

x1 � · · ·� C

x

k

,

�

L|
C

x

i

(t) = m

L|
C

x

i

(t) = p (t)

where C

x

i

has no nontrivial invariant subspaces.
(b) If m

L

(t) = p

1

(t) · · · p
k

(t) , where p

1

, ..., p

k

are distinct irreducible
polynomials, then L is semi-simple. Hint: Show that if M ⇢ V is L

invariant then

M = (M \ ker (p
1

(L)))� · · ·� (M \ ker (p
k

(L))) .

20. Assume that F ⇢ L, e.g., R ⇢ C. Let A 2 Mat
n⇥n

(F). Show that A :
Fn ! Fn is semi-simple if and only if A : Ln ! Ln is semi-simple.

21. (The generalized Jordan Canonical Form) Let L : V ! V be a linear
operator on a finite dimensional vector space V .

(a) Assume that
m

L

(t) = (p (t))
m

= �

L

(t) ,

4



where p (t) is irreducible in F [t] . Show that if V = C

x

, then

e

ij

= (p (L))
i�1

(L)
j�1

(x) ,

where i = 1, ...,m and j = 1, ..., deg (p) form a basis for V. Hint: It
suffices to show that they span V.

(b) With the assumptions as in a. and k = deg (p) show that if we order
the basis as follows

e

m1

, ..., e

mk

, e

m�1,1

, ..., e

m�1,k

, ..., e

11

, ..., e

1k

then the matrix representation looks like
2

6

6

6

6

4

C

p

E · · · 0

0 C

p

. . .
...

...
. . .

E

0 · · · 0 C

p

3

7

7

7

7

5

,

E =

2

6

6

6

4

0 · · · 0 1
0 · · · 0 0
...

. . .
...

0 · · · 0 0

3

7

7

7

5

where the companion matrix C

p

appears on the diagonal, the E ma-
trices right above the diagonal and all other entries are zero.

(c) Explain how a. and b. lead to a generalized Jordan canonical form
for any L : V ! V.

(d) (The Jordan-Chevalley decomposition ) Let

m

L

(t) = (p
1

(t))
m1 · · · (p

k

(t))
m

k

be the factorization of the minimal polynomial into distinct irre-
ducible factors. Using the previous exercises show that L = S + N,

where S is semi-simple with m

S

(t) = p

1

(t) · · · p
k

(t), N nilpotent,
S = p (L) , and N = q (L) for suitable polynomials p and q. For a
different proof that creates an effective algorithm see the next couple
of exercises.

22. Let p 2 F [t]. We show how to construct a separable polynomial that has
the same roots as p in the algebraic closure, i.e., a polynomial without
repeated roots in the algebraic closure.

(a) Show that
�

q 2 F [t] : p | qk for some k � 1
 

is is an ideal and there-
fore generated by a unique monic polynomial s

p

.
(b) Show that s

p

| p.
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(c) Show that if q2 | s
p

then q is a constant.
(d) Show that if F has characteristic 0, then

s

p

=
p

gcd {p,Dp} .

23. Let L : V ! V be a linear operator on a finite dimensional vector space.
Let µ be its minimal polynomial and s = s

µ

the corresponding separable
polynomial, and s

0 its derivative. The goal is to show that the Jordan-
Chevalley decomposition L = S + N can be computed via an effective
algorithm. We know that S has to be semi-simple so it is natural to look
for solutions to s(S) = 0. This suggests that we seek S via Newton’s
method

L

k+1

= L

k

� (s0 (L
k

))
�1

s (L
k

)

L

0

= L

where (s0)
�1

(t) = q (t) is interpreted as a polynomial we get from qs

0 +
ps = 1, i.e., the inverse modulo s.

(a) Show that such a q exists and can be computed. Hint: use the
previous exercise.

(b) Show that

L� L

k+1

=

k

X

i=0

q (L
i

) s (L
i

)

(c) Show that L� L

k

is nilpotent for all k.
(d) Use Taylor’s formula for polynomials

f (t+ h) = f (t) + f

0 (t)h+ h

2

g (t, h)

to conclude that there is a polynomial g such that

s (L
k+1

) = (s (L
k

))
2

g (L
k

) .

(e) Finally let m be the smallest integer so that µ | sm and show that
L

k

is semi-simple provided 2k � m.
(f) Conclude that with these choices we obtain a Jordan-Chevalley de-

composition
L = L

k

+ L� L

k

= S +N

where there are suitable polynomial p, r 2 F [t] such that S = p (L)
and N = r (L).

24. Use the previous exercise to show that any invertible L : V ! V , where
V is finite dimensional can be written as

L = SU

where S is the same semi-simple operator as in the Jordan-Chevalley de-
composition, and U is unipotent, i.e., U � 1

V

is nilpotent. Show that
U = q (L) for some polynomial q.
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3 Linear Algebra in Multivariable Calculus
Linear maps play a big role in multivariable calculus and are used in a number
of ways to clarify and understand certain constructions. The fact that linear
algebra is the basis for multivariable calculus should not be surprising as linear
algebra is merely a generalization of vector algebra.

Let F : ⌦ ! Rn be a differentiable function defined on some open domain
⌦ ⇢ Rm

. The differential of F at x

0

2 ⌦ is a linear map DF

x0 : Rm ! Rn that
can be defined via the limiting process

DF

x0 (h) = lim
t!0

F (x
0

+ th)� F (x
0

)

t

.

Note that x

0

+ th describes a line parametrized by t passing through x

0

and
points in the direction of h. This definition tells us that DF

x0 preserves scalar
multiplication as

DF

x0 (↵h) = lim
t!0

F (x
0

+ t↵h)� F (x
0

)

t

= ↵ lim
t!0

F (x
0

+ t↵h)� F (x
0

)

t↵

= ↵ lim
t↵!0

F (x
0

+ t↵h)� F (x
0

)

t↵

= ↵ lim
s!0

F (x
0

+ sh)� F (x
0

)

s

= ↵DF

x0 (h) .

Additivity is another matter however. Thus one usually defines F to be differ-
entiable at x

0

provided we can find a linear map L : Rm ! Rn satisfying

lim
|h|!0

|F (x
0

+ h)� F (x
0

)� L (h)|
|h| = 0

One then proves that such a linear map must be unique and then renames it
L = DF

x0 . If F is continuously differentiable, i.e. all of its partial derivatives
exist and are continuous, then DF

x0 is also given by the n⇥m matrix of partial
derivatives

DF

x0 (h) = DF

x0

0

B

@

2

6

4

h

1

...
h

m

3

7

5

1

C

A

=

2

6

4

@F1
@x1

· · · @F1
@x

m

...
. . .

...
@F

n

@x1
· · · @F

n

@x

m

3

7

5

2

6

4

h

1

...
h

m

3

7

5

=

2

6

4

@F1
@x1

h

1

+ · · ·+ @F1
@x

m

h

m

...
@F

n

@x1
h

1

+ · · ·+ @F

n

@x

m

h

m

3

7

5
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One of the main ideas in differential calculus (of several variables) is that
linear maps are simpler to work with and that they give good local approxima-
tions to differentiable maps. This can be made more precise by observing that
we have the first order approximation

F (x
0

+ h) = F (x
0

) +DF

x0 (h) + o (h) ,

lim
|h|!0

|o (h)|
|h| = 0

One of the goals of differential calculus is to exploit knowledge of the linear map
DF

x0 and then use this first order approximation to get a better understanding
of the map F itself.

In case f : ⌦! R is a function one often sees the differential of f defined as
the expression

df =
@f

@x

1

dx

1

+ · · ·+ @f

@x

m

dx

m

.

Having now interpreted dx

i

as a linear function we then observe that df itself
is a linear function whose matrix description is given by

df (h) =
@f

@x

1

dx

1

(h) + · · ·+ @f

@x

m

dx

m

(h)

=
@f

@x

1

h

1

+ · · ·+ @f

@x

m

h

m

=
h

@f

@x1
· · · @f

@x

m

i

2

6

4

h

1

...
h

m

3

7

5

.

More generally, if we write

F =

2

6

4

F

1

...
F

n

3

7

5

,

then

DF

x0 =

2

6

4

dF

1

...
dF

n

3

7

5

with the understanding that

DF

x0 (h) =

2

6

4

dF

1

(h)
...

dF

n

(h)

3

7

5

.

Note how this conforms nicely with the above matrix representation of the
differential.
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As we shall see in this section many of the things we have learned about linear
algebra can be used to great effect in multivariable calculus. We are going to
study the behavior of smooth vector functions F : ⌦! Rn

, where ⌦ ⇢ Rm is an
open domain. The word smooth is somewhat vague but means that functions
will always be at least continuously differentiable, i.e., (x

0

, h) ! DF

x0 (h) is
continuous. The main idea is simply that a smooth function F is approximated
via the differential near any point x

0

in the following way

F (x
0

+ h) ' F (z
0

) +DF

x0 (h) .

Since the problem of understanding the linear map h ! DF

x0 (h) is much
simpler and this map also approximates F for small h; the hope is that we
can get some information about F in a neighborhood of x

0

through such an
investigation.

The graph of G : ⌦! Rn is defined as the set

Graph (G) = {(x,G (x)) 2 Rm ⇥ Rn : x 2 ⌦} .

We picture it as an m-dimensional curved object. Note that the projection
P : Rm ⇥ Rn ! Rm when restricted to Graph (G) is one-to-one. This is the
key to the fact that the subset Graph (G) ⇢ Rm⇥Rn is the graph of a function
from some subset of Rm

.

More generally suppose we have some curved set S ⇢ Rm+n (S stands for
surface). Loosely speaking, such a set is has dimension m if near every point
z 2 S we can decompose the ambient space Rm+n = Rm ⇥ Rn in such a way
that the projection P : Rm⇥Rn ! Rm when restricted to S, i.e., P |

S

: S ! Rm

is one-to-one near z. Thus S can near z be viewed as a graph by considering
the function G : U ! Rn

, defined via P (x,G (x)) = x. The set U ⇢ Rm is some
small open set where the inverse to P |

S

exists. Note that, unlike the case of a
graph, the Rm factor of Rm+n does not have to consist of the first m coordinates
in Rm+n

, nor does it always have to be the same coordinates for all z. We say
that S is a smooth m-dimensional surface if near every z we can choose the
decomposition Rm+n = Rm ⇥ Rn so that the graph functions G are smooth.

Example 3.1. Let S =
�

z 2 Rm+1 : |z| = 1
 

be the unit sphere. This is an m-
dimensional smooth surface. To see this fix z

0

2 S. Since z
0

= (↵
1

, ...,↵

n+1

) 6= 0,
there will be some i so that ↵

i

6= 0 for all z near z

0

. Then we decompose
Rm+1 = Rm ⇥ R so that R records the i

th coordinate and Rm the rest. Now
consider the equation for S written out in coordinates z = (⇠

1

, ..., ⇠

n+1

)

⇠

2

1

+ · · ·+ ⇠

2

i

+ · · ·+ ⇠

2

n+1

= 1,

and solve it for ⇠

i

in terms of the rest of the coordinates

⇠

i

= ±
r

1�
⇣

⇠

2

1

+ · · ·+ b

⇠

2

i

+ · · ·+ ⇠

2

n+1

⌘

.

Depending on the sign of ↵
i

we can choose the sign in the formula to write S

near z

0

as a graph over some small subset in Rm

. What is more, since ↵

i

6= 0

9



we have that ⇠2
1

+ · · ·+ b⇠2
i

+ · · ·+ ⇠

2

n+1

< 1 for all z = (⇠
1

, ..., ⇠

n+1

) near z
0

. Thus
the function is smooth near (↵

1

, ..., b↵

i

, ...,↵

n+1

) .

The Implicit Function Theorem gives us a more general approach to decide
when surfaces defined using equations are smooth.

Theorem 3.2. (The Implicit Function Theorem) Let F : Rm+n ! Rn be
smooth. If F (z

0

) = c 2 Rn and rank (DF

z0) = n, then we can find a coordinate
decomposition Rm+n = Rm⇥Rn near z

0

such that the set S = {z 2 Rm+n : F (z) = c}
is a smooth graph over some open set U ⇢ Rm

.

Proof. We are not going to give a complete proof this theorem here, but we can
say a few things that might elucidate matters a little. It is convenient to assume
c = 0, this can always be achieved by changing F to F � c if necessary. Note
that this doesn’t change the differential.

First let us consider the simple situation where F is linear. Then DF = F

and so we are simply stating that F has rank n. This means that ker (F ) is m-
dimensional. Thus we can find a coordinate decomposition Rm+n = Rm ⇥ Rn

such that the projection P : Rm+n = Rm ⇥ Rn ! Rm is an isomorphism when
restricted to ker (F ) . Therefore, we have an inverse L to P |

ker(F )

that maps
L : Rm ! ker (F ) ⇢ Rm+n

. In this way we have exhibited ker (F ) as a graph
over Rm

. Since ker (F ) is precisely the set where F = 0 we have therefore solved
our problem.

In the general situation we use that F (z
0

+ h) ' DF

z0 (h) for small h. This
indicates that it is natural to suppose that near z

0

the sets S and {z
0

+ h : h 2 ker (DF

z0)}
are very good approximations to each other. In fact the picture we have in mind
is that {z

0

+ h : h 2 ker (DF

z0)} is the tangent space to S at z
0

. The linear map
DF

z0 : Rm+n ! Rn evidently is assumed to have rank n and hence nullity m.

We can therefore find a decomposition Rm+n = Rm ⇥Rn such that the projec-
tion P : Rm+n ! Rm is an isomorphism when restricted to ker (DF

z0) . This
means that the tangent space to S at z

0

is m-dimensional and a graph.
It is not hard to believe that a similar result should be true for S itself

near z

0

. The actual proof can be given using a Newton iteration. In fact if
z

0

= (x
0

, y

0

) 2 Rm ⇥ Rn and x 2 Rm is near x

0

, then we find y = y (x) 2 Rn

as a solution to F (x, y) = 0. This is done iteratively by successively solving
infinitely many linear systems. We start by using the approximate guess that y
is y

0

. In order to correct this guess we find the vector y

1

2 Rn that solves the
linear equation that best approximates the equation F (x, y

1

) = 0 near (x, y
0

) ,
i.e.,

F (x, y
1

) ' F (x, y
0

) +DF

(x,y0)
(y

1

� y

0

) = 0.

The assumption guarantees that DF

(x0,y0)
|Rn : Rn ! Rn is invertible. Since we

also assumed that (x, y) ! DF

(x,y)

is continuous this means that DF

(x,y0)
|Rn

will also be invertible as long as x is close to x

0

. With this we get the formula:

y

1

= y

0

�
�

DF

(x,y0)
|Rn

��1

(F (x, y
0

)) .
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Repeating this procedure gives us an iteration

y

n+1

= y

n

�
�

DF

(x,y

n

)

|Rn

��1

(F (x, y
n

)) ,

that starts at y

0

.

It is slightly nasty that we have to keep inverting the map DF

(x,y

n

)

|Rn as
y

n

changes. It turns out that one is allowed to always use the approximate
differential DF

(x0,y0)
|Rn . This gives us the much simpler iteration

y

n+1

= y

n

�
�

DF

(x0,y0)
|Rn

��1

(F (x, y
n

)) .

It remains to show that the sequence (y
n

)
n2N0

converges and that the correspon-
dence x! y (x) thus defined, gives a smooth function that solves F (x, y (x)) =
0. Note, however, that if y

n

! y (x) , then we have

y (x) = lim
n!1

y

n+1

= lim
n!1

⇣

y

n

�
�

DF

(x0,y0)
|Rn

��1

(F (x, y
n

))
⌘

= lim
n!1

y

n

� lim
n!1

�

DF

(x0,y0)
|Rn

��1

(F (x, y
n

))

= y (x)�
�

DF

(x0,y0)
|Rn

��1

⇣

F

⇣

x, lim
n!1

y

n

⌘⌘

= y (x)�
�

DF

(x0,y0)
|Rn

��1

(F (x, y (x))) .

Thus
�

DF

(x0,y0)
|Rn

��1

(F (x, y (x))) = 0 and hence F (x, y (x)) = 0 as desired.
The convergence of (y

n

)
n2N0

hinges on the completeness of real numbers but can
otherwise be handled when we have introduced norms. Continuity requires some
knowledge of uniform convergence of functions. Smoothness can be checked
using continuity of x! y (x) and smoothness of F .

The Implicit Function Theorem gives us the perfect criterion for deciding
when solutions to equations give us nice surfaces.

Corollary 3.3. Let F : Rm+n ! Rn be smooth and define

S

c

=
�

z 2 Rm+n : F (z) = c

 

.

If rank (DF

z

) = n for all z 2 S, then S is a smooth m-dimensional surface.

Note that F : Rm+n ! Rn is a collection of n functions F

1

, ..., F

n

. If we
write c = (c

1

, ..., c

n

) we see that the set S

c

is the intersection of the sets S

c

i

=
{z 2 Rm+n : F

i

(z) = c

i

} . We can apply the above corollary to each of these sets
and see that they form m+n�1 dimensional surfaces provided DF

i

= dF

i

always
has rank 1 on S

c

i

. This is quite easy to check since this simply means that dF

i

is never zero. Each of the linear functions dF
i

at some specified point z 2 Rm+n

can be represented as 1 ⇥ (m+ n) row matrices via the partial derivatives for
F

i

. Thus they lie in a natural vector space and when stacked on top of each
other yield the matrix for DF. The rank condition on DF for ensuring that

11



S

c

is a smooth m-dimensional surface on the other hand is a condition on the
columns of DF. Now matrices do satisfy the magical condition of having equal
row and column rank. Thus DF has rank n if and only if it has row rank n.

The latter statement is in turn equivalent to saying that dF
1

, ..., dF

n

are linearly
independent or equivalently span an n-dimensional subspace of Mat

1⇥(n+m)

.
Recall that we say that a function f : Rm ! R, has a critical point at

x

0

2 Rm if df
x0 = 0. One reason why these points are important lies in the fact

that extrema, i.e., local maxima and minima, are critical points. To see this
note that if x

0

is a local maximum for f, then

f (x
0

+ h)  f (x
0

) ,

for small h. Since
df

x0 (h) = lim
t!0

f (x
0

+ th)� f (x
0

)

t

,

we have that
df

x0 (h)  0,

for all h! This is not possible unless df

x0 = 0. Note that the level sets S

c

=
{x : f (x) = c} must have the property that either they contain a critical point
or they are (n� 1)-dimensional smooth surfaces.

To make things more interesting let us see what happens when we restrict or
constrain a function f : Rm+n ! R to a smooth surface S

c

= {z : F (z) = c} .
Having extrema certainly makes sense so let us see what happens if we assume
that f (z)  f (z

0

) for all z 2 S

c

near z

0

. Note that this is not as simple as
the unconstrained situation. To simplify the situation let us assume that we
have decomposed Rm+n = Rm ⇥ Rn (and coordinates are written z = (x, y) 2
Rm⇥Rn) near z

0

and written S

c

as a graph of G : U ! Rn, where U ⇢ Rm

. Then
f : S

c

! R can near z

0

be thought of as simply g (x) = f (x,G (x)) : U ! R.
So if f |

S

c

has a local maximum at z

0

, then g will have a local maximum at x

0

.

Since the maximum for g is unconstrained we then conclude dg

x0 = 0. Using
the chain rule on g (x) = f (x,G (x)) , this leads us to

0 = dg

x0 (h)

= df

z0 (h,DG

x0 (h)) .

Note that the vectors (h,DG

x0 (h)) are precisely the tangent vectors to the
graph of G at (x

0

, y

0

) = z

0

. We see that the relationship F (x,G (x)) = 0 when
differentiated gives DF

z0 (h,DG (h)) = 0. Thus ker (DF

z0) = {(h,DG

x0 (h)) , h 2 Rn} .
This means that if we define z

0

2 S

c

to be critical for f |
S

c

when df

z0 vanishes
on ker (DF

z0) , then we have a definition which again guarantees that local ex-
trema are critical. Since it can be nasty to calculate ker (DF

z0) and check that
df

z0 vanishes on the kernel we seek a different condition for when this hap-
pens. Recall that each of dF

1

, ..., dF

n

vanish on ker (DF

z0) , moreover as we
saw these linear maps are linearly independent. We also know that the dimen-
sion of the space of linear maps Rm+n ! R that vanish on the m-dimensional
space ker (DF

z0) must have dimension n. Thus dF
1

, ..., dF

n

form a basis for this

12



space. This means that df

z0 vanishes on ker (DF

z0) if and only if we can find
�

1

, ...,�

n

2 R such that

df

z0 = �

1

dF

1

|
z0 + · · ·+ �

n

dF

n

|
z0 .

Using �s for the numbers �
1

, ...,�

n

is traditional, they are called Lagrange mul-
tipliers.

Note that we have completely ignored the boundary of the domain ⌦ and
also boundaries of the smooth surfaces. This is mostly so as not to complicate
matters more than necessary. While it is not possible to ignore the boundary of
domains when discussing optimization, it is possible to do so when dealing with
smooth surfaces. Look, e.g., at the sphere as a smooth surface. The crucial fact
that the sphere shares with other “closed” smooth surfaces is that it is compact
without having boundary. What we are interested in gaining in the use of such
surfaces is the guarantee that continuous functions must have a maximum and
a minimum.

Another important question in multivariable calculus is when a smooth func-
tion can be inverted and still remain smooth. An obvious condition is that it
be bijective, but a quick look at f : R! R defined by f (x) = x

3 shows that
this isn’t enough. Assume for a minute that F : ⌦ ! Rn has an inverse
G : F (⌦) ! ⌦ ⇢ Rm that is also smooth. Then we have G � F (x) = x and
F �G (y) = y. Taking derivatives and using the chain rule tells us

DG

F (x)

�DF

x

= 1Rm

,

DF

G(y)

�DF

x

= 1Rn

.

This means that the differentials themselves are isomorphisms and that n = m.

It turns us that this is precisely the correct condition for ensuring smoothness
of the inverse.

Theorem 3.4. (The Inverse Function Theorem) Let F : ⌦ ! Rm be smooth
and assume that we have x

0

2 ⌦ where DF

x0 is an isomorphism. Then we can
find neighborhoods U of x

0

and V of F (x
0

) such that F : U ! V is a bijection,
that has a smooth inverse G : V ! U.

Corollary 3.5. Let F : ⌦ ! Rm be smooth and assume that F is one-to-one
and that DF

x

is an isomorphism for all x 2 ⌦, then F (⌦) ⇢ Rm is an open
domain and there is a smooth inverse G : F (⌦)! ⌦.

It is not hard to see that the Inverse Function Theorem follows from the
Implicit Function Theorem and vice versa. Note that, when m = 1, having
nonzero derivative is enough to ensure that the function is bijective as it must
be strictly monotone. When m � 2, this is no longer true as can be seen from
F : C! C � {0} defined by F (z) = e

z

. As a two variable function it can
also be represented by F (↵,�) = e

↵ (cos�, sin�) . This function maps onto the
punctured plane, but all choices � ± n2⇡, n 2 N

0

yield the same values for F.

The differential is represented by the matrix

DF = e

↵



cos� � sin�
sin� cos�

�

,

13



that has an inverse given by

e

�↵



cos� sin�
� sin� cos�

�

.

So the map is locally, but not globally invertible.
Linearization procedures can be invoked in trying to understand several other

nonlinear problems. As an example one can analyze the behavior of a fixed point
x

0

for F : Rn ! Rn

, i.e., F (x
0

) = x

0

, using the differential DF

x0 since we know
that F (x

0

+ h) ' x

0

+DF

x0 (h) .

3.1 Exercises

1. We say that F : ⌦ ! R depends functionally on a collection of functions
F

1

, ..., F

m

: ⌦ ! R near x

0

2 ⌦ if F = ⇥ (F
1

, ..., F

m

) near x

0

for some
function ⇥. We say that F

1

, ..., F

m

: ⌦ ! R near x

0

2 ⌦ are functionally
independent if none of the functions are functionally dependent on the
rest near x

0

.

(a) Show that if dF
1

|
x0 , ..., dFm

|
x0 are linearly independent as linear func-

tionals, then F

1

, ..., F

m

are also functionally independent near x

0

.

(b) Assume that ⌦ ⇢ Rn and m > n. Show that, if span {dF
1

|
x0 , ..., dFm

|
x0}

has dimension n, then we can find F

i1 , ..., Fi

n

such that all the other
functions F

j1 , ..., Fj

m�n

depend functionally on F

i1 , ..., Fi

n

near x

0

.

4 Norms
Before embarking on the richer theory of inner products we wish to cover the
more general notion of a norm. A norm on a vector space is simply a way of
assigning a length or size to each vector. We are going to confine ourselves to
the study of vector spaces where the scalars are either real or complex. If V is
a vector space, then a norm is a function k·k : V ! [0,1) that satisfies

1. If kxk = 0, then x = 0.

2. The scaling condition: k↵xk = |↵| kxk , where ↵ is either a real or complex
scalar.

3. The Triangle Inequality: kx+ yk  kxk+ kyk .

The first condition just says that the only vector of norm zero is the zero vector.
The second condition on scaling conforms to our picture of how the length
of a vector changes as we scale it. When we allow complex scalars we note
that multiplication by i does not change the size of the vector. Finally the
third and truly crucial condition states the fact that in any triangle the sum
of two sides is always longer than the third. We can see this by letting three
vectors x, y, z be the vertices of the triangle and agreeing that the three numbers

14



kx� zk , kx� yk , ky � zk measure the distance between the vertices, i.e., the
side lengths. The triangle inequality now says

kx� zk  kx� yk+ ky � zk .

An important alternative version of the triangle inequality is the inequality

|kxk � kyk|  kx� yk .

This is obtained by noting that kx� yk = ky � xk and

kxk  kyk+ kx� yk ,
kyk  kxk+ ky � xk .

There are a plethora of interesting norms on the vector spaces we have
considered so far. We shall not establish the three axioms for the norms defined.
It is, however, worth pointing out that while the first two properties are usually
easy to establish, the triangle inequality can be very tricky to prove.

Example 4.1. The most basic example is Rn or Cn with the euclidean norm

kxk
2

=

q

|x
1

|2 + · · ·+ |x
n

|2.

This norm evidently comes from the inner product via ||x||2
2

= (x|x) . The
subscript will be explained in the next example.

We stick to Rn or Cn and define two new norms

kxk
1

= |x
1

|+ · · ·+ |x
n

| ,
kxk1 = max {|x

1

| , ..., |x
n

|} .

Note that
kxk1  kxk2  kxk1  n kxk1 .

More generally for p � 1 we have the p-norm

kxk
p

= p

q

|x
1

|p + · · ·+ |x
n

|p.

If p  q we have
kxk1  kxkq  kxkp 

p

p
n kxk1 .

The trick that allows us to conclude that kxk
q

 kxk
p

is by first noting that
both norms have the scaling property. Thus it suffices to show the inequality
when kxk

q

= 1. This means that we need to show that

|x
1

|p + · · ·+ |x
n

|p � 1

when
|x

1

|q + · · ·+ |x
n

|q = 1.
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In this case we know that |x
i

|  1. Thus

|x
i

|q  |x
i

|p

as q > p. This implies the inequality.
In addition,

kxk
p

 p

p
n kxk1

so
lim
p!1

kxk
p

= kxk1 .

This explains all of the subscripts for these norms and also how they relate to
each other.

Of all these norms only the 2-norm comes from an inner product. The other
norms can be quite convenient at times when one is studying analysis. The
2-norm and the1-norm will be used below to justify certain claims we made in
the first and second chapter regarding differential equations and multivariable
calculus. We shall also see that for linear operators there are two equally natural
norm concepts, were only one comes from an inner product.

Example 4.2. The p-norm can be generalized to functions using integration
rather than summation. We let V = C

0 ([a, b] ,C) and define

kfk
p

=

 ˆ
b

a

|f (t)|p dt
!

1
p

.

This time the relation between the norms is quite different. If p  q, then

kfk
p

 (b� a)
1
p

� 1
q kfk

q

,

or in a more memorable form using normalized integrals:

(b� a)
� 1

p kfk
p

=

 

1

b� a

ˆ
b

a

|f (t)|p dt
!

1
p


 

1

b� a

ˆ
b

a

|f (t)|q dt
!

1
q

= (b� a)
� 1

q kfk
q

.

Moreover,

kfk1 = lim
p!1

 

1

b� a

ˆ
b

a

|f (t)|p dt
!

1
p

.

Here the 1-norm is defined as

kfk1 = sup
t2[a,b]

|f (t)| .
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Assuming that f is continuous this supremum is a maximum, i.e., |f (t)| has a
maximum value that we define to be kfk1 . See also the next section for more
on this 1-norm.

Aside from measuring the size of vectors the norm is used to define conver-
gence on vector spaces. We say that a sequence x

n

2 V converges to x 2 V

with respect to the norm k·k if kx
n

� xk ! 0 as n ! 1. Clearly this concept
depends on having a norm and might even take on different meanings depending
on what norm we use. Note, however, that the norms we defined on Rn and Cn

are related to each other via

k·k1  k·kp 
p

p
n k·k1 .

Thus convergence in the p-norm and convergence in the 1-norm means the
same thing. Hence all of these norms yield the same convergence concept.

For the norms on C

0 ([a, b] ,C) a very different picture emerges. We know
that

(b� a)
� 1

p kfk
p

 (b� a)
� 1

q kfk
q

 (b� a)
�1 kfk1 .

Thus convergence in the 1-norm or in the q-norm implies convergence in the
p-norm for p  q. The converse is, however, not at all true.

Example 4.3. Let [a, b] = [0, 1] and define f

n

(t) = t

n

. We note that

kf
n

k
p

= p

r

1

np+ 1
! 0 as n!1.

Thus f

n

converges to the zero function in all of the p-norms when p < 1. On
the other hand

kfk1 = 1

so f

n

does not converge to the zero function, or indeed any continuous function,
in the 1-norm.

If V and W both have norms then we can also define a norm on Hom(V,W ) .
This norm, known as the operator norm, is defined so that for L : V ! W we
have

kL (x)k  kLk kxk .
Using the scaling properties of the norm and linearity of L this is the same as
saying

�

�

�

�

L

✓

x

kxk

◆

�

�

�

�

 kLk , for x 6= 0.

Since
�

�

�

x

kxk

�

�

�

= 1, we can then define the operator norm as

kLk = sup
kxk=1

kL (x)k .

It might happen that this norm is infinite. We say that L is bounded if kLk <1
and unbounded if kLk = 1. Note that bounded operators are continuous and
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that they form a subspace B (V,W ) ⇢ Hom(V,W ) (see also exercises to this
section). In the optional section “Completeness and Compactness” we shall
show that linear maps on finite dimensional spaces are always bounded. In case
the linear map is defined on a finite dimensional inner product space we give a
completely elementary proof of this result in “Orthonormal Bases”.

Example 4.4. Let V = C

1 ([0, 1] ,C) . Differentiation D : V ! V is un-
bounded if we use k·k1 on both spaces. This is because x

n

= t

n has norm 1,
while D (x

n

) = nx

n�1

has norm n ! 1. If we used k·k
2

, things wouldn’t be
much better as

kx
n

k
2

=

r

1

2n+ 1
! 0,

kDx

n

k
2

= n kx
n�1

k
2

= n

r

1

2n� 1
!1.

If we try

M : C

0 ([0, 1] ,C)! C

0 ([0, 1] ,C) ,
S : C

0 ([0, 1] ,C)! C

0 ([0, 1] ,C) ,

then things are much better as

kM (x)k1 = sup
t2[0,1]

t |x (t)|

 sup
t2[0,1]

|x (t)|

= kxk1 ,

kS (x)k1 =

�

�

�

�

ˆ
t

0

x (s) ds

�

�

�

�

1
 kxk1 .

Thus both of these operators are bounded in the 1-norm. It is equally easy to
show that they are bounded with respect to all of the p-norms for 1  p  1.

4.1 Exercises

1. Let B (V,W ) ⇢ Hom(V,W ) be the subset of bounded operators.

(a) Show that B (V,W ) is subspace of Hom(V,W ) .

(b) Show that the operator norm defines a norm on B (V,W ) .

2. Show that a bounded linear map is continuous.
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5 Completeness and Compactness
In this section we wish to discuss some further properties of norms and how
they relate to convergence. This will primarily allow us to show that in the
finite dimensional setting nothing nasty or new happens. However, it will also
attempt to make the reader aware of certain problems in the infinite dimensional
setting. Another goal is to reinforce the importance of the fundamental analysis
concepts of compactness and completeness. Finally we shall show in one of the
final sections of this chapter how these investigations can help us in solving some
of the issues that came up in our earlier sections on differential equations and
multivariable calculus.

A vector space with a norm is called a normed vector space. It often happens
that the norm is not explicitly stated and we shall often just use the same generic
symbol k·k for several different norms on different vector spaces.

Using norms we can define continuity for functions f : V ! F and more
generally for maps F : V ! W between normed vector spaces. The condition
is that if x

n

! x in V, then F (x
n

)! F (x) in W.

Another important concept is that of compactness. A set C ⇢ V in a normed
vector space is said to be (sequentially) compact if every sequence x

n

2 C

has a convergent subsequence x

n

k

whose limit point is in C. It is a crucial
property of R that all closed intervals [a, b] are compact. In C the unit disc
� = {⇣ 2 C : |⇣|  1} is compact. More generally products of these sets [a, b]n ⇢
Rn

, �n ⇢ Cn are also compact if we use any of the equivalent p-norms. The
boundaries of these sets are evidently also compact.

To see why [0, 1] is compact select a sequence x

n

2 [0, 1] . If we divide
[0, 1] into two equal parts

⇥

0, 1

2

⇤

and
⇥

1

2

, 1
⇤

, then one of these intervals contains
infinitely many elements from the sequence. Call this chosen interval I

1

and
select an element x

n1 2 I

1

from the sequence. Next we divide I

1

in half and
select a interval I

2

that contains infinitely many elements from the sequence.
In this way we obtain a subsequence (x

n

k

) such that all of the elements x

n

k

belong to an interval I

k

of length 2�k

, where I

k+1

⇢ I

k

. The intersection
\1
k=1

I

k

consists of a point. This is quite plausible if we think of real numbers
as represented in binary notation, for then \1

k=1

I

k

indicates a binary number
from the way we chose the intervals. Certainly \1

k=1

I

k

can’t contain more than
one point, because if ↵,� 2 \1

k=1

I

k

, then also all numbers that lie between ↵

and � lie in \1
k=1

I

k

as each I

k

is an interval. The fact that the intersection
is nonempty is a fundamental property of the real numbers. Had we restricted
attention to rational numbers the intersection is quite likely to be empty. Clearly
the element in \1

k=1

I

k

is the limit point for (x
n

k

) and indeed for any sequence
(x

k

) that satisfies x

k

2 I

k.

The proof of compactness of closed intervals leads us to another fundamental
concept. A normed vector space is said to be complete if Cauchy’s convergence
criterion holds true: x

n

is convergent if and only if kx
n

� x

m

k ! 0 as m,n!1.

Note that we assert that a sequence is convergent without specifying the limit.
This is quite important in many contexts. It is a fundamental property of
the real numbers that they are complete. Note that completeness could have
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been used to establish the convergence of the sequence (x
n

k

) in the proof of
compactness of [0, 1] . From completeness of R ones sees that C and Rn, Cn

are complete since convergence is the same as coordinate convergence. From
that we will in a minute be able to conclude that all finite dimensional vector
spaces are complete. Note that the rationals Q are not complete as we can find
sequences of rational numbers converging to any real number. These sequences
do satisfy kx

n

� x

m

k ! 0 as m,n!1, but they don’t necessarily converge to
a rational number. This is why we insist on only using real or complex scalars
in connections with norms and inner products.

A crucial result connects continuous functions to compactness.

Theorem 5.1. Let f : V ! R be a continuous function on a normed vector
space. If C ⇢ V is compact, then we can find x

min

, x

max

2 C so that f (x
min

) 
f (x)  f (x

max

) for all x 2 C.

Proof. Let us show how to find x

max

. The other point is found in a similar
fashion. We consider the image f (C) ⇢ R and compute the smallest upper
bound y

0

= sup f (C) . That this number exists is one of the crucial properties
of real numbers related to completeness. Now select a sequence x

n

2 C such
that f (x

n

) ! y

0

. Since C is compact we can select a convergent subsequence
x

n

k

! x 2 C. This means that f (x
n

k

) ! f (x) = y

0

. In particular, y
0

is not
infinite and the limit point x must be the desired x

max

.

Example 5.2. The space C

0 ([a, b] ,C) may or may not be complete depending
on what norm we use. First we show that it is not complete with respect to any
of the p-norms for p < 1. To see this observe that we can find a sequence of
continuous functions f

n

on [0, 2] defined by

f

n

(t) =

⇢

1 for t � 1
t

n for t < 1

whose graphs converge to a step function

f (t) =

⇢

1 for t � 1
0 for t < 1

.

We see that

kf � f

n

k
p

! 0,

kf
m

� f

n

k
p

! 0

for all p <1. However, the limit function is not continuous and so the p-norm
is not complete.

On the other hand the 1-norm is complete. To see this suppose we have
a sequence f

n

2 C

0 ([a, b] ,C) such that kf
n

� f

m

k1 ! 0 . For each fixed t we
have

|f
n

(t)� f

m

(t)|  kf
n

� f

m

k1 ! 0
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as n,m!1. Since f

n

(t) 2 C we can find f (t) 2 C so that f

n

(t)! f (t) . To
show that kf

n

� fk1 ! 0 and f 2 C

0 ([a, b] ,C) fix " > 0 and N so that

kf
n

� f

m

k1  " for all n,m � N.

This implies that
|f

n

(t)� f

m

(t)|  ", for all t.
If we let m!1 in this inequality we obtain

|f
n

(t)� f (t)|  " for all n � N.

In particular
kf

n

� fk1  " for all n � N.

This implies that f

n

! f . Having proved this we next see that

|f (t)� f (t
0

)|  |f (t)� f

n

(t)|+ |f
n

(t)� f

n

(t
0

)|+ |f
n

(t
0

)� f (t
0

)|
 kf

n

� fk1 + |f
n

(t)� f

n

(t
0

)|+ kf
n

� fk1
= 2 kf

n

� fk1 + |f
n

(t)� f

n

(t
0

)|

Since f

n

is continuous and kf
n

� fk1 ! 0 as n ! 1 we can easily see that f

is also continuous.
Convergence with respect to the1-norm is also often referred to as uniform

convergence.

Our first crucial property for finite dimensional vector spaces is that conver-
gence is independent of the norm.

Theorem 5.3. Let V be a finite dimensional vector space with a norm k·k
and e

1

, ..., e

m

a basis for V. Then (x
n

) is convergent if and only if all of the
coordinates (↵

1n

) , ..., (↵
mn

) from the expansion

x

n

=
⇥

e

1

· · · e

m

⇤

2

6

4

↵

1n

...
↵

mn

3

7

5

are convergent.

Proof. We define a new 1-norm on V by

kxk1 = max {|↵
1

| , ..., |↵
m

|} ,
x = e

1

↵

1

+ · · ·+ e

m

↵

m

.

That this defines a norm follows from the fact that it is a norm on Fn

. Note that
coordinate convergence is the same as convergence with respect to this1-norm.

Now observe that

|kxk � kyk|  kx� yk
 ke

1

(↵
1

� �

1

) + · · ·+ e

m

(↵
m

� �

m

)k
 |↵

1

� �

1

| ke
1

k+ · · ·+ |↵
m

� �

m

| ke
m

k
 ||x� y||1 max {ke

1

k , ..., ke
m

k} .
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In other words
k·k : V ! F

is continuous if we use the norm k·k1 on V. Now consider the set

S = {x 2 V : kxk1 = 1} .

This is the boundary of the compact set B = {x 2 V : kxk1  1} . Thus any
continuous function on S must have a maximum and a minimum. Since kxk 6= 0
on S we can find C > c > 0 so that

c  kxk  C for kxk1 = 1.

Using the scaling properties of the norm this implies

c kxk1  kxk  C kxk1 .

Thus convergence with respect to either of the norms imply convergence
with respect to the other of these norms.

All of this shows that in finite dimensional vector spaces the only way of
defining convergence is that borrowed from Fn. Next we show that all linear
maps on finite dimensional normed vector spaces are bounded and hence con-
tinuous.

Theorem 5.4. Let L : V !W be a linear map between normed vector spaces.
If V is finite dimensional, then L is bounded.

Proof. Let us fix a basis e

1

, ..., e

m

for V and use the notation from the proof
just completed.

Using

L (x) =
⇥

L (e
1

) · · · L (e
m

)
⇤

2

6

4

↵

1

...
↵

m

3

7

5

.

We see that

kL (x)k  m kxk1 max {kL (e
1

)k , ..., kL (e
m

)k}
 mc

�1 kxkmax {kL (e
1

)k , ..., kL (e
m

)k} ,

which implies that L is bounded.

In infinite dimensions things are much trickier as there are many different
ways in which one can define convergence Moreover, a natural operator such as
the one defined by differentiation is not bounded or even continuous.

One can prove that if W (but not necessarily V ) is complete, then the space
of bounded linear maps B (V,W ) is also complete. The situations we are mostly
interested in are when both V and W are finite dimensional. From what we
have just proven this means that B (V,W ) = Hom (V,W ) and since Hom(V,W )
is finite dimensional completeness also becomes automatic.

We have a very good example of an infinite dimensional complete inner
product space.
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Example 5.5. The space `2 with the norm kxk
2

=
p

(x|x) is, unlike C0 ([a, b] ,C),
a complete infinite dimensional inner product space.

To prove this we take a sequence x
k

= (↵
n,k

) 2 `

2 such that kx
k

� x

m

k
2

! 0
as k,m!1. If we fix a coordinate entry n we have that

|↵
n,k

� ↵

n,m

|  kx
k

� x

m

k
2

.

So for fixed n we have a sequence (↵
n,k

) of complex numbers that must be
convergent; lim

k!1 ↵

n,k

= ↵

n

. This gives us a potential limit point x = (↵
n

)
for x

n

. For simplicity let us assume that the index set for the coordinates is N.
If we assume that

kx
k

� x

m

k
2

 "

for all k,m � N , then
n

X

i=1

|↵
i,k

� ↵

i,m

|2  "

2

.

If we let m!1 in this sum, then we obtain
n

X

i=1

|↵
i,k

� ↵

i

|2  "

2

.

Since this holds for all n we can also let n!1 in order to get

kx
k

� xk
2

=

v

u

u

t

1
X

i=1

|↵
i,k

� ↵

i

|2  " for all k � N.

This tells us that x

k

! x as k ! 1. To see that x 2 `

2 just use that x =
x

k

+ (x� x

k

) and that we have just shown (x� x

k

) 2 `

2

.

With this in mind we can now prove the result that connects our two different
concepts of completeness.

Theorem 5.6. Let V be a complete inner product space with a complete ba-
sis e

1

, e

2

, ..., e

n

, ... If V is finite dimensional then it is isometric to Fn and if
e

1

, e

2

, ..., e

n

, ... is infinite, then V is isometric to `

2

, where we use real or complex
sequences in `

2 according to the fields we have used for V.

Proof. All we need to prove is that the map V ! `

2 is onto in the case
e

1

, e

2

, ..., e

n

, ... is infinite. To see this let (↵
i

) 2 `

2

. We claim that the series
P

i

↵

i

e

i

is convergent. The series
P

i

k↵
i

e

i

k2 =
P

i

|↵
i

|2 is assumed to be con-
vergent. Using Pythagoras we obtain

�

�

�

�

�

n

X

i=m

↵

i

e

i

�

�

�

�

�

2

=

n

X

i=m

k↵
i

e

i

k2

=

n

X

i=m

|↵
i

|2 ! 0 as n,m!1.
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This implies that the sequence x

n

=
P

n

i=1

↵

i

e

i

of partial sums satisfies

kx
n

� x

m

k ! 0 as n,m!1.

Cauchy’s convergence criterion can then be applied to show convergence as we
assumed that V is complete.

A complete inner product space is usually referred to as a Hilbert space.
Hilbert introduced the complete space `

2

, but did not study more abstract
infinite dimensional spaces. It was left to von Neumann to do that and also coin
the term Hilbert space. We just saw that `

2 is in a sense universal provided
one can find suitable orthonormal collections of vectors. The goal of the next
section is to attempt to do this for the space of periodic functions C

0

2⇡

(R,C) .
In normed vector spaces completeness implies the important absolute con-

vergence criterion for series. Recall that a series
P1

n=1

x

n

is convergent if the
partial sums z

m

=
P

m

n=1

x

n

= x

1

+ · · · + x

m

form a convergent series. The
limit is denoted by

P1
n=1

x

n

. The absolute convergence criterion states that
P1

n=1

x

n

is convergent if it is absolutely convergent, i.e.,
P1

n=1

kx
n

k is conver-
gent. It is known from calculus that a series of numbers, such as

P1
n=1

(�1)

n

n

,

can be convergent without being absolutely convergent. Using the principle of
absolute convergence it is sometimes possible to reduce convergence of series
to the simpler question of convergence of series with nonnegative numbers, a
subject studied extensively in calculus. To justify our claim note that

kz
m

� z

k

k = kx
k+1

+ · · ·+ x

m

k  kx
k+1

k+ · · ·+ kx
m

k ! 0

as k,m!1 since
P1

n=1

kx
n

k is convergent.

6 Orthonormal Bases in Infinite Dimensions
The goal of this section is to find complete orthonormal sets for 2⇡-periodic
functions on R. Recall that this space is denoted C

0

2⇡

(R,R) if they are real
valued and C

0

2⇡

(R,C) if complex valued. For simplicity we shall concentrate on
the later space. The inner product we use is given by

(f |g) = 1

2⇡

ˆ
2⇡

0

f (t) g (t)dt.

First we recall that C0

2⇡

(R,C) is not complete with this inner product. We can
therefore not expect this space to be isometric to `

2

. Next recall that this space
is complete if we use the stronger norm

kfk1 = max
t2R

|f (t)| .

We have a natural candidate for a complete orthonormal basis by using the
functions e

n

= exp (int) for n 2 Z. It is instructive to check that this is an
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orthonormal collection of functions. First we see that they are of unit length

ke
n

k2 =
1

2⇡

ˆ
2⇡

0

|exp (int)| dt

=
1

2⇡

ˆ
2⇡

0

1dt

= 1.

Next for n 6= m we compute the inner product

(e
n

|e
m

) =
1

2⇡

ˆ
2⇡

0

exp (int) exp (�imt) dt

=
1

2⇡

ˆ
2⇡

0

exp (i (n�m) t) dt

=
1

2⇡

✓

exp (i (n�m) t)

i (n�m)

◆

�

�

�

�

2⇡

0

= 0

since exp (i (n�m) t) is 2⇡-periodic.
We use a special notation for the Fourier coefficients f

k

= (f |e
k

) of f indi-
cating that they depend on f and k. One also often sees the notation

f̂

k

= (f |e
k

) .

The Fourier expansion for f is denoted

1
X

k=�1
f

k

exp (ikt) .

We also write

f ⇠
1
X

k=�1
f

k

exp (ikt) .

The ⇠ indicates that the two expressions may not be equal. In fact as things
stand there is no guarantee that the Fourier expansion represents a function
and even less that it should represent f. We wish to show that

�

�

�

�

�

f �
n

X

k=�n

f

k

exp (ikt)

�

�

�

�

�

! 0

as n!1, thus showing that we have a complete orthonormal basis. Even this,
however, still does not tell us anything about pointwise or uniform convergence
of the Fourier expansion.

From Bessel’s inequality we derive a very useful result which is worthwhile
stating separately.
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Proposition 6.1. Given a function f 2 C

0

2⇡

(R,C), then the Fourier coefficients
satisfy:

f

n

! 0 as n!1
f�n

! 0 as n!1

Proof. We have that
1
X

n=�1
|f

n

|2  kfk2

=
1

2⇡

ˆ
2⇡

0

|f (t)|2 dt

< 1

Thus both of the series
P1

n=0

|c
n

|2 and
P1

n=0

|c�n

|2 are convergent. Hence the
terms go to zero as n! ±1.

By looking at the proof we note that it wasn’t really necessary for f to be
continuous only that we know how to integrate |f (t)|2 and f (t) exp (int) . This
means that the result still holds if f is piecewise continuous. This will come in
handy below.

Before explaining the first result on convergence of the Fourier expansion we
need to introduce the Dirichlet kernel.

Define

D

n

(t
0

� t) =

n

X

k=�n

exp (ik (t
0

� t))

=
exp (i (n+ 1) (t

0

� t))� exp (�in (t
0

� t))

exp (i (t
0

� t))� 1
.

This formula follows from the formula for the sum of a finite geometric progres-
sion

n

X

k=0

z

k =
z

n+1 � 1

z � 1

Specifically we have

n

X

k=�n

exp (ik (t
0

� t)) =

2n

X

l=0

exp (i (l � n) (t
0

� t))

= exp (�in (t
0

� t))

2n

X

l=0

exp (il (t
0

� t))

= exp (�in (t
0

� t))
exp (i (2n+ 1) (t

0

� t))� 1

exp (i (t
0

� t))� 1

=
exp (i (n+ 1) (t

0

� t))� exp (�in (t
0

� t))

exp (i (t
0

� t))� 1
.
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Note that
1

2⇡

ˆ
2⇡

0

D

n

(t
0

� t) dt = 1,

since the only term in the formula D

n

(t
0

� t) =
P

n

k=�n

exp (ik (t
0

� t)) that
has nontrivial integral is exp (i0 (t

0

� t)) = 1.
The importance of the Dirichlet kernel lies in the fact that the partial sums

s

n

(t) =

n

X

k=�n

f

k

exp (ikt)

can be written in the condensed form

s

n

(t
0

) =

n

X

k=�n

f

k

exp (ikt
0

)

=

n

X

k=�n

✓

1

2⇡

ˆ
⇡

�⇡

f (t) exp (�ikt) dt
◆

exp (ikt
0

)

=
1

2⇡

ˆ
⇡

�⇡

 

f (t)

n

X

k=�n

exp (ik (t
0

� t))

!

dt

=
1

2⇡

ˆ
⇡

�⇡

✓

f (t)
exp (i (n+ 1) (t

0

� t))� exp (�in (t
0

� t))

exp (i (t
0

� t))� 1

◆

dt

=
1

2⇡

ˆ
⇡

�⇡

f (t)D
n

(t
0

� t) dt.

The partial sums of the Fourier expansion can therefore be computed without
calculating the Fourier coefficients. This is often very useful both in appli-
cations and for mathematical purposes. Note also that the partial sum of f

represents the orthogonal projection of f onto span {1, exp (±t) , ..., exp (±nt)}
and is therefore the element in span {1, exp (±t) , ..., exp (±nt)} that is closest
to f.

We can now prove a result on pointwise convergence of Fourier series.

Theorem 6.2. Let f (t) 2 C

0

2⇡

(R,C). If f is continuous and differentiable at
t

0

, then the Fourier series for f converges to f (t
0

) at t
0

.

Proof. We must show that s
n

(t
0

)! f (t
0

) . The proof proceeds by a direct and
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fairly simple calculation of the partial sum of the Fourier series for f.

s

n

(t
0

)

=
1

2⇡

ˆ
2⇡

0

f (t)D
n

(t
0

� t) dt

=
1

2⇡

ˆ
2⇡

0

f (t
0

)D
n

(t
0

� t) dt+
1

2⇡

ˆ
2⇡

0

(f (t)� f (t
0

))D
n

(t
0

� t) dt

= f (t
0

)
1

2⇡

ˆ
2⇡

0

D

n

(t
0

� t) dt

+
1

2⇡

ˆ
2⇡

0

f (t)� f (t
0

)

exp (i (t
0

� t))� 1
(exp (i (n+ 1) (t

0

� t))� exp (�in (t
0

� t))) dt

= f (t
0

) +
1

2⇡

ˆ
2⇡

0

g (t) (exp (i (n+ 1) (t
0

� t))� exp (�in (t
0

� t))) dt

= f (t
0

) + exp (i (n+ 1) t
0

)
1

2⇡

ˆ
2⇡

0

g (t) exp (�i (n+ 1) t) dt

� exp (�int
0

)
1

2⇡

ˆ
2⇡

0

g (t) exp (int) dt

= f (t
0

) + exp (i (n+ 1) t
0

) g
n+1

� exp (�int
0

) g�n

,

where
g (t) =

f (t)� f (t
0

)

exp (i (t
0

� t))� 1
.

Since g (t) is nicely defined everywhere except at t = t

0

and f is continuous
it must follow that g is continuous except possibly at t

0

. At t

0

we can use
L’Hospital’s rule to see that g can be defined at t

0

so as to be a continuous
function:

lim
t!t0

g (t) = lim
t!t0

f (t)� f (t
0

)

exp (i (t
0

� t))� 1

=

�

d

dt

(f (t)� f (t
0

))
�

(at t = t

0

)
�

d

dt

(exp (i (t
0

� t))� 1)
�

(at t = t

0

)

=
(f 0 (t)) (at t = t

0

)

(� exp (i (t
0

� t))) (at t = t

0

)

=
f

0 (t
0

)

(� exp (i (t
0

� t

0

)))

= �f 0 (t
0

) .

Having now established that g 2 C

0

2⇡

(R,C) it follows that the Fourier coeffi-
cients g

n+1

and g�n

go to zero as n ! 1. Thus the partial sum converges to
f (t

0

) .

If we make some further assumptions about the differentiability of f then
we can use this pointwise convergence result to show convergence of the Fourier
expansion of f.
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Proposition 6.3. If f 2 C

0

2⇡

(R,C), and f

0 is piecewise continuous, then the
Fourier coefficients for f and f

0 are related by

f

0
k

= (ik) · f
k

Proof. First we treat the case when k = 0

f

0
0

=
1

2⇡

ˆ
2⇡

0

f

0 (t) dt

=
1

2⇡
f (t)|2⇡

0

= 0,

since f (0) = f (2⇡) . The general case follows from integration by parts

f

0
k

=
1

2⇡

ˆ
2⇡

0

f

0 (t) exp (�ikt) dt

=
1

2⇡
f (t) exp (�ikt)

�

�

�

�

2⇡

0

� 1

2⇡

ˆ
2⇡

0

f (t) (�ik) exp (�ikt) dt

=
1

2⇡
(ik)

ˆ
2⇡

0

f (t) exp (�ikt) dt

= (ik) f
k

We can now prove the first good convergence result for Fourier expansions

Theorem 6.4. Let f 2 C

0

2⇡

(R,C), and assume in addition that f 0 is piecewise
continuous, then the Fourier expansion for f converges uniformly to f.

Proof. It follows from the above result that the Fourier expansion converges
pointwise to f except possibly at a finite number of points were f 0 is not defined.
Therefore, if we can show that the Fourier expansion is uniformly convergent it
must converge to a continuous function that agrees with f except possibly at
the points where f

0 is not defined. However, if two continuous functions agree
except at a finite number of points then they must be equal.

We evidently have that
f

0
k

= (ik) f
k

.

Thus
|f

k

|  1

k

|f 0
k

| .

Now we know that both of the sequences
�

1

k

�

k2Z�{0} and (|f 0
k

|)
k2Z lie in `

2 (Z) .
Thus the inner product of these two sequences

X

k 6=0

1

k

|f 0
k

|
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is well defined and represents a convergent series. This implies that
1
X

k=�1
f

k

is absolutely convergent. Recall that C

0

2⇡

(R,C) is complete when we use the
norm ||·||1 . Since

kf
k

exp (ikt)k1 = |f
k

|
we get that

1
X

k=�1
f

k

exp (ikt)

is uniformly convergent.

The above result can be illustrated rather nicely.

Example 6.5. Consider the function given by f (x) = |x| on [�⇡,⇡] . The
Fourier coefficients are

f

0

=
⇡

2
,

f

k

=
1

ik

f

0
k

=
1

ik

1

2⇡

✓ˆ
0

�⇡

� exp (�ikt) dt+
ˆ

⇡

0

exp (�ikt) dt
◆

=
1

ik

1

2⇡

✓

2i
�1 + cos⇡k

k

◆

=
1

k

2

1

⇡

⇣

�1 + (�1)k
⌘

Thus we see that
�

�

f

k

e

ikt

�

�  2

⇡

1

k

2

.

Hence we are in the situation where we have uniform convergence of the Fourier
expansion. We can even sketch s

8

and compare it to f to convince ourselves
that the convergence is uniform.

If we calculate the function and the Fourier series at t = ⇡ we get

⇡ =
⇡

2
+
X

k 6=0

1

⇡

�1 + (�1)k

k

2

exp (ik⇡) .

This means that

⇡

2

2
= 2

1
X

k=1

�1 + (�1)k

k

2

(�1)k

= 4

1
X

l=0

1

(2l + 1)
2
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Thus yielding the formula

⇡

2

8
= 1 +

1

9
+

1

25
+ · · ·

In case f is not continuous there is, however, no hope that we could have
uniform convergence. This is evident from our theory as the partial sums of the
Fourier series always represent continuous functions. If the Fourier series con-
verges uniformly, it must therefore converge to a continuous function. Perhaps
the following example will be even more convincing.

Example 6.6. If f (x) = x on [�⇡,⇡] , then f (x) is not continuous when
thought of as a 2⇡-periodic function. In this case the Fourier coefficients are

f

0

= 0,

f

k

=
i (�1)k

k

.

Thus
�

�

f

k

e

ikx

�

� =
1

k

and we clearly can’t guarantee uniform convergence. This time the partial sum
looks like.

This clearly approximates f, but not uniformly due to the jump discontinu-
ities.

The last result shows that we nevertheless do have convergence in the norm
that comes from the inner product on C

0

2⇡

(R,C) .

Theorem 6.7. Let f 2 C

0

2⇡

(R,C) , then the Fourier series converges to f in
the sense that

kf � s

n

k ! 0 as n!1.

Proof. First suppose in addition that f

0 exists and is piecewise continuous.
Then we have from the previous result that |f (t)� s

n

(t)| and consequently
also |f (t)� s

n

(t)|2 converge uniformly to zero. Hence

kf � s

n

k2
2

=
1

2⇡

ˆ
2⇡

0

|f (t)� s

n

(t)|2 dx

 kf � s

n

k1 ! 0.

In the more general situation we must use that for each small number " > 0
the function f can be approximated by functions f

"

2 C

0

2⇡

(R,C) with piecewise
continuous f

0 such that
kf � f

"

k < ".

Supposing that we can find such f

"

we can show that kf � s

n

k
2

can be made as
small as we like. Denote by s

"

n

(t) the n-th partial sum in the Fourier expansion
for f

"

. Since s

"

n

(t) and s

n

(t) are linear combinations of the same functions
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exp (ikt) , k = 0,±1, ...,±n and s

n

(t) is the best approximation of f we must
have

kf � s

n

k
2

 kf � s

"

n

k
2

.

We can now apply the triangle inequality to obtain

kf � s

n

k
2

 kf � s

"

n

k
2

 kf � f

"

k
2

+ kf
"

� s

"

n

k
2

 "+ kf
"

� s

"

n

k
2

.

Using that kf
"

� s

"

n

k
2

! 0 as n!1, we can choose N > 0 so that kf
"

� s

"

n

k
2


" for all n � N. This implies that

kf � s

n

k
2

 "+ kf
"

� s

"

n

k
2

= 2".

as long as n � N. As we can pick " > 0 as we please, it must follow that

lim
n!1

kf � s

n

k
2

= 0.

It now remains to establish that we can approximate f by the appropriate
functions. Clearly this amounts to showing that we can find nice functions f

"

such that the area under the graph of |f (t)� f

"

(t)|2 is small for small ". The
way to see that this can be done is to approximate f by a spline or piecewise
linear function g

"

. For that construction we simply subdivide [0, 2⇡] into intervals
whose endpoints are given by 0 = t

0

< t

1

< · · · < t

N

= 2⇡. Then we define

g (t
k

) = f (t
k

)

and
g (st

k

+ (1� s) t
k�1

) = sf (t
k

) + (1� s) f (t
k�1

)

for 0 < s < 1. This defines a function g 2 C

0

2⇡

(R,C) that is glued together
by line segments. Using that f is uniformly continuous on [0, 2⇡] we can make
|f (t)� g (t)|2 as small as we like by choosing the partition sufficiently fine. Thus
also kf � gk

2

 kf � gk1 is small.

6.1 Exercises

1. Show that

1,
p
2 cos (t) ,

p
2 sin (t) ,

p
2 cos (2t) ,

p
2 sin (2t) , ...

forms a complete orthonormal set for C

0

2⇡

(R,C) . Use this to conclude
that it is also a complete orthonormal set for C

0

2⇡

(R,R) .

2. Show that 1,
p
2 cos (t) ,

p
2 cos (2t) , .. respectively

p
2 sin (t) ,

p
2 sin (2t) , ...

form complete orthonormal sets for the even respectively odd functions in
C

0

2⇡

(R,R) .

3. Show that for any piecewise continuous function f on [0, 2⇡] , one can for
each " > 0 find f

"

2 C

0

2⇡

(R,C) such that kf � f

"

k
2

 ". Conclude that
the Fourier expansion converges to f for such functions.
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7 Applications of Norms
In this section we complete some unfinished business on existence and unique-
ness of solutions to linear differential equations and the proof of the implicit
function theorem. Both of these investigations use completeness and operator
norms rather heavily and are therefore perfect candidates for justifying all of
the notions relating to normed vector spaces introduced earlier in this chapter.

We are now also ready to complete the proof of the implicit function theorem.
Let us recall the theorem and the set-up for the proof as far as it went.

Theorem 7.1. (The Implicit Function Theorem) Let F : Rm+n ! Rn be
smooth. If F (z

0

) = c 2 Rn and rank (DF

z0) = n, then we can find a coordinate
decomposition Rm+n = Rm⇥Rn near z

0

such that the set S = {z 2 Rm+n : F (z) = c}
is a smooth graph over some open set U ⇢ Rm

.

Proof. We assume that c = 0 and split Rm+n = Rm ⇥ Rn so that the projec-
tion P : Rm+n ! Rm is an isomorphism when restricted to ker (DF

z0) . Then
DF

z0 |Rn : Rn ! Rn is an isomorphism. Note that the version of Rn that
appears in the domain for DF might have coordinates that are differently in-
dexed than the usual indexing used in the image version of Rn

. Next rename
the coordinates z = (x, y) 2 Rm ⇥ Rn and set z

0

= (x
0

, y

0

) . The goal is to find
y = y (x) 2 Rn as a solution to F (x, y) = 0. To make things more rigorous
we choose norms on all of the vector spaces. Then we can consider the closed
balls B̄

"

= {x 2 Rm : kx� x

0

k  "} , which are compact subsets of Rm and
where " is to be determined in the course of the proof. The appropriate vector
space where the function x! y (x) lives is the space of continuous functions V

= C

0

�

B̄

"

,Rn

�

where we use the norm

kyk1 = max
x2 ¯

B

"

ky (x)k .

With this norm the space is a complete normed vector space just like C0 ([a, b] ,C) .
The iteration for constructing y (x) is

y

n+1

= y

n

�
�

DF

(x0,y0)
|Rn

��1

(F (x, y
n

))

and starts with y

0

(x) = y

0

. First we show that y
n

(x) is never far away from y

0

.
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This is done as follows

y

n+1

� y

0

= y

n

� y

0

�
�

DF

(x0,y0)
|Rn

��1

(F (x, y
n

))

= y

n

� y

0

�
�

DF

(x0,y0)
|Rn

��1

�

DF

(x0,y0)
|Rm (x� x

0

) +DF

(x0,y0)
|Rn (y

n

� y

0

) +R

�

= y

n

� y

0

�
�

DF

(x0,y0)
|Rn

��1

DF

(x0,y0)
|Rn (y

n

� y

0

)

�
�

DF

(x0,y0)
|Rn

��1

�

DF

(x0,y0)
|Rm (x� x

0

) +R

�

= y

n

� y

0

� (y
n

� y

0

)

�
�

DF

(x0,y0)
|Rn

��1

�

DF

(x0,y0)
|Rm (x� x

0

) +R

�

= �
�

DF

(x0,y0)
|Rn

��1

�

DF

(x0,y0)
|Rm (x� x

0

) +R

�

where the remainder is

R = F (x, y
n

)� F (x
0

, y

0

)�DF

(x0,y0)
|Rm (x� x

0

)�DF

(x0,y0)
|Rn (y

n

� x

0

)

and has the property that

kRk
ky

n

� y

0

k+ kx� x

0

k ! 0 as ky
n

� y

0

k+ kx� x

0

k ! 0.

Thus we have

ky
n+1

� y

0

k 
�

�

�

�

DF

(x0,y0)
|Rn

��1

�

�

�

�

�

�

DF

(x0,y0)
|Rm

�

� kx� x

0

k+ kRk
�

.

Here
�

�

�

�

DF

(x0,y0)
|Rn

��1

�

�

�

and
�

�

DF

(x0,y0)
|Rm

�

� are fixed quantities, while kx� x

0

k 
" and we can also assume

kRk  1

4
�

�

�

�

DF

(x0,y0)
|Rn

��1

�

�

�

(ky
n

� y

0

k+ kx� x

0

k)

 1

4
�

�

�

�

DF

(x0,y0)
|Rn

��1

�

�

�

(ky
n

� y

0

k+ ")

provided ky
n

� y

0

k , kx� x

0

k are small. This means that

ky
n+1

� y

0

k 
�

�

�

�

DF

(x0,y0)
|Rn

��1

�

�

�

�

�

DF

(x0,y0)
|Rm

�

�

"

+
1

4
(ky

n

� y

0

k+ ") .

This means that we can control the distance ky
n+1

� y

0

k in terms of ky
n

� y

0

k
and ". In particular we can for any � > 0 find " = " (�) > 0 so that ky

n+1

� y

0

k
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 � for all n. This means that the y

n

functions stay close to y

0

. This will be
important in the next part of the proof.

Next let us see how far successive functions are from each other

y

n+1

� y

n

= �
�

DF

(x0,y0)
|Rn

��1

(F (x, y
n

))

= �
�

DF

(x0,y0)
|Rn

��1

�

F (x, y
n�1

) +DF

(x,y

n�1)
(y

n

� y

n�1

) +R

�

,

where
R = F (x, y

n

)� F (x, y
n�1

)�DF

(x,y

n�1)
(y

n

� y

n�1

)

and has the property that

kRk
ky

n

� y

n�1

k ! 0 as ky
n

� y

n�1

k ! 0.

This implies

y

n+1

� y

n

= �
�

DF

(x0,y0)
|Rn

��1

(F (x, y
n�1

))

�
�

DF

(x0,y0)
|Rn

��1

�

DF

(x,y

n�1)
(y

n

� y

n�1

)
�

�
�

DF

(x0,y0)
|Rn

��1

(R)

= (y
n

� y

n�1

)

�
�

DF

(x0,y0)
|Rn

��1

�

DF

(x0,y0)
(y

n

� y

n�1

)
�

+
�

DF

(x0,y0)
|Rn

��1

��

DF

(x0,y0)
�DF

(x,y

n�1)

�

(y
n

� y

n�1

)
�

�
�

DF

(x0,y0)
|Rn

��1

(R)

= (y
n

� y

n�1

)� (y
n

� y

n�1

)

+
�

DF

(x0,y0)
|Rn

��1

��

DF

(x0,y0)
�DF

(x,y

n�1)

�

(y
n

� y

n�1

)
�

�
�

DF

(x0,y0)
|Rn

��1

(R)

=
�

DF

(x0,y0)
|Rn

��1

��

DF

(x0,y0)
�DF

(x,y

n�1)

�

(y
n

� y

n�1

)
�

�
�

DF

(x0,y0)
|Rn

��1

(R) .

Thus

ky
n+1

� y

n

k 
�

�

�

�

DF

(x0,y0)
|Rn

��1

�

�

�

�

�

�

DF

(x0,y0)
�DF

(x,y

n�1)

�

�

� ky
n

� y

n�1

k

+
�

�

�

�

DF

(x0,y0)
|Rn

��1

�

�

�

kRk .

The fact that (x, y
n�1

) is always close to (x
0

, y

0

) together with the assumption
that DF

(x,y)

is continuous shows us that we can assume
�

�

�

�

DF

(x0,y0)
|Rn

��1

�

�

�

�

�

�

DF

(x0,y0)
�DF

(x,y

n�1)

�

�

�  1

4

provided " and � are sufficiently small. The same is evidently true for
�

�

�

�

DF

(x0,y0)
|Rn

��1

�

�

�

kRk
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and so we have
ky

n+1

� y

n

k  1

2
ky

n

� y

n�1

k .

Iterating this we obtain

ky
n+1

� y

n

k  1

2
ky

n

� y

n�1

k

 1

2

1

2
ky

n�1

� y

n�2

k


✓

1

2

◆

n

ky
1

� y

0

k .

Now consider the telescopic series
1
X

n=0

(y
n+1

� y

n

) .

This series is absolutely convergent as ky
n+1

� y

n

k 
�

1

2

�

n ky
1

� y

0

k and the
series

ky
1

� y

0

k
1
X

n=0

✓

1

2

◆

n

= 2 ky
1

� y

0

k

is convergent. Since it is telescopic it converges to
⇣

lim
n!1

y

n

⌘

� y

0

.

Thus we have shown that y

n

converges in V = C

0

�

B̄

"

,Rn

�

to a function y (x)
that must solve F (x, y (x)) = 0. It remains to show that y is differentiable and
compute its differential.

Using

0 = F (x+ h, y (x+ h))� F (x, y (x))

= DF

(x,y(x))

|Rm (h) +DF

(x,y(x))

|Rn (y (x+ h)� y (x)) +R

and that DF

(x,y(x))

|Rn is invertible (an unjustified fact that follows from the
fact that it is close to DF

(x0,y0)
|Rn

, see also exercises) we see that

y (x+ h)�y (x)+
�

DF

(x,y(x))

|Rn

��1

DF

(x,y(x))

|Rm (h) =
�

DF

(x,y(x))

|Rn

��1

(�R) .

This certainly indicates that y should be differentiable with derivative

�
�

DF

(x,y(x))

|Rn

��1

DF

(x,y(x))

|Rm

.

This derivative varies continuously so y is continuously differentiable. To estab-
lish rigorously that the derivative is indeed correct we need only justify that

lim
khk!0

k�Rk
khk = 0.

This follows from the definition of R and continuity of y.
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7.1 Exercises

1. Let C ⇢ V be a closed subset of a real vector space. Assume that if
x, y 2 C, then x+ y 2 C and 1

2

x 2 C. Show that C is a real subspace.

2. Let L : V ! W be a continuous additive map between normed vector
spaces over R. Show that L is linear. Hint: Use that it is linear with
respect to Q.

3. Let f (z) =
P1

n=0

a

n

z

n define a power series. Let A 2 Mat
n⇥n

(F) . Show
that one can define f (A) as long as kAk < radius of convergence.

4. Let L : V ! V be a bounded operator on a normed vector space.

(a) If kLk < 1, then 1
V

+ L has an inverse. Hint: (1
V

+ L)
�1

=
P1

n=1

(�1)n Cn

.

(b) With L as above show

�

�

L

�1

�

�  1

1� kLk ,
�

�

�

(1
V

+ L)
�1 � 1

V

�

�

�

 kLk
1� kLk .

(c) If
�

�

L

�1

�

�  "

�1 and kL�Kk < ", then K is invertible and

�

�

K

�1

�

� 
�

�

L

�1

�

�

1� kL�1 (K � L)k ,

�

�

L

�1 �K

�1

�

� 
�

�

L

�1

�

�

2

(1� kL�1k kL�Kk)2
kL�Kk .

5. Let L : V ! V be a bounded operator on a normed vector space.

(a) If � is an eigenvalue for L, then

|�|  kLk .

(b) Given examples of 2⇥2 matrices where strict inequality always holds.

6. Show that

x (t) =

✓

exp (A (t� t

0

))

ˆ
t

t0

exp (�A (s� t

0

)) f (s) ds

◆

x

0

solves the initial value problem ẋ = Ax+ f, x (t
0

) = x

0

.

7. Let A = B+C 2 Mat
n⇥n

(R) where B is invertible and kCk is very small
compared to kBk .
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(a) Show that B

�1 �B

�1

CB

�1 is a good approximation to A

�1

.

(b) Use this to approximate the inverse to

2

6

6

4

1 0 1000 1
0 �1 1 1000
2 1000 �1 0

1000 3 2 0

3

7

7

5

.

8 Infinite Dimensional Extensions
Recall that our definition of adjoints rested on knowing that all linear functionals
where of the form x ! (x|y) . This fact does not hold in infinite dimensional
spaces unless we assume that they are complete. Even in that case we need to
assume that the functionals are continuous for this result to hold.

Instead of trying to generalize the entire theory to infinite dimensions we
are going to discuss a very important special case. Let V = C

1
2⇡

(R,C) be the
space of of smooth 2⇡ periodic functions with the inner product

(f |g) = 1

2⇡

ˆ
2⇡

0

f (t) g (t)dt.

The evaluation functional L (f) = f (t
0

) that evaluates a function in V at t

0

is
not continuous nor is it of the form

L (f) =
1

2⇡

ˆ
2⇡

0

f (t) g (t)dt

no matter what class of functions g belongs to. Next consider

L (f) =
1

2⇡

ˆ
2⇡

0

f (t) g (t)dt

=
1

2⇡

ˆ
⇡

0

f (t) dt

where
g =

⇢

1 t 2 [0,⇡]
0 t 2 (⇡, 2⇡)

This functional is continuous but cannot be represented in the desired form
using g 2 C

1
2⇡

(R,C) .
While there are very good ways of dealing with these problems in general we

are only going to study operators where we can easily guess the adjoint. The
basic operator we wish to study is the differentiation operator D : C1

2⇡

(R,C)!
C

1
2⇡

(R,C) . We have already shown that this map is skew-adjoint

(Df |g) = � (f |Dg) .

This map yields an operator D : V
0

! V

0

, where V
0

=
n

f 2 V :
´
2⇡

0

f (t) dt = 0
o

.

Clearly we can define D on V

0

, the important observation is that
ˆ

2⇡

0

(Df) (t) dt = f (t)|2⇡
0

= 0.
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Thus Df 2 V

0

for all f 2 V. Apparently the function f (t) ⌘ 1 does not belong to
V

0

. In fact V
0

is by definition the subspace of all functions that are perpendicular
to 1. Since ker (D) = span {1} , we have that V

0

= (ker (D))
?
. The Fredholm

alternative then indicates that we might expect im (D) = V

0

. This is not hard
to verify directly. Let g 2 V

0

and define

f (t) =

ˆ
t

0

g (s) ds.

Clearly g is smooth since f is smooth. Moreover since f (2⇡) =
´
2⇡

0

g (s) ds =
0 = f (0) it is also 2⇡ periodic. Thus f 2 V and Df = g.

Our next important observation about D is that it is diagonalized by the
complete orthonormal set exp (int) , n 2 Z of vectors as

D (exp (int)) = in exp (int) .

This is one reason why it is more convenient to work with complex valued
functions as D does not have any eigenvalues aside from 0 on C

1
2⇡

(R,R) . Note
that this also implies that D is unbounded since kD (exp (int))k

2

= |n| ! 1,

while kexp (int)k
2

= 1.
If we expand the function f (t) 2 V according to its Fourier expansion f =

P

f

n

exp (int) , then we see that the Fourier expansion for Df is

Df =
X

(in) f
n

exp (int) .

This tells us that we cannot extend D to be defined on the Hilbert space `

2 (Z)
as ((in) f

n

)
n2Z doesn’t necessarily lie in this space as long as we only assume

(f
n

)
n2Z 2 `

2 (Z) . A good example of this is f

n

= 1/n for n 6= 0.
The expression for Df together with Parseval’s formula tells us something

quite interesting about the operator D, namely, we have Wirtinger’s inequality
for f 2 V

0

kfk2
2

=
X

n 6=0

|f
n

|2


X

n 6=0

|in|2 |f
n

|2

= kDfk2
2

.

Thus the inverse D

�1 : V
0

! V

0

must be a bounded operator. At the level of
Fourier series this map is evidently given by

D

�1

0

@

X

n 6=0

g

n

exp (int)

1

A =
X

n 6=0

g

n

in

exp (int) .

In contrast to D we therefore have that D

�1 does define a map `

2 (Z� {0})!
`

2 (Z� {0}) .
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With all of this information about D we can now attempt to generalize to
the situation to the operator p (D) : C1

2⇡

(R,C)! C

1
2⇡

(R,C) , where p (t) 2 C [t]
is a complex polynomial. Having already seen that D⇤ = �D we can define the
adjoint (p (D))

⇤ by

(p (D))
⇤

=
�

a

n

D

n + a

n�1

D

n�1 + · · ·+ a

1

D + a

0

�⇤

= ā

n

(�1)n Dn + ā

n�1

(�1)n�1

D

n�1 + · · ·+ ā

1

(�1)D + ā

0

= p

⇤ (D) .

Note that the “adjoint” polynomial p⇤ (t) satisfies

p

⇤ (t) = p (�t),
p

⇤ (it) = p (it)

for all t 2 R. It is easy to check that p

⇤ (D) satisfies the usual adjoint property

(p (D) f, g) = (f, p⇤ (D) g) .

We would expect p (D) to be diagonalizable as it is certainly a normal operator.
In fact we have

p (D) (exp (int)) = p (in) exp (int) .

Thus we have the same eigenvectors as for D and the eigenvalues are simply
p (in) . The adjoint then also has the same eigenvectors, but with conjugate
eigenvalues as one would expect:

p

⇤ (D) (exp (int)) = p

⇤ (in) exp (int)

= p (in) exp (int) .

This immediately tells us that each eigenvalue can have at most deg (p) eigen-
vectors in the set {exp (int) : n 2 Z} . In particular,

ker (p (D)) = ker (p⇤ (D))

= span {exp (int) : p (in) = 0}

and
dim (ker (p (D)))  deg (p) .

Since ker (p (D)) is finite dimensional we have an orthogonal projection onto
ker (p (D)). Hence the orthogonal complement is well-defined and we have that

C

1
2⇡

(R,C) = ker (p (D))� (ker (p (D)))
?
.

What is more, the Fredholm alternative also suggests that

im (p (D)) = im (p⇤ (D)) = (ker (p (D)))
?
.

Our eigenvalue expansion shows that

p (D) (f) , p⇤ (D) (f) 2 (ker (p (D)))
?
.
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Moreover for each n where p (in) 6= 0 we have

exp (int) = p (D)

✓

1

p (in)
exp (int)

◆

,

exp (int) = p

⇤ (D)

 

1

p (in)
exp (int)

!

.

Hence
im (p (D)) = im (p⇤ (D)) = (ker (p (D)))

?
.

Finally we can also generalize Wirtinger’s inequality to the effect that we
can find some C > 0 depending on p (t) such that for all f 2 im (p (D)) we have

kfk2
2

 C kp (D) (f)k2
2

.

To find C we must show that

C

�1 = inf {|p (in)| : p (in) 6= 0} > 0.

This follows from the fact that unless deg (p) = 0 we have |(p (z
n

))| ! 1 for
any sequence (z

n

) of complex numbers such that |z
n

| ! 1 as n ! 1. Thus
inf {|p (in)| : p (in) 6= 0} is obtained for some value of n. In concrete situations
it is quite easy to identify both the n such that p (in) = 0 and also the n that
minimizes |p (in)| . The generalized Wirtinger inequality tells us that we have a
bounded operator

(p (D))
�1

: im (p (D))! im (p (D))

that extends to `

2 ({n 2 Z : p (in) 6= 0}) .
Let us collect some of these results in a theorem.

Theorem 8.1. Consider p (D) : C1
2⇡

(R,C) ! C

1
2⇡

(R,C) , where p (t) 2 C [t] .
Then

p (D) (exp (int)) = p (in) exp (int) .
dim (ker (p (D)))  deg (p)

C

1
2⇡

(R,C) = ker (p (D))� (ker (p (D)))
?
= ker (p (D))� im (p (D))

p (D) : im (p (D))! im (p (D)) is one-to-one and onto with bounded inverse.
If g 2 im (p (D)) , then p (D) (x) = g has a unique solution x 2 im (p (D)) .

This theorem comes in quite handy when trying to find periodic solutions
to differential equations. We can illustrate this through a few examples.

Example 8.2. Consider p (D) = D

2 � 1. Then p (t) = t

2 � 1 and we see that
p (in) = �n2 � 1  �1. Thus ker (p (D)) = {0} . This should not come as a
surprise as p (D) = 0 has two linearly independent solutions exp (±t) that are
not periodic. We then conclude that p (D) : C

1
2⇡

(R,C) ! C

1
2⇡

(R,C) is an
isomorphism with

kfk
2

 kp (D) (f)k
2

,
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and the equation p (D) (x) = g 2 C

1
2⇡

(R,C) has unique solution x 2 C

1
2⇡

(R,C) .
This solution can be found directly from the Fourier expansion of g =

P

n2Z gn exp (int):

x =
X

n2Z

g

n

�n2 � 1
exp (int)

Consider p (D) = D

2 + 1. Then p (t) = t

2 + 1 and we have p (±i) = 0.
Consequently

ker (p (D)) = span {exp (it) , exp (�it)}
= span {cos (t) , sin (t)} .

The orthogonal complement has the property that the ±1 term in the Fourier
expansion is 0. So if

g =
X

n 6=±1

g

n

exp (int)

then the solution to
p (D) (x) = g

that lies in im (p (D)) is given by

x =
X

n 6=±1

g

n

�n2 + 1
exp (int) .

We are going to have problems solving

D

2

t

x+ x = exp (±it)

even if we don’t just look for periodic solutions. Usually one looks for solutions
that look like the forcing terms g unless g is itself a solution to the homogeneous
equation. Otherwise we have to multiply the forcing term by a polynomial of
the appropriate degree. In this case we see that

x (t) =
⌥it
2

exp (±it)

is a solution to the inhomogeneous equation. This is clearly not periodic, but it
does yield a discontinuous 2⇡ periodic solution if we declare that it is given by
x (t) = ⌥it

2

exp (±it) on [�⇡,⇡] .

To end this section let us give a more geometric application of what has
be developed so far. The classical isoperimetric problem asks, if among all
domains in the plane with fixed perimeter 2⇡R the circle has the largest area
⇡R

2? Thus the problem is to show that for a plane region ⌦ ⇢ C we have that
area (⌦)  ⇡R

2 if the perimeter of @⌦ is 2⇡R. This is were the functions from the
space C

1
2⇡

(R,C) come in handy in a different way. Assume that the perimeter
is 2⇡ and then parametrize it by arclength via a function f (t) 2 C

1
2⇡

(R,C) .
The length of the perimeter is then calculated by

ˆ
2⇡

0

|(Df) (t)| dt = 2⇡
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Note that multiplication by ±i rotates a vector by 90� so ±i (Df) (t) represent
the unit normal vectors to the domain at f (t) since Df (t) is a unit vector.

To find a formula for the area we use Green’s theorem in the plane

area (⌦) =

ˆ ˆ
⌦

1dxdy

=
1

2

�

�

�

�

ˆ
2⇡

0

Re (f (t) |i (Df) (t)) dt

�

�

�

�

=
1

2
2⇡

�

�

�

�

1

2⇡

ˆ
2⇡

0

Re (f (t) |i (Df) (t)) dt

�

�

�

�

= ⇡ |Re (f |iDf)| .

Cauchy-Schwarz then implies that

area (⌦) = ⇡ |Re (f |iDf)|
 ⇡ kfk

2

kiDfk
2

= ⇡ kfk
2

kDfk
2

= ⇡ kfk
2

Now translate the region, so that
´
2⇡

0

f (t) dt = 0. This can be done without
affecting the area and differential so the above formula for the area still holds.
Wirtinger’s inequality then implies that

area (⌦)  ⇡ kfk
2

 ⇡ kDfk
2

= ⇡,

which is what we wanted to prove. In case the length of the perimeter is 2⇡R
we need to scale the parameter so that the function remains 2⇡ periodic. This
means that f looks like f (t ·R) and |Df | = R. With this change the argument
is easily repeated.

This proof also yields the rigidity statement that only the circle has maximal
area with fixed circumference. To investigate that we observe that equality in
Wirtinger’s inequality occurs only when f (t) = f

1

exp (it) + f�1

exp (�it) . The
condition that the curve was parametrized by arclength then implies

1 = |Df (t)|2

= |if
1

exp (it)� if�1

exp (�it)|2

= |f
1

|2 + |f
2

|2 � 2Re
�

f

1

f�1

exp (2it)
�

Since Re (exp (2it)) is not constant in t we conclude that either f

1

= 0 or
f�1

= 0. Thus f (t) = f±1

exp (±it) parametrizes a circle.

8.1 Exercises

1. Study the differential equation p (D) (x) = (D � i) (D + 2i) (x) = g (t) .
Find the kernel, image, the constant in Wirtinger’s inequality etc.
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2. Consider a differential equation p (D) (x) = g (t) such that the homo-
geneous equation p (D) (x) = 0 has a solution in C

1
2⇡

(R,C). If g (t) 2
C

1
2⇡

(R,C) show that the inhomogeneous equation has either infinitely
many or no solutions in C

1
2⇡

(R,C).

9 Calculating the Jordan Canonical Form
The purpose of this section is to elaborate on the proof of the Jordan canonical
form. The goal is to give an algorithm that for each eigenvalue computes the
number of blocks of a given size in the Jordan Canonical form. Recall that
we explained what happens in dimension 2 and 3 in chapter 2 “The Jordan
Canonical From” so we are mostly concerned with the higher dimensional cases
here. Initially we shall simply consider a nilpotent operator N : V ! V , i.e.,
N

k = 0 for some k. This implies that � = 0 is the only possible eigenvalue and
hence that �

N

(t) = t

n. The cyclic subspace decomposition gives us a direct
sum decomposition V = C

x1 � · · · � C

x

s

, where dimC

x1 � · · · � dimC

x

s

and
each C

x

i

corresponds to a Jordan block of size dimC

x

i

. This gives us a partition
of n

n = dimC

x1 + · · ·+ dimC

x

s

, where
dimC

x1 � · · · � dimC

x

s

.

The goal of this section is to find this partition from a different set of numbers
that are simpler to calculate. The numbers are the following dimensions.

k

1

= dim (ker (N))

k

2

= dim
�

ker
�

N

2

��

...
k

n

= dim (ker (Nn))

We already know that C

x

i

\ dim (ker (N)) is one dimensional as each cyclic
subspace has one dimensional eigenspace for � = 0. Thus k

1

= s gives the
number of Jordan blocks. In a similar way we observe that k

2

� k

1

must give
us the number of Jordan blocks of size � 2. And more generally k

i

� k

i�1

is the
number of Jordan blocks of size � i. Thus we see that the number of Jordan
blocks of size i must be given by the number (k

i

� k

i�1

) � (k
i+1

� k

i

) . These
are precisely the numbers we wish to find and they can clearly be found from
just knowing k

1

, ...., k

n

.

This information gives a different partition of n. First find the smallest m

such that k

m+1

= k

m

= n. Note that this means m

N

(t) = t

m. We then have a
partition

n = k

1

+ (k
2

� k

1

) + · · ·+ (k
m

� k

m�1

) , where
k

1

� (k
2

� k

1

) � · · · � (k
m

� k

m�1

) > 0.
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Moreover, this partition tells us the number of blocks of a given size. The
information can be encoded in a so called Young diagram or Young tableau
(table)

N n k

1

k

2

� k

1

· · · k

m�1

� k

m�2

k

m

� k

m�1

C

x1 m • • · · · • •
C

x2 m • • · · · • •
C

x3 m� 1 • • · · · •
...

...
...

? • • · · ·
C

x

s�1 1 •
C

x

s

1 •

The first column first records the linear map N and then the decomposition
of N into subspaces corresponding to Jordan blocks. The second records the
dimensions of these subspaces, thus giving us the first decomposition of n. The
second decomposition of n is the first row starting with k

1

. Finally the columns
headed by k

i

� k

i�1

has (k
i

� k

i�1

) dots starting from the top. To find the
number of blocks of size i we simply go to the column headed by k

i

� k

i�1

and
check how many dots we have at the bottom of that column which do not have a
dots to the immediate right. In this way we can by starting from the right hand
column find the size of each of the blocks and then record that in the second
column.

For n = 2, 3, 4 all Young diagrams look like

N 2 2
C

x1 1 •
C

x2 1 •
,

N 2 1 1
C

x1 2 • •

N 3 3
C

x1 1 •
C

x2 1 •
C

x3 1 •

,

N 3 2 1
C

x1 2 • •
C

x2 1 •
,

N 3 1 1 1
C

x1 3 • • •

N 4 4
C

x1 1 •
C

x2 1 •
C

x3 1 •
C

x4 1 •

,

N 4 3 1
C

x1 2 • •
C

x2 1 •
C

x3 1 •

,

N 4 2 2
C

x1 2 • •
C

x2 2 • •
,

N 4 2 1 1
C

x1 3 • • •
C

x2 1 •
,

N 4 1 1 1 1
C

x1 4 • • • •

The first observation we make is that n and k

1

determine the entire Young
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diagram in all cases except for the following two situations

N 4 2 2
C

x1 2 • •
C

x2 2 • •
,

N 4 2 1 1
C

x1 3 • • •
C

x2 1 •

where n = 4 and k

1

= 2. In this case it is necessary to compute k

2

in order to
find the Jordan block structure. The prototypical example of two 4⇥4 matrices
that conform to those two Young diagrams are

2

6

6

4

0 1 0 0
0 0 0 0
0 0 0 1
0 0 0 0

3

7

7

5

,

2

6

6

4

0 1 0 0
0 0 1 0
0 0 0 0
0 0 0 0

3

7

7

5

This is enough information to compute virtually every Jordan canonical
form that can be done by hand. If we start with a linear transformation L

such that �

L

(t) = (t� �

1

)
n1 · · · (t� �

k

)
n

k and we know that n

1

, ..., n

k

 3,
then we can find the Jordan canonical form by simply calculating k

1

(�
i

) =
dim (ker (L� �

i

1
V

)) . The Jordan block structure corresponding to the eigen-
value �

i

is then determined by the two numbers n

i

and k

1

(�
i

) . In the more
general case were we allow n

i

= 4 and k

1

(�
i

) = 2, we need to also compute
k

2

(�
i

) = dim
⇣

ker
⇣

(L� �

i

1
V

)
2

⌘⌘

to decide the Jordan block structure.
All of these investigations also lead us to a procedure for deciding when

two matrices are similar. We say that two linear maps L

1

: V

1

! V

1

and
L

2

: V
2

! V

2

are similar if there is an isomorphism K : V
1

! V

2

such that
L

2

= K �L
1

�K�1

. Clearly this is equivalent to finding bases for V
1

and V

2

such
that the matrix representations are the same

V

1

 � Fn �! V

2

" L
1

[L
1

] " [L
2

] " L
2

V

1

 � Fn �! V

2

Note that unitary equivalence is a much stronger condition, which in any case
only makes sense when we have inner products. Similarity is the correct concept
when we are in abstract vector spaces. With this definition it is clear that
two linear maps with characteristic polynomials that split are similar if and
only if they have the same Jordan canonical form. Thus the following theorem
completely determines the similarity type of a linear operator.

Theorem 9.1. (Construction of the Jordan Canonical Form) Let L : V ! V

be a linear operator on an n dimensional vector space. If

�

L

(t) = (t� �

1

)
n1 · · · (t� �

k

)
n

k
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splits, then the Jordan canonical form is completely determined by the numbers

k

1

(�
i

) = dim (ker (L� �

i

1
V

)) ,

k

2

(�
i

) = dim
⇣

ker
⇣

(L� �

i

1
V

)
2

⌘⌘

,

...
k

n

i

(�
i

) = dim (ker ((L� �

i

1
V

)
n

i)) ,

where i = 1, ..., k. Moreover, the Jordan block structure for the eigenvalue �

i

can be found from the Young diagram associated with the decomposition

n

i

= k

1

(�
i

) + (k
2

(�
i

)� k

1

(�
i

)) + · · ·+ (k
m

i

(�
i

)� k

m

i

�1

(�
i

)) ,

where m

i

is the smallest integer so that

k

m

i

(�
i

) = dim (ker ((L� �

i

1
V

)
m

i)) = n

i

.

In the “The Smith Normal Form” we give a different procedure for deter-
mining the similarity type of a linear operator. This procedure does not depend
on assuming that the characteristic polynomial splits. However, in case F ⇢ C
it will turn out that two linear operators are similar if and only if their matrix
representations are similar as complex matrices. Thus the above result is far
more general than it appears.

First let us see that the minimal and characteristic polynomials are not
sufficient information if we seek to find the similarity type of a linear operator.
On F4 the two matrices

A =

2

6

6

4

0 1 0 0
0 0 0 0
0 0 0 0
0 0 0 0

3

7

7

5

B =

2

6

6

4

0 1 0 0
0 0 0 0
0 0 0 1
0 0 0 0

3

7

7

5

have � (t) = t

4 and m (t) = t

2

, but they are not similar as dim (ker (A)) = 3,
while dim (ker (B)) = 2. The Young diagrams for these two matrices look like

A 4 3 1
C

x1 2 • •
C

x2 1 •
C

x3 1 •
B 4 2 2
C

x1 2 • •
C

x2 2 • •
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Finally let us give a more computationally challenging example.

A =

2

6

6

6

6

6

6

6

6

6

6

4

0 �1 1 �1 0 1 �1 �1
0 0 �1 1 0 �1 1 1
0 0 0 0 0 0 0 0
0 0 0 0 0 1 �2 0
0 0 0 0 1 �1 �1 2
0 0 0 0 0 1 0 1
0 0 0 0 0 0 2 �1
0 0 0 0 0 0 0 2

3

7

7

7

7

7

7

7

7

7

7

5

We see immediately that � (t) = t

4 (t� 1)
2

(t� 2)
2

. We then seek to find the di-
mensions of the kernels ker (A) , ker

�

A

2

�

, ker (A� 1F8) , ker (A� 2 · 1F8) . From
A it self we see that dim (ker (A)) = 2. We then calculate (in fact since A is in
block form we only need to worry about the upper left hand 4⇥ 4 block.)

A

2 =

2

6

6

6

6

6

6

6

6

6

6

4

0 0 1 �1 0 1 �1 �1
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 1 �4 3
0 0 0 0 1 �2 �3 6
0 0 0 0 0 1 0 3
0 0 0 0 0 0 4 �4
0 0 0 0 0 0 0 4

3

7

7

7

7

7

7

7

7

7

7

5

which clearly has dim
�

ker
�

A

2

��

= 3. Thus the Jordan blocks for 0 are
2

4

0 1 0
0 0 1
0 0 0

3

5

, [0] .

Next we calculate A� 1F8 and A� 2 · 1F8

A� 1F8 =

2

6

6

6

6

6

6

6

6

6

6

4

�1 �1 1 �1 0 1 �1 �1
0 �1 �1 1 0 �1 1 1
0 0 �1 0 0 0 0 0
0 0 0 �1 0 1 �2 0
0 0 0 0 0 �1 �1 2
0 0 0 0 0 0 0 1
0 0 0 0 0 0 1 �1
0 0 0 0 0 0 0 1

3

7

7

7

7

7

7

7

7

7

7

5

A� 2 · 1F8 =

2

6

6

6

6

6

6

6

6

6

6

4

�2 �1 1 �1 0 1 �1 �1
0 �2 �1 1 0 �1 1 1
0 0 �2 0 0 0 0 0
0 0 0 �2 0 1 �2 0
0 0 0 0 �1 �1 �1 2
0 0 0 0 0 �1 0 1
0 0 0 0 0 0 0 �1
0 0 0 0 0 0 0 0

3

7

7

7

7

7

7

7

7

7

7

5
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each of which has 1 dimensional kernel. Thus the Jordan blocks are


1 1
0 1

�

,



2 1
0 2

�

.

This means that the Jordan canonical form for A is
2

6

6

6

6

6

6

6

6

6

6

4

0 1 0 0 0 0 0 0
0 0 1 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 1 1 0 0
0 0 0 0 0 1 0 0
0 0 0 0 0 0 2 1
0 0 0 0 0 0 0 2

3

7

7

7

7

7

7

7

7

7

7

5

10 The Rational Canonical Form
The purpose of this section is to explain what can be said about linear maps
when the characteristic polynomial doesn’t split. From the minimal polyno-
mial section we know that one can expect to decompose any L : V ! V

into L invariant subspaces V

i

such that V = �
i

V

i

and L|
V

i

has the prop-
erty that �

L|
V

i

(t) = m

L|
V

i

(t) . Having achieved this we are then left with the
problem of discovering the simplest matrix representation for a linear opera-
tor L : V ! V where �

L

(t) = m

L

(t). At that level of generality it would
take some work to answer this question (see exercises). Instead we are going
to restrict ourselves to a simpler case as in the case of the Jordan blocks where
�

L

(t) = m

L

(t) = (t� �)
n

. In the more general situation at hand where we
can’t necessarily guarantee roots of polynomials we shall decompose V into
subspaces where �

L|
V

i

(t) = m

L|
V

i

(t) = (p
i

(t))
m

i and p

i

(t) cannot be written
as a product of polynomials in F [t] . To clarify the importance of these polyno-
mials we introduce some notation. The proofs of the facts we use are covered
in “polynomials” from chapter 2.

We say that a monic polynomial p 2 F [t] is irreducible if p cannot be written
as a product of two monic polynomials of degree� 1 in F [t] . Thus the irreducible
polynomials in C [t] are precisely the linear ones t � �. While the irreducible
polynomials in R [t] look like (t� �) or t

2 + ↵t + �, where ↵

2 � 4� < 0. There
is also a relatively simple way of checking whether a polynomial in Q [t] is
irreducible. This is the so called Eisenstein criterion.

Lemma 10.1. If we take a monic polynomial q (t) 2 Q [t] and multiply it by an
integer so that all coefficients become integers

kq (t) = a

n

t

n + · · · a
1

t+ a

0

,

then q is irreducible provided we can find a prime number p so that p does not
divide a

n

, p divides all of the other coefficients a

n�1

, ..., a

1

, a

0

, and p

2 does not
divide a

0

.
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Just as one can always factor an integer into prime factors one can also factor
a monic polynomial p (t) 2 F [t] into irreducible factors

p (t) = (p
1

(t))
n1 · · · (p

k

(t))
n

k

.

If we fix a linear operator L : V ! V and factor its characteristic polynomial

�

L

(t) = (p
1

(t))
n1 · · · (p

k

(t))
n

k

,

then it is natural to suppose that the L invariant subspaces ker (p (L)) and
ker
⇣

(p (L))
k

⌘

, where p (t) is some irreducible factor of �
L

(t) , in a natural way

replace ker (L� �1
V

) and ker
⇣

(L� �1
V

)
k

⌘

.

The following proposition shows to what extend irreducible factors of the
characteristic polynomial mimic eigenvalues. The keen reader will, however,
observe that the proof of the rational canonical form below does not depend on
this nice characterization.

Proposition 10.2. Let p (t) 2 F [t] be an irreducible polynomial and L : V !
V a linear operator on a finite dimensional vector space. Then the following
conditions are equivalent.

1. ker (p (L)) 6= {0} .
2. p (t) divides m

L

(t) .
3. p (t) divides �

L

(t) .

Proof. Note that if 1 holds then the minimal polynomial for L|
ker(p(L))

must
divide p (t) and therefore be p (t) as p (t) was assumed to be irreducible. Con-
versely if 2 holds then we have

0 = m

L

(L) = p (L) q (L)

for some q (t) 2 F [t] . If ker (p (L)) = {0} , then p (L) must be an isomorphism
and hence it must follow that q (L) = 0. But this means that m

L

(t) divides q (t)
which contradicts that deg (p (t)) � 1. Thus 1. and 2. are equivalent. Moreover
since m

L

(t) divides �
L

(t) it will also follow that p (t) divides �
L

(t) provided it
divides m

L

(t) .
The final step that 3. implies 2. is a little more involved. First pick a cyclic

subspace decomposition of V . Thus L has a matrix representation

[L] =

2

6

6

6

4

C

p1 0 0
0 C

p2

. . .
0 C

p

k

3

7

7

7

5

where
�

L

(t) = �

[L]

(t) = p

1

(t) · · · p
k

(t) .

Since p (t) is irreducible and divides �
L

(t) it must also divide one of the polyno-
mials p

1

(t) , ..., p
k

(t) . If we assume that p (t) divides p

i

(t) , then we have that
p (t) divides m

C

p

i

(t) = p

i

(t) . Since m

C

p

i

(t) divides m

L

(t) , this shows that
p (t) divides m

L

(t).
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Corollary 10.3. Let L : V ! V be a linear operator on an n-dimensional
space, then

�

L

(t) = (p
1

(t))
n1 · · · (p

k

(t))
n

k

,

m

L

(t) = (p
1

(t))
m1 · · · (p

k

(t))
m

k

,

where p

i

(t) are irreducible, 1  m

i

 n

i

 n, and

n

1

deg (p
1

(t)) + · · ·+ n

k

deg (p
k

(t)) = n.

The proof of how a linear transformation can be reduced and given a canon-
ical form at this general level now follows the outline that was used for the
Jordan canonical form. Namely, we decompose V into cyclic subspaces with the
property that no further decompositions are possible. We then show that these
indecomposable blocks give a simple matrix structure for L.

The reduction process works by induction on dimV. Thus we fix a linear
operator L : V ! V. Let

m

L

(t) = (p
1

(t))
m1 · · · (p

k

(t))
m

k

be the factorization of m
L

(t) into irreducible polynomials p

i

(t). Then we have
an L invariant decomposition

V = ker ((p
1

(L))
m1)� · · ·� ker ((p

k

(L))
m

k) .

Therefore we can restrict our efforts to the situation where L : V ! V is a linear
operator with m

L

(t) = (p (t))
m and p (t) is irreducible in F [t] . Next we use the

cyclic subspace decomposition to decompose V further. This reduces us to the
situation where L : V ! V is a linear operator with m

L

(t) = (p (t))
m

= �

L

(t) .
For such operators we claim that no further decomposition of V is possible:

Lemma 10.4. Let L : V ! V be a linear operator with m

L

(t) = (p (t))
m

=
�

L

(t) , where p (t) is irreducible in F [t] . Then there are no nontrivial L invariant
decompositions V = M�N. Moreover V has a cyclic basis which makes [L] into
a companion matrix.

Proof. First suppose that we have an L invariant decomposition V = M � N .
Because p (t) is irreducible it follows that

�

L|
M

(t) = (p (t))
k

,

�

L|
N

(t) = (p (t))
l

,

where l + k = m. Then

m

L|
M

(t) = (p (t))
k

0
,

m

L|
N

(t) = (p (t))
l

0
,
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where k

0  k and l

0  l. If z = x+ y where x 2M and y 2 N, then

(p (L))
max{k0

,l

0} (z) = (p (L))
max{k0

,l

0} (x) + (p (L))
max{k0

,l

0} (y)

= (p (L|
M

))
max{k0

,l

0} (x) + (p (L|
N

))
max{k0

,l

0} (y)
= 0 + 0.

But then it must follow that (p (L))
max{k0

,l

0} = 0. Hence max {k0, l0} = m and
thus M = V or N = V as desired.

This clearly implies that the only cyclic subspace decomposition of V is the
trivial one V = C

x

. This finishes the proof.

Theorem 10.5. (The Rational Canonical Form) Let L : V ! V be a linear
operator, Then we can find an L invariant decomposition

V = C

x1 � · · ·� C

x

s

where
�

L|
C

x

i

(t) = m

L|
C

x

i

(t) = (p
i

(t))
k

i

and p

i

(t) 2 F [t] are monic irreducible polynomials.

To see how such canonical forms work in practice let us consider linear
operators of finite order as in “Diagonalizability Redux”. Thus we have a linear
operator L : V ! V such that Lk = 1

V

. We start by assuming that F = R. The
minimal polynomial divides tk�1. So to find the potential irreducible factors of
m

L

we seek the irreducible factors of tk � 1. We always have that t� 1 divides
t

k� 1, and when k is even also t+1 divides tk� 1. Otherwise we know that the
complex polynomials come in conjugate pairs that look like e

i2⇡

l

k

, e

�i2⇡

l

k where
0 < l < k/2. Thus

⇣

t� e

i2⇡

l

k

⌘⇣

t� e

�i2⇡

l

k

⌘

= t

2 � 2 cos

✓

2⇡
l

k

◆

t+ 1

is an irreducible factor. We also see that each of these irreducible factors only
occurs once. Thus L has a rational canonical form where the blocks look like

[1] , [�1] ,


0 �1
1 2 cos

�

2⇡ l

k

�

�

, where 0 < l < k/2.

In case F = Q things are a good deal more complicated. The irreducible
factorization of tk � 1 is something that is discussed in more advanced algebra
courses covering Galois Theory. We are going to consider the cases where k =
2, 3, 4, 5 as examples of what might happen.

When k = 2 we have t

2 � 1 = (t� 1) (t+ 1). Thus L is diagonalizable with
eigenvalues 1 and/or �1.

When k = 3 we have t

3 � 1 = (t� 1)
�

t

2 + t+ 1
�

. Here t

2 + t + 1 does not
have rational roots and is therefore irreducible. Thus the blocks in the rational
form look like

[1] ,



0 �1
1 �1

�

.
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When k = 4 we have t

4 � 1 = (t� 1) (t+ 1)
�

t

2 + 1
�

and t

2 + 1 is irreducible.
Thus the blocks in the rational form look like

[1] , [�1] ,


0 �1
1 0

�

.

Finally when k = 5 we have t

5 � 1 = (t� 1)
�

t

4 + t

3 + t

2 + t+ 1
�

. Here we can
with a little work show that p (t) = t

4+ t

3+ t

2+ t+1 is irreducible. As it stands
we cannot apply Eisenstein’s criterion. However we have that

p (t+ 1) = (t+ 1)
4

+ (t+ 1)
3

+ (t+ 1)
2

+ (t+ 1) + 1

= t

4 + 5t3 + 10t2 + 10t+ 5.

Thus 5 doesn’t divide the coefficient in front of t4, it does divide all the other
coefficients, and finally 52 does not divide the constant term. This implies that
p (t+ 1) is irreducible. This shows that p (t) must also be irreducible. Thus the
blocks in the rational form look like

[1] ,

2

6

6

4

0 0 0 �1
1 0 0 �1
0 1 0 �1
0 0 1 �1

3

7

7

5

.

11 Control Theory
While this chapter has been quite abstract and theoretical it is in fact no less
useful for applications. As an example where most of the notions introduced
both in this chapter and in the chapters on inner products can be used we have
chosen control theory. The account is just very brief overview.

The idea of control theory is to start with a state space V and an operator
L : V ! V. The state space V can be the three dimensional space we live
in, or the number of animals of different species being studied, or a collection
of relevant economic indicators. The operator L then dictates how the system
changes with time if we make no interventions. Here we will only consider linear
operators L.

In this simplistic set-up time is discrete and the iterates of an initial state
x

0

2 V :

x

1

= L (x
0

) ,

x

2

= L

2 (x
0

) , ..

then describes how this states evolves in time without external influence. We are
interested in forcing the system to behave in a predictable or controlled manner.
This means that we need at each time to change how the system evolves in a
way that depends on the state of the system. By adding a forcing term f

n

2 V

to each iteration we see that the system evolves as follows

x

1

= L (x
0

) + f

1

,

x

2

= L (L (x
0

) + f

1

) + f

2

, ...
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or

x

1

= L (x
0

) + f

1

,

x

2

= L

2 (x
0

) + L (f
1

) + f

2

, ...

Note how each forcing term has an effect on the next iteration and consequently
on what happens for all future time. Thus applying a forcing term at time 1
will affect the system forever. In most realistic problems there will be some
natural constraints on what types of forcings can be allowed. A fairly realistic
assumption is that

f

k

=
⇥

b

1

· · · b

m

⇤

u

k

=
⇥

b

1

· · · b

m

⇤

2

6

4

u

1k

...
u

mk

3

7

5

where the scalars u

1k

, ..., u

mk

2 F can be chosen freely at each time and the
vectors b

1

, ..., b

m

2 V remain fixed. We are therefore forced to exert control
only in the subspace generated by b

1

, ..., b

m

. If we denote vectors in Fm by u

and the linear map
⇥

b

1

· · · b

m

⇤

: Fm ! V by B, then we see that the
iterations look like

x

0

= x

0

x

1

= L (x
0

) +Bu

1

,

x

2

= L

2 (x
0

) + LBu

1

+Bu

2

,

...
x

n

= L

n (x
0

) + L

n�1

Bu

1

+ · · ·+ LBu

n�1

+Bu

n

= L

n (x
0

) +

n

X

k=1

L

n�k

Bu

k

.

Given L and B our problem is to determine whether it is possible to choose
u

1

, ..., u

n

2 Fm so that starting at x
0

we can get to a desired state x

n

at time n.

We also want to decide how small we can choose n when going from x

0

to x

n

.

The first observation we make here is that x

k

2 im (L) + im (B) , for k =
1, ..., n. Thus we must assume that these two images are transversal, i.e., im (L)+
im (B) = V, in order to get to an arbitrarily chosen point x

n

2 V . More generally
we have.

Lemma 11.1. Given L : V ! V and a control B : Fm ! V, we can go from
any x

0

2 V to any other x

n

2 V in time n if and only if

V = im
�

L

n�1

B

�

+ · · ·+ im (LB) + im (B) .

Proof. Assuming that we can get from x

0

= 0 to any x

n

2 V in time n, it must
follow that

V = im
�

L

n�1

B

�

+ · · ·+ im (LB) + im (B)
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as

x

n

=

n

X

k=1

L

n�k

Bu

k

.

Conversely if
V = im

�

L

n�1

B

�

+ · · ·+ im (LB) + im (B) ,

then we can, given x

0

, x

n

2 V, choose u

1

, ..., u

n

so that

x

n

� L

n (x
0

) =

n

X

k=1

L

n�k

Bu

n

.

With this in mind it is perhaps becoming clear that companion matrices,
cyclic subspaces, etc. can be quite helpful in investigating this problem. If we
use B =

⇥

b

1

· · · b

m

⇤

, then we see that

im
�

L

n�1

B

�

+ · · ·+ im (LB) + im (B) = span
�

b

1

, L (b
1

) , ..., Ln�1 (b
1

)
 

+ · · ·+ span
�

b

m

, L (b
m

) , ..., Ln�1 (b
m

)
 

.

This means that as long as n � deg (m
L

) then

im
�

L

n�1

B

�

+ · · ·+ im (LB) + im (B) = C

b1 + · · ·+ C

b

m

.

Therefore, if we can get from any x

0

to any x

n

in n steps, then we can also do
it in deg (m

L

) steps. Thus the degree of the minimal polynomial tells us the
minimum time or number of steps we should expect to take. For some initial
conditions x

0

we might of course be able to do this faster.
Next we see that m must be at least the same as the smallest number of

subspaces in a cyclic subspace decomposition for L. Since companion matrices
always have one dimensional eigenspaces we see that

m � max {dim (ker (L� �1
V

)) : � ⇢ F} .

In case L doesn’t have any eigenvalues or m

L

doesn’t split we get the refined
formula

m � max {dim (ker (p (L))) : p (t) 2 F [t] is irreducible} .

Note that if p (t) is irreducible and doesn’t divide m
L

(t) , then dim (ker (p (L))) =
0. So only the irreducible factors of m

L

are relevant when computing the max-
imum.

All of this means that we can use the minimal polynomial, its factorization,
and corresponding eigenspaces to decide how to choose b

1

, ..., b

m

so as to solve
our problem of moving from x

0

to x

m

.

When V is an inner product space we can also find a minimum energy control
using the Moore-Penrose inverse.

55



If

x

n

� L

n (x
0

) =

n

X

k=1

L

n�k

Bu

k

then the energy that it costs to go from x

0

to x

n

using the controls u

1

, ..., u

n

2
Fm is simply

n

X

k=1

ku
k

k2 .

We wish to select the controls so that this energy is as small as possible. To
this end define

Y

n

: Fm·n ! V,

Y

n

(u
1

, ..., u

n

) =

n

X

k=1

L

n�k

Bu

k

where we think of elements in Fm·n as n-tuples U

n

= (u
1

, ..., u

n

) of vectors in
Fm

, or in other words m⇥ n matrices. The inner product on Fm·n is given by

((u
1

, ..., u

n

) | (v
1

, ..., v

n

)) =

n

X

k=1

(u
k

|v
k

) .

We are therefore trying to find the solution to

Y

n

U

n

= x

n

� L

n (x
0

)

where U

n

2 Fm·n is smallest possible. We know that the Moore-Penrose inverse
gives the answer to this question. Thus

U

n

= Y

†
n

(x
n

� L

n (x
0

)) .

This solution can alternatively be described as the unique solution that lies in
(ker (Y

n

))
?
= im (Y ⇤

n

) . It is therefore natural to seek a solution of the form

U

n

= Y

⇤
n

x

where x 2 V . Note that

Y

⇤
n

x =
⇣

�

L

n�1

B

�⇤
x, ..., B

⇤
x

⌘

=
⇣

B

⇤ �
L

n�1

�⇤
x, ..., B

⇤
x

⌘

and

Y

n

Y

⇤
n

x =

n

X

k=1

L

n�k

BB

⇤ �
L

n�k

�⇤
x.

We are therefore looking for solutions x 2 V to the equation

Y

n

Y

⇤
n

x = x

n

� L

n (x
0

) .
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Since
(Y

n

Y

⇤
n

x, x) = kY ⇤
n

xk2

we have that
ker (Y

n

Y

⇤
n

) = ker (Y ⇤
n

) = im (Y
n

)
?
.

Thus Y

n

Y

⇤
n

: V ! V is an isomorphism provided Y

n

is onto and the equation

Y

n

Y

⇤
n

x = x

n

� L

n (x
0

)

will have a unique solution, which has the property that Y

⇤
n

x consists of the
minimal energy controls that take us from x

0

to x

n

in n steps.
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