
Combinatorics

Peter Petersen

Summer 2007

Contents

1 Counting 2
1.1 A General Combinatorial Problem 2
1.2 Arrangements . 3
1.3 Combinations . 6
1.4 Nomenclature . 8
1.5 More Restrictions . 9

2 Generating Functions 12
2.1 Generating Functions for Combinations 12
2.2 Exponential Generating Functions 14
2.3 Examples . 15
2.4 Indistinguishable Types . 20
2.5 Generating Functions for Multiple Groups 21

3 Recurrence Relations 23
3.1 Combinatorial Interpretations . 23
3.2 Solving Recurrences . 26

3.2.1 Reductionist Approach . 26
3.2.2 Shift Approach . 26
3.2.3 Generating Function Approach 27
3.2.4 Exponential Generating Function Approach 28

3.3 Nonlinear Recurrences . 30

1

Chapter 1

Counting

1.1 A General Combinatorial Problem

Instead of mostly focusing on the trees in the forest let us take an aerial view.
You might get a bit of vertigo from this exposure, but the speci�c trees you
have studied will hopefully come into sharper focus after the tour.
The treatment here was inspired by chapter 8 in Rademacher & Toeplitz,

The Enjoyment of Mathematics.
We consider the problem of placing n objects into groups. We assume that

there are k types of objects with i1 of the �rst type, i2 of the second etc. There
are l groups, the �rst group can contain at most j1 objects, the second at most j2
etc. The number of ways of placing n objects with these constraints is denoted�

i1; :::; ik
j1; :::; jl

�
n

We think of taking n objects among the i1+ � � �+ ik objects in the top row and
then somehow placing and rearranging them among the groups in the second
row. There is no general procedure for computing this number. Below we shall
consider several special cases that correspond to what is covered in most texts.
There are di¤erent ways of interpreting the general problem. In the classical

formulation the objects are marbles, the types colors and the groups urns where
the di¤erently colored marbles are placed. From a more modern perspective one
might think of the types as being di¤erent manufacturing goods that are to be
placed in various locales, repositories etc. Generally we shall speak of objects
of various types to be placed in cells or groups. Quantum mechanics also allows
for an interesting interpretation. The objects are now particles, perhaps before
and after a collision that changes the attributes of the particles.
Keeping graph theory in mind we can come up with two more important

pictures. Think of a bipartite (multi) graph with k vertices on the left and l on
the right. We are allowed to have at most i1 edges leaving the �rst vertex on
the left, i2 from the second etc. Likewise we allow at most j1 edges to meet the

2

�rst vertex on the right, j2 going to the second etc. Alternately we can create a
network. There will be one source, from this source there are k outgoing edges,
the �rst has capacity i1; the second capacity i2; etc. The k vertices at the ends
of these edges are then connected to l vertices in a complete bipartite graph
Kk;l where each edge has 1 capacity. The right l vertices are then connected
to a sink, where the �rst edge has capacity j1; the second j2; etc.
By reversing the direction in all of the above examples we get an important

symmetry property �
i1; :::; ik
j1; :::; jl

�
n

=

�
j1; :::; jl
i1; :::; ik

�
n

Thus types and groups are interchangeable. Essentially what we are doing in
moving from types to groups is to reassign types. Taking painted balls and then
repainting them according to the groups were they get placed.
Note that �

i1; :::; ik
j1; :::; jl

�
n

= 0

if n > i1 + � � � + ik or if n > j1 + � � � + jl: Otherwise there should always be
something to count.

1.2 Arrangements

An arrangement is a problem of the above type where at most one object can
be placed in each group. In this case we often refer to groups as cells. Thus
j1 = � � � = jl = 1: We can solve almost all problems of this kind using a variety
of tricks. The most important is to use recurrence or induction on the number
of cells.
The basic arrangement is a permutation, where we have n types of objects

that are placed in n di¤erent locations. The total number of such permutations
is denoted

P (n) =

�
11; :::; 1n
11; :::; 1n

�
n

We observe that there are n possibilities for putting an object in the last cell

P (n) = nP (n� 1)�
11; :::; 1n
11; :::; 1n

�
n

= n

�
11; :::; 1n�1
11; :::; 1n�1

�
n�1

The last formula seems a bit disturbing as we seem to have assumed that the
last object was placed in the last cell. However, as we only numbered the types
without attaching any real meaning to them we are allowed to reassign the
meaning of the types after one object has been placed in the last cell. This
kind of blasé use of symbols will be employed without discussion. It is precisely
what makes math easier rather than harder! Just consider our reversal of types
and groups above completely throwing to the winds our interpretation of the
original problem.

3

Repeating the recurrence n times gives us

P (n) =

�
11; :::; 1n
11; :::; 1n

�
n

= n!

We now restrict the permutation by decreasing the number of cells l < k

P (k; l) =

�
11; :::; 1k
11; :::; 1l

�
l

This is often interpreted as counting the number of words that be created with
a large alphabet of distinct letters. We see again that

P (k; l) = kP (k � 1; l � 1)�
11; :::; 1k
11; :::; 1l

�
l

= k

�
11; :::; 1k�1
11; :::; 1l�1

�
l�1

as there are k objects that can go in the last cell. Repeating the recurrence l
times gives us

P (k; l) =

�
11; :::; 1k
11; :::; 1l

�
l

= k (k � 1) � � � (k � (l � 1)) = k!

(k � l)! = k(l):

There is also a proof of this identity that doesn�t use recurrence. Any permu-
tation of k objects can be achieved by �rst arranging l of the objects and then
the remaining k � l in the k � l cells left over. Thus�

11; :::; 1k
11; :::; 1k

�
k

=

�
11; :::; 1k
11; :::; 1l

�
l

�
11; :::; 1k�l
11; :::; 1k�l

�
k�l

In other words: �
11; :::; 1k
11; :::; 1l

�
l

=

�
11;:::;1k
11;:::;1k

�
k�

11;:::;1k�l
11;:::;1k�l

�
k�l

=
k!

(k � l)!

This type of over counting comes in handy in several situations below.
Next consider the symmetric case�

11; :::; 1k
11; :::; 1l

�
k

where k < l: This is like placing all letters in an alphabet in a sentence where
the spaces correspond to the cells not being used. The symmetry condition gives�

11; :::; 1k
11; :::; 1l

�
k

=

�
11; :::; 1l
11; :::; 1k

�
k

=
l!

(l � k)!

The general arrangement �
11; :::; 1k
11; :::; 1l

�
n

4

can be realized by �rst selecting n types and then placing them among the l
cells: �

11; :::; 1k
11; :::; 1n

�
n

�
11; :::; 1n
11; :::; 1l

�
n

However, this over counts as we have then also included permutations of the n
selected objects. This shows that�

11; :::; 1k
11; :::; 1l

�
n

�
11; :::; 1n
11; :::; 1n

�
n

=

�
11; :::; 1k
11; :::; 1n

�
n

�
11; :::; 1n
11; :::; 1l

�
n

and �
11; :::; 1k
11; :::; 1l

�
n

=

�
11;:::;1k
11;:::;1n

�
n

�
11;:::;1n
11;:::;1l

�
n�

11;:::;1n
11;:::;1n

�
n

=
k!l!

(k � n)! (l � n)!n! :

A similar argument that doesn�t use over counting will be given below.
We next consider arrangements with (unlimited) replacement. This means

that there is an in�nite supply of each type. The arrangements where we have
two types are �

1;1
11; :::; 1l

�
l

and more generally k types �
11; :::;1k

11; :::; 1l

�
l

:

We are thus creating words or numbers where we are allowed to reuse letters
or digits. In the �rst case we are counting the number of binary numbers with
l digits and in the general case l digit numbers in base k: We can again use
recurrence by noting that are k possibilities for what to place in the lth cell.�

11; :::;1k

11; :::; 1l

�
l

= k

�
11; :::;1k

11; :::; 1l�1

�
l�1

since this didn�t depend on l at all we can repeat it l times to get�
11; :::;1k

11; :::; 1l

�
l

= kl:

Finally we treat a problem were limited replacement is allowed. We wish
to study how one can rearrange a speci�c string of types such as the letters in
MISSISSIPPI. This is the same as counting�

1M ; 4I ; 4S ; 2P
11; :::; 111

�
11

More generally we are considering�
i1; :::; ik
11; :::; 1l

�
l

5

where i1 + � � �+ ik = l:
If we think of a permutation of l letters and then group these letters according

to type, then this permutation can be obtained by �rst identifying how many
ways there are of arranging the objects and then performing permutations of
the objects of a given type. Speci�cally�

11; :::; 1l
11; :::; 1l

�
l

=

�
i1; :::; ik
11; :::; 1l

�
l

�
11; :::; 1i1
11; :::; 1i1

�
i1

� � �
�
11; :::; 1ik
11; :::; 1ik

�
ik

This shows that �
i1; :::; ik
11; :::; 1l

�
l

=
l!

i1! � � � ik!
=

�
l

i1; :::; ik

�
:

An important special case occurs when we take n identical objects and place
them in l cells. If we regard the empty l�n cells as being populated by a second
type we have �

n

11; :::; 1l

�
n

=

�
n; l � n
11; :::; 1l

�
l

=

�
l

n; l � n

�
:

1.3 Combinations

In a combination we take objects of di¤erent types and then place them in one
group. Thus we are considering �

i1; :::; ik
n

�
n

The basic case is when the objects are distinct:

C (k; l) =

�
11; :::; 1k

l

�
l

=

�
l

11; :::; 1k

�
l

=

�
k

l; k � l

�
=

�
k

l

�
We could also use arrangements to count as follows�

11; :::; 1k
11; :::; 1l

�
l

=

�
11; :::; 1k

l

�
l

�
11; :::; 1l
11; :::; 1l

�
l

so �
11; :::; 1k

l

�
l

=
k!

(k � l)!l!
In other words a permutation of l elements out of a collection of k objects can be
constructed by �rst selecting the objects (the combination) and then permuting
them.
The symmetric problem �

l

11; :::; 1k

�
l

6

is also often called a combination even though we are obviously arranging iden-
tical objects.
The general arrangement where n < min fk; lg can now be calculated by

�rst selecting the objects that we use (a combination) and then placing them in
cells �

11; :::; 1k
11; :::; 1l

�
n

=

�
11; :::; 1k

n

�
n

�
11; :::; 1l
11; :::; 1n

�
n

=

�
k

n

�
l!

(l � n)!

=
k!l!

(k � n)! (l � n)!n!

Multi-combinations consist of taking distinct objects and then putting them
in several groups: �

11; :::; 1k
j1; :::; jl

�
k

with k = j1 + � � �+ jl: Symmetrizing gives us an arrangement�
11; :::; 1k
j1; :::; jl

�
k

=

�
j1; :::; jl
11; :::; 1k

�
k

=

�
k

j1; :::; jl

�
:

These coe¢ cients come about when we do a multinomial expansion

(x1 + � � �+ xl)k =
X

j1;:::;jl

�
k

j1; :::; jl

�
xj11 � � �x

jl
l :

Finally we turn our attention to the fairly tricky situation of combinations
with unlimited replacement. These are the simplest types of combinations where
arrangements don�t immediately yield the answer. We are considering�

11; :::;1k

n

�
n

=

��
k

n

��
:

By symmetrizing we can reinterpret this as dividing n identical objects into k
groups, i.e., the number �

n

11; :::;1k

�
n

Suppose, e.g., that there are 8 identical xs to be divided into 5 groups. Such a
division might look like

xx; xxx; ; xxx;

if the third and �fth groups are empty, or like

; xx; x; xxxx; x

7

if the �rst group is empty. In general there are n+ k� 1 symbols in this string:
n letters and k�1 commas to divide the letters into groups. A grouping is then
determined if we place either the letters or the commas. Thus��

k

n

��
=

�
n

11; :::;1k

�
n

=

�
n+ k � 1

n

�
=

�
n+ k � 1
k � 1

�
:

Combination with replacement comes up in a very interesting context. Sup-
pose we have a function f : Rk ! R such that f has partial derivatives of all
orders. How many di¤erent partial derivatives are there of order n? Such a
partial derivative looks like

@nf

@xn11 � � � @xnkk
;

n = n1 + � � �+ nk

since the order in which we take the derivatives is irrelevant. Thus we are simply
asking about the number of ways of distributing n objects into k groups.

1.4 Nomenclature

At this point we should make a few translations so as to connect this more
theoretical view with some of the terms that are often used in combinatorics.
One often uses the terms distinguishable and indistinguishable for the types

as well as the groups. But this also supposes that the division into types and
groups is extremely clear.
Distributing n out of k distinguishable objects into l di¤erent distinguishable

cells is the same as counting �
11; :::; 1k
11; :::; 1l

�
n

In other words it is a fairly simple arrangement. When objects get identi�ed
according to type and groups/cells are allowed to contain several objects we are
considering �

i1; :::; ik
j1; :::; jl

�
n

Distributing indistinguishable objects into distinguishable cells is the same as
having just one type that is being arranged�

k

11; :::; 1l

�
n

By symmetry this is also a combination�
k

11; :::; 1l

�
n

=

�
11; :::; 1l
k

�
n

8

Therefore, problems with indistinguishable objects are often referred to as com-
binations even if they appear to be arrangements.
The symmetry and how it allows us to reinterpret the same problem in two

ways is often confusing. This is why we will stick to the more formal approach
of types and groups/cells.

1.5 More Restrictions

It is possible to introduce further restrictions. One might require that a certain
number of objects of each type are being used, or that a certain number of
objects are placed in each group. Symmetry tells us that these two conditions
are equivalent, but they could also be imposed simultaneously.
The most general set-up is as follows. We have sets of types A1; :::; Ak as

well as sets of groups B1; :::; Bl: These sets consists of nonnegative integers. In
the scenario considered above A1 = f0; 1; :::; i1g indicating that we can take any
number of objects from A1 as long as it doesn�t exceed i1: Now we allow for the
sets to look like

A1 = f0; 3; 6; 7g
A2 = f2njn = 0; 1; 2; :::g
A3 = fpjp is a primeg

etc

Similarly the groups can have wild restrictions on how many objects they con-
tain.
We then seek to �nd the number of ways of selecting n objects from A1; :::; Ak

and placing them in B1; :::; Bl according to these constraints. This number is
denoted �

A1; :::; Ak
B1; :::; Bl

�
n

:

There might now be some very subtle conditions on n for such a placement to
be possible. If, e.g., all types have to be selected in quantities that are even,
then n must also be even.
As it stands, this should be even trickier to calculate than�

i1; :::; ik
j1; :::; jl

�
n

However it turns out that there are useful reductions when we consider either
combinations or arrangements were each cell is used exactly once. Speci�cally
we will consider the general combination�

A1; :::; Ak
n

�
n

9

and the general arrangement �
A1; :::; Ak
11; :::; 1n

�
n

where we select n objects of various types and in quantities speci�ed by type and
either just combine them in one group or arrange them in n di¤erent locations.
We consider combinations �rst as they turn out to be slightly simpler. The

most e¢ cient recurrence is based on reducing the number of types. So we check
what happens if we select r � n objects from Ak and the remaining n� r from
A1; :::; Ak�1: In other words we note that�

A1; :::; Ak
n

�
n

=
nX
r=0

�
A1; :::; Ak�1
n� r

�
n�r

�
Ak
r

�
r

where �
Ak
r

�
r

=

�
1 if r 2 Ak
0 if r =2 Ak

Thus the sum can be rewritten as�
A1; :::; Ak

n

�
n

=
X
r2Ak

�
A1; :::; Ak�1
n� r

�
n�r

For the basic combination this looks like�
11; 12; :::; 1k

n

�
n

=
X
r=0;1

�
11; :::; 1k�1
n� r

�
n�r

=

�
11; :::; 1k�1

n

�
n

+

�
11; :::; 1k�1
n� 1

�
n�1

as we either don�t pick or pick the element of the last type. In more classical
language this is Pascal�s formula�

k

n

�
=

�
k � 1
n

�
+

�
k � 1
n

�
:

All in all we have a recurrence method for �nding very general combinations,
where the number of types is reduced each time we use the recurrence.
More generally we obtain the formula�

A1; :::; Ak
n

�
n

=
X

n1+���+nk=n

�
A1
n1

�
n1

� � �
�
Ak
nk

�
nk

by counting over all possible n1; :::; nk that add up to n and checking if we can
extract n1 from A1 etc. This is simply a more general version of the recurrence
where we have spelled out all possibilities of creating the combinations on the
left-hand side.

10

Arrangements work in a similar fashion. But we must be more careful. The
idea is that if we select r objects from Ak; then there are

�
n
r

�
ways of placing

these identical objects among the n cells. The remaining n� r objects from the
k�1 types are then arranged among the remaning n� r cells. This leads to the
recurrence �

A1; :::; Ak
11; :::; 1n

�
n

=
nX
r=0

�
n

r

��
A1; :::; Ak�1
11; :::; 1n�r

�
n�r

�
Ak
r

�
r

=
X
r2Ak

�
n

r

��
A1; :::; Ak�1
11; :::; 1n�r

�
n�r

If instead of calculating
�
A1;:::;Ak

11;:::;1n

�
n
we consider the normalized quantity,

1

n!

�
A1; :::; Ak
11; :::; 1n

�
n

then we get a formula that is almost like the combination recurrence

1

n!

�
A1; :::; Ak
11; :::; 1n

�
n

=
nX
r=0

1

(n� r)!

�
A1; :::; Ak�1
11; :::; 1n�r

�
n�r

!�
1

r!

�
Ak
r

�
r

�
We also quickly obtain the more general version�

A1; :::; Ak
11; :::; 1n

�
n

=
X

n1+���+nk=n

�
n

n1; :::; nk

��
A1
n1

�
n1

� � �
�
Ak
nk

�
nk

by adding up over all possible ways of extracting n objects and then counting
the number of ways of distributing them in the cells given that there are n1
of type 1 etc. This formula also becomes more symmetric if we use factorial
normalization

1

n!

�
A1; :::; Ak
11; :::; 1n

�
n

=
X

n1+���+nk=n

1

n1!

�
A1
n1

�
n1

!
� � �

1

nk!

�
Ak
nk

�
nk

!

These recurrence formulas can be incorporated into a di¤erent accounting
method in a surprising fashion.

11

Chapter 2

Generating Functions

2.1 Generating Functions for Combinations

The problem is to calculate

cn =

�
A1; :::; Ak

n

�
n

for all values of n: To accomplish this we construct the generating function

1X
n=0

�
A1; :::; Ak

n

�
n

xn =
1X
n=0

cnx
n

= c0 + c1x+ c2x
2 + � � �+ cnxn + � � �

This is a formal in�nite sum. No convergence is implied.
The generating function for just one type, say Ak, looks like

1X
n=0

�
Ak
n

�
n

xn =
X
n2An

xn

Thus we can select n objects in 1 way if Ak allows that. Here are a few examples
of generating functions for just one type

1 + x;

1 + x+ x2 + x3 + � � � ;
xr + xr+1 + xr+2 + � � � ;
x+ x3 + x5 + � � � ;
x2 + x3 + x5 + x7 + x11 + � � �

Note that the only coe¢ cients we see are 1, the terms that don�t appear are
the ones with coe¢ cient 0 and correspond to selections that the type does NOT

12

allow. In the �rst case the type allows for 0 or 1 object to be selected. In the
second case any number of objects. In the third case at least r objects. In the
fourth case only an odd number of objects. Finally the last case is when the
type allows a number of objects that is a prime number.
Going back to our general problem we de�ne the generating function for

each type as
1X
n=0

�
Ai
n

�
n

xn = ci0 + c
i
1x+ c

i
2x
2 + � � �+ cinxn + � � � :

The claim is that the original generating function is the product of the generating
functions for the types:

1X
n=0

�
A1; :::; Ak

n

�
n

xn =
kY
i=1

 1X
n=0

�
Ai
n

�
n

xn

!
or

1X
n=0

cnx
n =

kY
i=1

 1X
n=0

cinx
n

!

=

 1X
n=0

c1nx
n

! 1X
n=0

c2nx
n

!
� � �
 1X
n=0

cknx
n

!
:

The product on the right can be multiplied out more easily if we use di¤erent
indices for n in each sum. When manipulating such sums you should work with
them as if they were multiple integrals with n1; :::; nk being the variables and
be happy that no in�nitesimals are messing up the calculations.

RHS =

 1X
n1=0

c1n1x
n1

! 1X
n2=0

c2n2x
n2

!
� � �
 1X
nk=0

cknkx
nk

!

=
1X

n1;:::;nk=0

�
c1n1c

2
n2 � � � c

k
nk

�
xn1+n2+���+nk

=

1X
n=0

 X
n1+���+nk=n

c1n1c
2
n2 � � � c

k
nk

!
xn

Thus we must show that

cn =
X

n1+���+nk=n
c1n1c

2
n2 � � � c

k
nk

but this is simply our recurrence formula�
A1; :::; Ak

n

�
n

=
X

n1+���+nk=n

�
A1
n1

�
n1

� � �
�
Ak
nk

�
nk

At this point we seem to have achieved absolutely nothing. When we get to
the examples below we shall see that the advantage of this method is that we
really can work with generating functions as functions.

13

2.2 Exponential Generating Functions

A similar strategy can be used when dealing with arrangements�
A1; :::; Ak
11; :::; 1n

�
n

The di¤erence is that to get the recurrence to work as above we have to use the
factorial normalization. Thus we consider the generating functions

1X
n=0

1

n!

�
A1; :::; Ak
11; :::; 1n

�
n

xn =
1X
n=0

pn
xn

n!

Such generating functions are called exponential generating functions.
For just one type, say Ak; we get

1X
n=0

1

n!

�
Ak
n

�
n

xn =
1X
n=0

pkn
xn

n!

as �
Ak

11; :::; 1n

�
n

=

�
Ak
n

�
n

=

�
1 if n 2 Ak
0 if n =2 Ak

The above examples, as exponential generating functions, will look like

1 + x;

1 + x+
x2

2
+
x3

6
+ � � � ;

xr

r!
+

xr+1

(r + 1)!
+

xr+2

(r + 2)!
+ � � � ;

x+
x3

6
+
x5

5!
+ � � � ;

x2

2
+
x3

6
+
x5

5!
+
x7

7!
+
x11

11!
+ � � �

The grand formula now asserts that

1X
n=0

�
A1; :::; Ak
11; :::; 1n

�
n

xr

n!
=

kY
i=0

 1X
n=0

�
Ai
n

�
n

xn

n!

!
or

1X
n=0

pn
xr

n!
=

kY
i=0

 1X
n=0

pin
xn

n!

!

=

 1X
n=0

p1n
xn

n!

! 1X
n=0

p2n
xn

n!

!
� � �
 1X
n=0

pkn
xn

n!

!
:

14

The proof is basically the same

RHS =

 1X
n1=0

p1n1
xn1

n1!

! 1X
n2=0

p2n2
xn2

n2!

!
� � �
 1X
nk=0

pknk
xnk

nk!

!

=
1X

n1;:::;nk=0

�
p1n1p

2
n2 � � � p

k
nk

� xn1+n2+���+nk
n1!n2! � � �nk!

=
1X
n=0

 X
n1+���+nk=n

�
n

n1; n2; :::; nk

�
p1n1p

2
n2 � � � p

k
nk

!
xn

n!

Thus we have to show that

pn =
X

n1+���+nk=n

�
n

n1; n2; :::; nk

�
p1n1p

2
n2 � � � p

k
nk

but this is the formula�
A1; :::; Ak
11; :::; 1n

�
n

=
X

n1+���+nk=n

�
n

n1; :::; nk

��
A1
n1

�
n1

� � �
�
Ak
nk

�
nk

2.3 Examples

First we try a few simple examples were the answers are known.
Suppose that each type allows you select at most one object. This means

that both the ordinary and exponential generating function for a type is 1 + x.
Upon multiplying we obtain

(1 + x)
k
= 1 +

�
k

1

�
x+

�
k

2

�
x2 + � � �+

�
k

n

�
xn + � � �+

�
k

k

�
xk:

This is the generating function in case we form a combination. Note that when
n > k we have cn = 0 corresponding to the fact that we can�t have more objects
than types.
In case we want to arrange the objects we still have to multiply as above, but

then we also have to put it in the form of an exponential generating function.

(1 + x)
k
= 1 +

�
k

1

�
x+

�
k

2

�
x2 + � � �+

�
k

n

�
xn + � � �+

�
k

k

�
xk

= 1 +

�
k

1

�
x+ 2

�
k

2

�
x2

2
+ � � �+ n!

�
k

n

�
xn

n!
+ � � �+ k!

�
k

k

�
xk

k!
:

Thus there are

n!

�
k

n

�
=

k!

(k � n)! = k(n)

ways of arranging n distinct objects of k types.

15

If there are no restrictions on each type we get

1X
n=0

cnx
n =

�
1 + x+ x2 + � � �

�k
=

�
1

1� x

�k
= (1� x)�k

=
1X
n=0

�
�k
n

�
(�x)n

=
1X
n=0

(�1)n
�
�k
n

�
xn

=
1X
n=0

��
k

n

��
xn

This formula is obtained by computing the Taylor formula for

f (x) = (1 + x)
�

The derivatives are

f 0 = � (1 + x)
��1

;

f 00 = � (�� 1) (1 + x)��2 ; :::

So

f 0 (0) = �;

f 00 (0) = � (�� 1) ;
...

f (n) (0) = � (�� 1) � � � (�� (n� 1))

and

(1 + x)
�

=
1X
n=0

f (n) (0)

n!
xn

=
1X
n=0

� (�� 1) � � � (�� (n� 1))
n!

xn

=
1X
n=0

�
�

n

�
xn

Mirroring the combinatorial formula�
k

n

�
=
k (k � 1) � � � (k � (n� 1))

k!
:

16

Newton was the �rst to discover this remarkable generalization of the binomial
theorem, where � can be any real number whatsoever. Some serious calculus
has to be invoked in order to prove this formula as the right-hand side is only a
formal sum. Next we note the important relation

(�1)n
�
�k
n

�
= (�1)n (�k) (�k � 1) � � � (�k � (n� 1))

n!

= (�1)n (�1)n (k) (k + 1) � � � (k + (n� 1))
n!

=
(k + n� 1) � � � (k + 1) (k)

n!

=

�
k + n� 1

n

�
=

��
k

n

��
With exponential generating functions we get instead

1X
n=0

pn
xn

n!
=

�
1 + x+

x2

2
+ � � �

�k
= (ex)

k

= ekx

=

1X
n=0

(kx)
n

n!

=
1X
n=0

kn
xn

n!
:

Next let us try to have just two types with the �rst allowing an even number
of objects and the other an odd number.
The combination problem is then solved by�

1 + x2 + x4 + � � �
� �
x+ x3 + x5 + � � �

�
=

�
1 + x2 + x4 + � � �

�
x
�
1 + x2 + x4 + � � �

�
= x

�
1 + x2 + x4 + � � �

�2
= x

�
1

1� x2

�2
= x

�
1� x2

��2
= x

1X
n=0

��
2

n

���
x2
�n

=
1X
n=0

��
2

n

��
x2n+1

=
1X
n=0

(n+ 1)x2n+1

17

Thus we have to combine an odd number of objects, namely, 2n+1 and this can
be done in n+ 1 ways. Let us see if this makes sense. The type that allows an
odd number of objects is f1; 3; 5; :::; 2n+ 1g and the rest come from the other
type. Since there are n+1 odd numbers between 1 and 2n+1 we have justi�ed
the formula. We have also seen that while the generating function approach can
be used it isn�t necessarily the most e¢ cient method.
Let us try the same problem as an arrangement. This gives us�
1 +

x2

2
+
x4

4!
+ � � �

��
x+

x3

3!
+
x5

5!
+ � � �

�
= cosh (x) sinh (x)

=
ex + e�x

2

ex � e�x
2

=
e2x � e�2x

4

=
1

2
sinh (2x)

=
1

2

1X
n=0

(2x)
2n+1

(2n+ 1)!

=
1

2

1X
n=0

22n+1
x2n+1

(2n+ 1)!

=
1X
n=0

22n
x2n+1

(2n+ 1)!
:

Again we see that only an odd number of objects, 2n + 1; can be arranged,
now in 22n ways. Let us try to justify this as well. If 2r + 1 of the objects
come from f1; 3; 5; :::; 2n+ 1g then there are

�
2n+1
2r+1

�
ways of arranging these.

The remaining identical objects are then placed in the remaining slots. Thus
we have

nX
r=0

�
2n+ 1

2r + 1

�
ways of arranging the objects. This can be simpli�ed using a binomial identity.
Keep in mind that we are selecting all of the subsets with an odd number of
elements. Since precisely half of all subsets have an odd number of elements we
always have �

n

1

�
+

�
n

3

�
+

�
n

5

�
+ � � � = 1

2
2n = 2n�1:

In particular,
nX
r=0

�
2n+ 1

2r + 1

�
= 22n:

Next let us try to arrange n objects such that we use at least one of each
type. The exponential generating function for each type is given by

x+
x2

2
+
x3

6
+ � � � = ex � 1

18

and the total generating function is

(ex � 1)k =
kX
r=0

�
k

r

�
erx (�1)k�r

=
kX
r=0

(�1)k�r
�
k

r

� 1X
n=0

(rx)
n

n!

!

=
kX
r=0

1X
r=0

(�1)k�r
�
k

r

�
rn
xn

n!

=
1X
n=0

kX
r=0

(�1)k�r
�
k

r

�
rn

!
xn

n!

=
1X
n=0

k!

�
n

k

�
xn

n!

Thus there are
kX
r=0

(�1)k�r
�
k

r

�
rn =

1X
n=0

k!

�
n

k

�
ways of arranging n objects if we use at least one of each type. The number

�
n
k

	
is called the Sterling number of the second kind. It counts the number of ways
of partitioning a set of n elements into k nonempty subsets. In our case the k
types are ordered. Since there are k! ways of doing this we see that k!

�
n
k

	
is the

number of ways of arranging n objects if all k types are used. The formula

k!

�
n

k

�
=

kX
r=0

(�1)k�r
�
k

r

�
rn

=
kX
r=0

(�1)k�r
�

k

k � r

�
rn

= kn �
�
k

1

�
(k � 1)n +

�
k

2

�
(k � 2)n � � � �

can also be obtained by an inclusion/exclusion argument. Simply let X be the
set of all possible arrangements of n objects of k types and ai the condition that
type i is not used. Then we are trying to calculate

N (�a1 � � � �ak) = N (X)�
X

N (ai) +
X

N (aiaj)� � � �

Next we indicate how to use generating functions to �nd the number of
solutions to integer equations

m1x1 +m2x2 + � � �+mkxk = n:

This is equivalent to combining n objects of k types with the condition that the
ith type is represented by a number of objects divisible by mi: As an example

19

let us see how many ways there are of exchanging a one dollar bill for pennies,
nickels, dimes and quarters. This corresponds to �nding solutions to

xp + 5xn + 10xd + 25xq = 100:

The generating functions for the types are

1 + x+ x2 + � � � =
1

1� x;

1 + x5 + x10 + � � � =
1

1� x5 ;

1 + x10 + x20 + � � � =
1

1� x10 ;

1 + x25 + x50 + � � � =
1

1� x25 :

Combining these gives

1

1� x
1

1� x5
1

1� x10
1

1� x25

we now have to �nd the coe¢ cient in front of x100 in order to solve our problem.
It doesn�t seem feasible to do this by hand. However, quite a number of computer
programs can handle this by simply �nding the Taylor polynomial of degree 100
for the function. This is not necessarily done by computing the 100th derivative
though. The most e¢ cient method might be to calculate out the product.

2.4 Indistinguishable Types

Sometimes types come without any names or indices. For instance if we consider
partitions of integers

4 = 1 + 1 + 1 + 1

= 2 + 2

= 1 + 3

= 1 + 1 + 2

The objects are 1s and they are grouped as follows

1 + 1 + 1 + 1 = (1) + (1) + (1) + (1) ;

2 + 2 = (1 + 1) + (1 + 1) ;

1 + 3 = (1) + (1 + 1 + 1)

1 + 1 + 2 = (1) + (1) + (1 + 1)

4 = (1 + 1 + 1 + 1) :

20

Unlike the equations we considered above, there is no reason to attach any
special index to the types. In this situation we recreate indexed types

A1 = f0; 1; 2; 3; :::g
A2 = f0; 2; 4; 6; :::g
A3 = f0; 3; 6; 9; :::g

:::

Thus A1 keeps track of the number of 1s in the partition, A2 the number of 2s,
etc. Therefore, the problem is equivalent to �nding integer solutions to

x1 + 2x2 + 3x3 + � � � = n

There appear to be an unlimited number of types, but for each n we obviously
don�t need the types that are larger than n: Thus we have reinterpreted the
problem as one of the problems we know how to set up. The generating function
is

1

1� x
1

1� x2
1

1� x3 � � �

where we can terminate the product at n if we are looking for the coe¢ cient in
front of xn:

2.5 Generating Functions for Multiple Groups

Despite statements to the contrary in the textbook it is also possible to create
generating functions that calculate how one can combine/arrange di¤erent types
into several groups. Speci�cally we want to calculate�

A1; :::; Ak
11; :::;1l

�
n

Note that �
A1; :::; Ak

1

�
n

=

�
A1; :::; Ak

n

�
n

so we handled the case were l = 1 above.
First we attack the recurrence:�

A1; :::; Ak
11; :::;1l

�
n

=
X

n1+���+nk=n

�
A1

11; :::;1l

�
n1

� � �
�

Ak
11; :::;1l

�
nk

This is easy to justify as any selection of n objects consists of selecting n1 objects
from A1; n2 from A2 etc and then adding up all possibilities for n1; ::; nk keeping
in mind that n = n1+ � � �+nk: By symmetry this looks like a combination with
unlimited replacement.
The generating function is

1X
n=0

�
A1; :::; Ak
11; :::;1l

�
n

xn

21

and for each type
1X
n=0

�
Ai

11; :::;1l

�
n

xn

where �
Ai

11; :::;1l

�
n

=

�
Ai

11; :::;1l

�
n

=

(��
l
n

��
if n 2 Ai

0 if n =2 Ai
The recurrence then tells us that

1X
n=0

�
A1; :::; Ak
11; :::;1l

�
n

xn =

 1X
n=0

�
A1

11; :::;1l

�
n

xn

!
� � �
 1X
nk=0

�
Ak

11; :::;1l

�
n

xn

!

=

 X
n2A1

��
l

n

��
xn

!
� � �
 X
n2Ak

��
l

n

��
xn

!

An example of this of this kind of problem would be to select wines of several
types A1; ::; Ak and then distribute them to stores. Generally they�d be grouped
in 12 bottle cases and otherwise come in di¤erent quantities of i1; :::; ik cases
for each type. For simplicity let us assume that quantities are unlimited for
each type. This is not such a terrible assumption if we are only distributing a
small number of cases compared to the supplies. The generating function for
distributing n cases is then given by

1X
n=0

�
A1; :::; Ak
11; :::;1l

�
n

xn =

 1X
n=0

��
l

n

��
xn

!k
=

�
(1� x)�l

�k
= (1� x)�l�k

=

1X
n=0

��
l � k
n

��
xn:

This can also be explained by a combinatorial argument. Namely we de�ne
k�l types consisting of pairs of a type of wine and a store. Thus we are performing
a combination with replacement of n cases into these pairs.

22

Chapter 3

Recurrence Relations

The types of problems we are going to solve using recurrence will look like
arrangements. However, one of the interesting features is that the number of
objects used for an arrangement is not �xed. What is �xed is the about of space
that the objects occupy. This means that we will be concerned with problems
where we have types and the objects come in di¤erent sizes as well. We will
restrict attention to things that can be interpreted as being one dimensional.
Such as placing paving stones, tiles, beads, etc in a line or circle.

3.1 Combinatorial Interpretations

We are going to study two types of linear homogeneous recurrences. The mono-
chromatic version comes from a recurrence

an = c1an�1 + � � �+ ckan�k

=
kX
i=1

cian�i

where ci is either 1 or 0. The Fibonacci sequence is of this type as are many
other recurrences. The interpretation is that we pave a sidewalk with paving
stones that come in sizes that are a multiple of 1: The coe¢ cient ci = 1 if we
are allowed to use stones of length i:
The no consecutive x problem is of this type as we can use the two paving

stones xo and o to generate strings without consecutive xs. However, the initial
values of a1 and a2 depend on the exact interpretation of the problem. With
the paving prblem we have a1 = 1 and a2 = 2; while with the no consecutive xs
we have a1 = 2 and a2 = 3: Thus one sequence is shifted from the other.

23

The polychromatic version looks the same

an = c1an�1 + � � �+ ckan�k

=
kX
i=1

cian�i

except ci is now a nonnegative integer. This time we can use an arts and craft
interpretation. We have beads that come in integer sizes and beads of size i
come in ci di¤erent varieties. These beads are placed on a string that can be
made into a necklace or bracelet.
The initial conditions are the �rst k values a1; ::::; ak: These have to be

determined from each individual problem. Let us focus on k = 2 and assume
that we are placing beads on a string from right to left. Clearly a1 = c1 as
there are c1 beads of size 1 to �ll a space of size 1. To �ll a space of size 2
we can use two beads of size 1 or one bead of size 2. Thus a2 = c21 + c2: It is
often convenient to know the value of a0: It has no obvious meaning but we can
nevertheless assign a value by using that

a2 = c1a1 + c2a0;

so

a0 =
a2 � c1a1

c2

=
c21 + c2 � c21

c2
= 1

Clearly the two initial conditions a0 = 1 and a1 = c1 are easier to remember
and work with.
Rather than placing our objects on a string from left to right we can also

place them in a circle, e.g., making a bracelet rather than a necklace. The
bracelet doesn�t seem to have a �xed point. The simplest way around this is to
assume that the bracelet is �xed by hanging from a peg. If we take the bracelet
o¤ the peg and rotate it it�ll give us a new con�guration. To get a recurrence
going we delete the bead that is opposite the peg, or just to the left of the point
opposite the peg. If the peg is at 12 o�clock then we remove the bead that covers
6 o�clock or is just to the left of 6 o�clock. If this bead has size i we get a string
of size n � i that can be glued back into a bracelet. This analysis shows that
bracelets satisfy the same recurrence as the necklaces:

an = c1an�1 + � � �+ ckan�k

=
kX
i=1

cian�i

The di¤erence comes when determining the initial values. Again let us just
consider the case where k = 2: One bead bracelets are made by just one bead

24

of size 1, so a1 = c1: Two bead bracelets are made either from 2 beads of size 1
(c21 possibilities) or from 1 bead of size 2. This last case is a bit tricky. There
are c2 of the size 2 beads, but each bead can make a necklace in two di¤erent
ways. We can make the bead close up at 12 or 6 o�clock. Thus there are 2c2
ways of making bracelets with beads of size 2.
The initial conditions

a1 = c1;

a2 = c21 + 2c2

now give us

a0 =
a2 � c1a1

c2

=
c21 + 2c2 � c21

c2
= 2

So necklaces and bracelets have the same initial value a1 = c1; but di¤erent
a0:
A somewhat di¤erent recurrence is given by

Dn = (n� 1) (Dn�1 +Dn�2)

this comes from the derangement problem of counting the number of permuta-
tions without �xed points. That is arrangements of 1; :::; n where 1 is never in
1st place, 2 never in 2nd, etc. We can justify this recurrence as follows: 1 goes
to the ith location where i = 2; :::; n: There are n�1 choices for this. Now i can
go to the 1st location in which case the remaining n� 2 elements get deranged.
So there are (n� 1)Dn�2 possibilities for having 1 go to i and i to 1. Next
assume that 1 goes to i and that i doesn�t go to 1: Since the ith location has
been occupied by 1 we can ignore it and then rename the 1st spot as i: Since
i was not sent to 1 we are performing a derangement of n � 1 elements. Thus
there are (n� 1)Dn�1 possibilities for having 1 go to i and not having i go to
1:
As it is impossible to derange 1 object we have D1 = 0 and there is only

one way of deranging 2 objects so D2 = 1: The recurrence then indicates that
D0 = 1:
If we rewrite this recurrence as

Dn � nDn�1 = �Dn�1 + (n� 1)Dn�2
= � (Dn�1 � (n� 1)Dn�2)

we see that
Dn � nDn�1 = (�1)n

or
Dn = nDn�1 + (�1)n

25

Thus we have reduced a natural second order recurrence to a �rst order recur-
rence. However, it is not clear that there is a simple combinatorial proof of the
�rst order recurrence.

3.2 Solving Recurrences

When solving a general recurrence there are several strategies.

3.2.1 Reductionist Approach

The reductionist approach is the one most often used. It tries to �nd solutions
by solving simpler recurrences and then �nding the original solution by forming
linear combinations of the simpler solutions. As the simplest recurrence is an =
c1an�1 and this recurrences has an = cn1 as a solution we usually look for
solutions of the form an = c

n: Testing when such a sequence is a solution comes
down to checking

cn = c1c
n�1 + � � �+ ckcn�k

If we factor out cn�k this means that we are trying to solve

ck = c1c
k�1 + � � �+ ck�1c+ ck:

In other words we �nd solutions an = cn where c is a root of the characteristic
equation. It is worth pointing out that the roots are rarely nice numbers. In
fact the only rational c that can be roots are integers that divide ck:

3.2.2 Shift Approach

A somewhat di¤erent strategy comes about by observing that if we have a
solution an then we can create other solutions by shifting the index

a0n = an+l

where l is an integer that can be both positive and negative.
If we consider the Fibonacci type recurrence

an = an�1 + an�2

the reductionist approach asks us to �nd c that solve

c2 = c+ 1;

c =
1�

p
5

2

Certainly this allows us to �nd all solutions, but not with the nicest possible
expressions. If instead we agree that the classical Fibonacci sequence that has

26

the initial values f0 = 1 and f1 = 1 is good enough, then we can quickly create
a new solution by shifting

a0 = f1 = 1;

a1 = f2 = 2;

an = fn+1

All solutions are now linear combinations of these two solutions. As an examples
let us �nd the Lucas numbers. They form the sequence that comes from the
same recurrence but with the initial numbers L0 = 2 and L1 = 1 that comes
form considering bracelets. We have to solve

2 = L0 = �f0 + �a0 = �+ �;

1 = L1 = �f1 + �a1 = �+ 2�

This gives us

� = �1;
� = 3

Thus
Ln = 3fn � fn+1

But this is not the only possibility. if we allow for di¤erent shifts we see that

Ln = 3fn � fn+1
= 3fn � fn � fn�1
= 2fn � fn�1
= fn + fn�2:

Thus we could have shifted the Fibonacci sequence back twice and gotten a
much nicer formula. The formula Ln = fn + fn�2 has a simple combinatorial
explanation. When we break the necklace two things can happen. Either no
bead covers 6 o�clock and so we get a string of length n, or a bead of size 2
covers 6 o�clock in which case we get a string of length n� 2:
More generally, if the necklace solution to a polychromatic recurrence

an = c1an�1 + c2an�2

is given by an and the bracelet solution by bn; then

bn = an + c2an�2:

3.2.3 Generating Function Approach

We gather the solution an to a recurrence in a generating function

g (x) =
1X
n=0

anx
n

27

In order to solve
an+2 = c1an+1 + c2an

we multiply both sides by xn+2 and add up over all n = 0; 1; ::: to get

1X
n=0

an+2x
n+2 = c1

1X
n=0

an+1x
n+2 + c2

1X
n=0

anx
n+2

We then observe that
1X
n=0

an+2x
n+2 = a2x

2 + a3x
3 + � � �

= g (x)� a0 � a1x;
1X
n=0

an+1x
n+2 = x

1X
n=0

an+1x
n+1

= x (g (x)� a0) ;
1X
n=0

anx
n+2 = x2

1X
n=0

anx
n

= g (x)

giving us the algebraic equation for g (x)

g (x)� a0 � a1x = c1x (g (x)� a0) + c2x2g (x)

Isolating g (x) then tells us that

g (x) =
a0 + (a1 � a0c1)x
1� c1x� c2x2

After using partial fractions we can then expand the RHS in a powerseries and
�nd the coe¢ cients an:
It is interesting to note that the generating function for a linear recurrence

is always a rational function where the denominator depends only on the rec-
currence relation in the form just described. The numerator has degree less
than the order of the recurrence and depends on the initial values of the speci�c
sequence we wish to �nd.
Conversely any reasonable rational function comes from a recurrence.

3.2.4 Exponential Generating Function Approach

Finally we show a far more pleasing approach that ties in with your knowledge
of di¤erential equations. While it doesn�t seem to give us a new way of solving
recurrences it combines all of the above approaches into one.
This time we use the exponential generating function

g (x) =
1X
n=0

an
xn

n!

28

This makes quite a bit of sense as we are considering an arrangement problem
anyway. Also the relationship between g and the coe¢ cients is a bit more
familiar as it is given by Taylor�s formula

an =
dkg

dxk
(0) :

Next we note what happens when g is di¤erentiated

g0 (x) =
1X
n=1

ann
xn�1

n!

=
1X
n=1

an
xn�1

(n� 1)!

=

1X
n=0

an+1
xn

n!

Thus shifting the index corresponds to di¤erentiating g: If we multiply the
second order recurrence

an+2 = c1an+1 + c2an

by xn=n! and add we get

1X
n=0

an+2
xn

n!
= c1

1X
n=0

an+1
xn

n!
+ c2

1X
n=0

an
xn

n!

or the second order linear di¤erential equation

g00 = c1g
0 + c2g:

Such equations are solved using the reductionist approach, namely, we seek g
that solve �rst order equations

g0 = cg

Since that equation is solved by g = exp (ct) we see that the second order
equation becomes

c2 exp (ct) = c1c exp (ct) = c2 exp (ct)

After eliminating exp (ct) this is the characteristic equation

c2 = c1c+ c2

form above.
The advantage of exponential generating functions becomes more obvious

when we are studying slightly more complicated recurrences. For instance the
derangement problem leads to the recurrence

Dn+1 = (n+ 1)Dn + (�1)n+1

29

This is a linear �rst order inhomogeneous recurrence. The problem lies in having
a coe¢ cient that isn�t �xed. The initial condition is D0 = 1: Transforming it to
exponential generating functions

g (x) =
1X
n=0

Dn
xn

n!

now gives

1X
n=0

Dn+1
xn

n!
=

1X
n=0

(n+ 1)Dn
xn

n!
+

1X
n=0

(�1)n+1 x
n

n!

The LHS is simply g0: The RHS can be reduced as follows

1X
n=0

(n+ 1)Dn
xn

n!
+

1X
n=0

(�1)n+1 x
n

n!
=

 1X
n=0

Dn
xn+1

n!

!0
� exp (�x)

=

x

1X
n=0

Dn
xn

n!

!0
� exp (�x)

= (xg (x))
0 � exp (�x)

= g + xg0 � exp (�x)

Thus
g0 = g + xg0 � exp (�x)

or
(x� 1) g0 + g = exp (�x)

This is easily solved by noting that the LHS

(x� 1) g0 + g = ((x� 1) g)0

and the initial condition is
D0 = g (0) = 1:

Thus
(x� 1) g (x) = � exp (�x)

or

g (x) =
exp (�x)
1� x :

3.3 Nonlinear Recurrences

These are quite common and need to be solved using a variety of tricks.

30

