
BOTT’S LECTURE NOTES ON MORSE THEORY AT UCLA
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Abstract. These notes, typed in 2020, are based on lectures given by Raoul

Bott on Morse Theory at UCLA in February 2002. However, the contents

are reorganized and supplemented, since the original lectures, after almost two
decades, are only preserved as handwritten notes that are not very clear. These

notes cover the basics of classical Morse theory, its applications to compact

Lie groups, which ultimately leads to the proof of the Bott periodicity theo-
rem. Section two also includes a very brief introduction of Witten’s alternative

approach to Morse theory.
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1. Baby Morse Theory

In this section, we will go through the basics of Morse theory, which Bott calls
“Baby Morse Theory”. Some of the theorems mentioned will be proved in later
sections. Good references include the first chapter of Milnor’s Morse theory ([1])
as well as sections 1-3 in Bott’s earlier lecture notes ([2]).

Definition 1.1. M is a compact n-dimensional manifold and f : M → R is smooth.
A point, p, is a called a critical point if ∂f

∂xi |p= 0 in local coordinates. It is called

non-degenerate if det( ∂2f
∂xi∂xj |p) 6= 0.

It is clear that non-degenerate critical points are isolated.

Definition 1.2. The index, λ(p), of a non-degenerate critical point p is the number

of negative eigenvalues of ( ∂2f
∂xi∂xj |p), the Hessian of f at p.

Given a smooth function on a manifold M with non-degenerate critical points,
the Morse inequalities relate the number of critical points of f to the Betti numbers
of M .
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Theorem 1.3. If Mt(f) =
∑
p critical t

λ(p), then we have the Morse inequalities

Mt(f)− Pt(M,K) = (1 + t)QK(t),

where QK(t) is a polynomial with non-negative coefficients and

Pt(M,K) =
∑
k

tkdimKH
k(M,K).

Here Pt(M,K) in the above theorem is referred to as the Poincare series. The
following is another more explicit statement of the Morse inequalities (see [1] and
[2]). In this statement, ci, hi, and qi corresponds to the coefficients of Mt(f),
Pt(M,K), and QK(t), respectively.

Theorem 1.3’. Let ci be the number of critical points of index i of f and hi the
i-th Betti number of M . Then there exists a sequence of non-negative integers
q−1 = 0, q0, q1, ... such that

ci − hi = qi + qi−1, i = 0, 1, 2, ...

Therefore, there is a sequence of inequalities:

c0 ≥ h0

c1 − c0 ≥ h1 − h0

c2 + c1 − c0 ≥ h2 − h1 + h0

...

The Morse inequalities follow from the following assertions.

Theorem A. Let Ma = {p | f(p) 6 a}, Mb = {p | f(p) 6 b}, a < b. If there are
no critical points between a and b, then Ma 'Mb are diffeomorphic.

Theorem B. If there exists one non-degenerate critical point p in (a, b], then
Mb = Ma ∪ eλ(p).

These two theorems are also due to Morse and need the following facts:

(1) Morse Lemma: Near a non-degenerate critical point of f , one can introduce
a non-degenerate local coordinate such that

f = −x2
1 − x2

2 − · · · − x2
λ + x2

λ+1 + · · ·+ x2
n.

(2) Existence Theorem on ODE: Put a Riemannian structure on M , change df
to the gradient vector field ∇f characterized by df(Y ) = 〈∇f, Y 〉.

Theorem A is immediate if we follow the flow of ∇f . Theorem B can be in-
tuitively understood by looking at the level sets of f = f(p) − y2 − x2 where
x2 = x2

1 + x2
2 + · · ·+ x2

λ , y2 = x2
λ+1 + · · ·+ x2

n, and p is the critical point. (Figure
1)

2. Smale’s and Witten’s approach to Morse Theory

In this approach, instead of a smooth function f , we consider its gradient vector
field ∇f . On a compact manifold M , the function f : M → R must have critical
points (since max and min always exist). The gradient flow gives us a trajectory
from one critical point, say p, to another critical point, say q. Physicists call this
trajectory an “instanton” since a particle moving along this trajectory spends a lot
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Figure 1. L: level sets of f near p; R: Attaching a λ(p)-cell to Ma

of time near p, whips across from p to q in an instant, and spends a lot of time near
q.

At a critical point p, the flows starting at p form a cell W−p and those ending at

p form a cell W+
p . An example on the torus can be seen in figure 2.

Figure 2.

What we would like to do is to show that we can deform the function so that the
cell W−p has flows running into cell W+

q for λq = λp + 1 throughout the manifold,
then we would have a CW-structure on M .

Figure 3.
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Generically, we have the following. W+
q , W−p intersect as generically as they

can if and only if the dimension of W+
q ∩W−p is λq − λp + 1. Back to the torus

example, the height function does not give us a generic case. We get a generic case
by perturbing the function a little bit. (figure 3)

In such a construction, we get a CW-structure on M , thus an algorithm for
obtaining the cohomology of M , which also gives us the Morse inequalities.

Proposition 2.1. We can get the cohomology, H∗(M) , of a manifold M as fol-
lows:

(1) Choose a non-degenerate generic Morse function, f , such that the corre-
sponding W+

q , W−p intersect generically whenever λq = λp + 1.

(2) Construct the chain complex Cf (M) =
⊕

crit. pt. p Rep, where ep = W+
p and

dim ep = λp.
(3) The differential operators d : Ck → Ck−1 are defined by dep =

∑
±eq,

where the sum is over all q such that there exists instanton from q to p,
i.e., λq = λp + 1.

Then H∗(M) = H∗(Cf (M)).

The above construction is mainly due to Smale. Witten further developed the
theory using Hodge Theory.

Hodge Theory

First, we have the de Rham complex

Ω0(M) Ω1(M) Ω2(M) · · · Ωn(M)d d d d .

Nowadays, we view Ωq(M) as the space of cross sections of exterior power of the
cotangent bundle:

Ωq(M) = Γ

(
q∧
T ∗M

)
.

Since d2 = 0, we get the de Rham cohomology

H∗dR(M) =
Ker d

Im d
.

We can see that H∗dR(−) is a contravariant functor, and H∗dR(M) is finite dimen-
sional for M compact.

Now, let’s put a Riemannian metric (gij) on an oriented manifold M (i.e. positive
definite inner product on T∗M) and define a global inner product:

〈ω, η〉 =

∫
M

g(ω, η)vol =

∫
M

ω ∧ η.

Then we can the take adjoint of the de Rham differentials and get

〈d∗ω, η〉 = 〈ω, dη〉

This gives us

Ω0(M) Ω1(M) Ω2(M) · · · Ωn(M)
d d

d∗

d

d∗

d

d∗ d∗

Definition 2.2. The Laplacian is ∆ := dd∗ + d∗d
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Example 2.3. M = R, d : f 7→ ∂f
∂xdx. Since

∫ 1

0
(fg)′dx = 0, we have

∫ 1

0
f ′gdx =

−
∫ 1

0
fg′dx. So d∗ : fdx 7→ −∂f∂x .

Theorem 2.4 (Hodge). We have the following decomposition:

Ωq(M) =
⊕
λ

Ωqλ(M),

where Ωqλ(M) = {q−forms φ : ∆φ = λφ}, and λ’s range over a discrete set.

Corollary 2.5. The total cohomology is the direct sum of cohomologies over λ′s,
i.e. H∗ =

⊕
H∗λ, where H∗λ is the cohomology of the chain complex

Ω0
λ(M) Ω1

λ(M) Ω2
λ(M) · · · Ωnλ(M)

dλ dλ dλ dλ .

Proof. Since ∆ = dd∗ + d∗d we have ∆d = d∆ = dd∗d, so d preserves eigenspaces.
�

Figure 4. Hodge decomposition

Corollary 2.6. H∗(M) ' H∗(M) = Ω∗0 where H∗ denotes the subcomplex of Ω∗

of harmonic forms.

Proof. By Corollary 2.5, we only need to compute H∗λ for each λ. For λ > 0,

∆λϕ = λϕ⇒ d
d∗

λ
+
d∗

λ
d = 1.

If ϕ is closed, i.e. dϕ = 0, then

d(
d∗

λ
ϕ) = ϕ

so ϕ is also exact, thus H∗λ = 0 for all λ > 0. �

Having (Ω∗(M), d), the de Rham complex, we now deform the differential to
ds = e−sfdesf , which doesn’t change the cohomology, i.e. H∗s (M) = H∗(M).
Applying Hodge theory, we get the corresponding Laplacian ∆s.

Example 2.7. Consider M = S1. As in example 2.3, we have

dφ = φ′ d∗φ = −φ′

then
dsφ = e−sfdesfφ = e−sf (sf ′esf + esfφ′) = ∂ + sf ′.
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So ds = ∂ + sf ′ and similarly, d∗s = −∂ + sf ′. Consider the function f = c+ x2

2 at
a minimum (which is a critical point), we have

∆0
s = d∗s ◦ ds = (∂ + sf ′)(−∂ + sf ′) = −∂2 + s2x2 − sf ′′

∆1
s = ds ◦ d∗s = (−∂ + sf ′)(∂ + sf ′) = −∂2 + s2x2 + sf ′′

where f ′′ = 1. To physicists, Hs = −∂2 +s2x2 is the quantum mechanical harmonic
oscillator, which has a known spectrum: for s > 0, Spec(Hs) = s, 3s, 5s, ..., thus

Spec(∆0
s) = 0, 2s, 4s, ... Spec(∆1

s) = 2s, 4s, 6s, ...

Similarly, at a maximum of the function f , we have

Spec(∆0
s) = 2s, 4s, 6s, ... Spec(∆1

s) = 0, 2s, 4s, ...

Recall that the cohomology are the harmonic parts, we can see that the 0-th co-
homology is induced by functions ”concentrated” near the minima and the 1-st
cohomology is induced by 1-forms ”concentrated” near the maxima.

The above situation is not a coincidence, and in fact, we have the eigenspace of
∆k
s induced by k-forms ”concentrated” near critical points of index k. In fact, for s

very large, the complex (Ωa∗s (M), ds), which is (Ω∗s(M), ds) restricted to eigenspaces
with eigenvalue less than some a > 0, is exactly the complex constructed in propo-
sition 2.1 with basis in terms of critical points. Then, by H∗(M) = Ha∗

s (M), we
have a similar result to proposition 2.1 which gives us a ways to compute H∗(M)
in terms of critical points, so now we can prove the Morse inequalities.

Proof. We show Witten’s proof of Morse inequalities. We have the two exact se-
quences:

0 −→ Z −→ C
d−→ B −→ 0 0 −→ B −→ Z −→ H −→ 0

where Z is the cell complex, B is the boundary, C is the cycle and H is the coho-
mology. Counting in each dimension, we have for their corresponding polynomials

Zt +
Bt
t

= Ct, Zt = Bt +Ht.

Subtracting, we have

Ct −Ht =
Bt
t

+Bt =
Bt
t

(1 + t).

with positive integer coefficients, which implies Morse inequalities. �

A richer explanation of this section can be found in Bott’s other lecture notes
which this document also uses as a reference. ([3])

3. More on Baby Morse Theory

We now return to the classical approach. In the 1940’s, people did Morse Theory
with the Eilenberg-Steenrod axioms:

(0) H∗ is contravariant on spaces.
(1) H∗(p) = R for a point p.
(2) For X = U ∪ V , we have the Mayer-Vietoris sequence

...→ H∗(X)→ H∗(U)⊕H∗(V )→ H∗(U ∩ V )→ H∗+1(X)→ ...

(3) Homotopic maps induce the same map in cohomology.
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When we attach eλ to X, we have

X ∩ eλ ' Sλ−1 → X t eλ ' X t p→ X ∪ eλ.

Then we have the Mayer-Vietoris Sequence in dimension λ:

0→ Hλ−1(X ∪ eλ)→ Hλ−1(X)⊕Hλ−1(p)→

Hλ−1(Sλ−1)→ Hλ(X ∪ eλ)→ Hλ(X)⊕Hλ(p)→ 0,

which simplifies to

0→ Hλ−1(X ∪ eλ)→ Hλ−1(X)
α∗

→ R→ Hλ(X ∪ eλ)→ Hλ(X)→ 0.

Let ∆Hλ be the change of the Poincare series in degree λ by attaching eλ to X,
then

(1) If α∗ is onto, then Hλ(X) = Hλ(X ∪ eλ), ∆Hλ = 0, ∆Hλ−1 = −tλ−1.
(2) If α∗ is zero, then Hλ−1(X) = Hλ−1(X ∪ eλ), ∆Hλ = tλ, ∆Hλ−1 = 0.

Then the change in poincare series: ∆Pt = tλ or ∆Pt = −tλ−1, while ∆Mt = tλ.
So ∆(Mt − Pt) = 0 or ∆(Mt − Pt) = tλ−1 + tλ, both of which have non-negative
coefficients. Thus we have proved the Morse inequalities, as we recall:

Theorem 1.3. For the Morse function Mt(f) =
∑
p t
λ(p), we have the Morse

inequalities

Mt(f)− Pt(M,K) = (1 + t)QK(t),

where QK(t) is a polynomial with non-negative coefficients and Pt(M,K) is the
Poincare series:

Pt(M,K) =
∑
k

tkdimKH
k(M,K)

By now, we have introduced three approaches to obtain the Morse inequalities.
The first by Smale; the second by Witten; and the third by Morse, as given above.
Now we give a corollary useful for computing homology.

Corollary 3.1. Let the notations be the same as those in Theorem 1.3.

(1) Lacunary Principle: If Mt(f) =
∑
mλ(f)tλ, and mλ(f)mλ+1(f) = 0

for all λ, then Mt(f) = Pt(M).
(2) Completion Principle: If to each critical point p, we can assign a com-

pact submanifold Np such that p is a non-degenerate maximum for f |Np ,
then Pt(M) = Mt(f) and the fundamental classes of the H∗(Np)’s form a
homology basis of H∗(M) over Z/2Z. If all Np’s are orientable, then the
result also holds over Z.

Proof. The Lacunary Principle is an immediate consequence of the Morse inequal-
ities. It applies whenever there are no critical points with adjacent indices.

We now prove the Completion Principle.
Set f(p) = a. Since p is a non-degenerate (also assumed unique) maximum of

f |Np , by the Morse Lemma, we have local coordinates x = (x1, ..., xλ) of Np near
p, such that

f |Np(x) = a− x2
1 − ...− x2

λ.

We can extend x to coordinates of M near p, (x1, ..., xλ, xλ+1, ..., xn) such that

f(x) = a− x2
1 − ...− x2

λ + x2
λ+1 + ...+ x2

n.
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Then by Morse theory, we have

(Np)
a = (Np)

a−ε ∪ eλ

Ma = Ma−ε ∪ eλ

where the boundary of the λ-cell, ėλ is {x2
1 + ... + x2

λ = ε, xλ+1 = ... = xn = 0}.
Since f(p) = a is the unique maximum of f |Np , eλ corresponds to the nontriv-

ial top homology class of H∗(Np), so ėλ is homologically trivial in Np, thus also
homologically trivial in M . Therefore it also induces a homology class in Hλ(M).

Recall that the CW-complex is built up by attaching one cell at each critical
point. When a cell is attached during this process, it immediately induces a non-
trivial homology class as shown above. Since ėλ is homologically trivial for every
cell attached later, this homology class remains nontrivial in Hλ(M). �

If the conditions of the lacunary principle or the completion principle are satis-
fied, we see that the Morse inequalities become equalities, namely

Mt(f) = Pt(M).

In this case, we call f a perfect Morse function.

Example 3.2. Find the Z/2Z homology of the real projective space RPn. (Refer
to the CPn case in Milnor’s Morse Theory)

We think of RPn as Sn/ ∼, or equivalence classes of (n + 1)-tuples (x0, ..., xn)
of real numbers, with

∑
|xi|2 = 1. Denote the equivalence classes of (x0, ...xn) as

(x0 : ... : xn). Then define a Morse function f : RPn → R by

f(x0 : ... : xn) =
∑

cj |xj |2,

where c0 < c1... < cn are distinct real constants. The fact that they are distinct
guarantees that the function has non-degenerate critical points.

To determine the critical points of f , we first observe that

RPn =
⋃
Uj

where Uj = {(x0 : ... : xn) ∈ RPn, xj 6= 0} and on each Uj , we have coordinate
functions xj0, ..., xjj−1, xjj+1, ..., xjn : Uj → R

xji = |xj |
xi
xj
, x2

ji = x2
i

that taken together map Uj to the unit ball in Rn. In these coordinates, we can
express f |Uj as

f = cjx
2
j +

∑
i 6=j

cix
2
i = cj(1−

∑
i 6=j

x2
i ) +

∑
i 6=j

cix
2
ji = cj +

∑
i 6=j

(ci − cj)x2
ji

Obviously, the only critical point occurs when xji = 0 for all i and has index (n−j).
So the only critical points of f are p0 = (1 : 0 : ... : 0), p1 = (0 : 1 : 0 : ... : 0),...,
pn = (0 : ... : 0 : 1) and the index of pj is (n − j). This implies that RPn has one
cell in each dimension from 0 to n, so we need to use the Completion principle.

Define Nj = {(x0 : ... : xn) ∈ RPn, xj+1 = ... = xn = 0}, then Nn = RPn and
for all j 6= n, Nj ⊂ Un. Then we have

(1) pn is the non-degenerate maximum of f |Nn = f ;
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(2) pj is the non-degenerate maximum of

f |Nj = f |Un⋂
Nj =

cn +
∑
i 6=n

(ci − cn)x2
ni

∣∣∣∣∣∣
Nj

= cn +
∑
i<j

(ci − cn)x2
ni.

Thus by the Completion principle, pj corresponds to the fundamental class of
H∗(Nj ;Z/2Z), and the fundamental classes form a homology basis ofH∗(RP 2;Z/2Z),
so H∗(RP 2;Z/2Z) =

⊕
j Z/2Z(j).

Until now, we only applied Morse theory to compute homology. We would also
like to know the change of the homotopy groups, π∗, when attaching an λ-cell. To
achieve this, we need the following theorem on the homotopy group of spheres.

Theorem 3.3. πq(S
n) = 0, q < n, πq(X) = πq(X ∪ eλ) for q < λ− 1.

However in 1949, we only knew:

• πq(Sn) = 0 for q < n;
• πn(Sn) = Z;
• πn+1(Sn) = Z2 for n ≥ 2;
• πn+2(Sn) = Z2 (Whitehead)
• π3(S2) = Z (Hopf)

The last bullet point is a result of the famous Hopf fibration p : S3 � S2. View S3

as (z1, z2) where |z1|2 + |z2|2 = 1 in C2 = R4, S2 as (z, x) where |z|2 + x2 = 1 in
C× R = R3. Then p is given by

(z1, z2) 7→ (z1z
∗
2 , |z1|2 − |z2|2).

In this fibration, the fibers are circles, and any two of them link. The definition of
fiber bundle is in the next section.

4. Homotopy Groups of Compact Lie Groups

In this section, we’ll introduce the most important results of applying Morse
theory to the homotopy groups of compact Lie groups. The proof will be outlined
in later sections. We start by defining a fiber bundle. (Reference: [4])

Definition 4.1. A fiber bundle structure on a total space E, with fiber F , base
space X, consists a projection map π : E → X such that each point of X has a
neighborhood U for which there is a local trivialization φU : π−1(U) → U × F
making the diagram commute

π−1(U) U × F

U

π

ϕU

As an easy consequence of the “short exact sequence” F −→ E
π−→ X, we have

the long exact sequence:

Theorem 4.2. We have the following long exact sequence

→ πk(F )→ πk(E)→ πk(X)
δ→ πk−1(F )→ πk−1(E)→ πk−1(X)→ .

where δ is the holonomy map.
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Corollary 4.3. Consider the fiber bundle Y −→ X × Y π−→ X, then we have

πk(X × Y ) = πk(X)⊕ πk(Y ).

To understand δ, let’s first look at the following example.

Example 4.4. Let S1 be the unit sphere in the complex plane. We have a two-

sheeted fiber bundle F −→ E = S1 π−→ X = S1, π(z) = z2, F is two points.
Pick an element γ from π1(X), which is a loop around the circle once, with both

endpoints p. Lifting it to π1(E), we have a curve with two different endpoints,
p∗1, p

∗
2 ∈ π−1(p) = F . Then δ(γ) = p∗1 − p∗2.

Figure 5. Example 4.4

For higher δ, pick an element γ : Sk → X from πk(X). We can view γ as a map
from the closed k−disk Dk to X such that the boundary, which is homeomorphic
to Sk−1, is mapped to a single point, say x0. Lift γ to γ∗ : D → E, then γ∗|∂D :
Sk−1 → π−1(x0) = F is an element of πk−1(F ). We define as δ(γ) := γ∗|∂D.

We now turn our attention to the theory of Lie groups.

Corollary 4.5. Let G be a Lie group, K a closed subgroup of G, and G/K the
space of cosets. Then we get the fiber bundle

G

G/K

K

Example 4.6. In case of the special orthogonal groups, consider the fiber bundle

SO(n+ 1)

SO(n+ 1)/SO(n) = Sn

SO(n)

It gives us the long exact sequence

... πk+1(Sn) πk(SO(n)) πk(SO(n+ 1)) πk(Sn) ... .

So for k < n− 1, we have

0 πk(SO(n)) πk(SO(n+ 1)) 0∼ .

Therefore, increasing n for fixed k, πk(SO(n)) stabilize as n become large enough.
We can then define the k-th homotopy group of the infinite orthogonal group

πk(SO) := πk(SO(n)) for n > k + 1.
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Example 4.7. Similarly, in case of special unitary groups, by the fiber bundle

SU(n+ 1)

SU(n+ 1)/SU(n) = S2n+1

SU(n) ,

we can see that πk(SU(n)) stabilizes and defines πk(SU).

Example 4.8. In case of compact symplectic groups, we also have the fiber bundle

Sp(n+ 1)

Sp(n+ 1)/Sp(n) = S4n+1

Sp(n) .

Then πk(Sp(n)) also stabilizes and we can define πk(SU).
Notice that Sp(n) ⊂ U(2n) is the quaternionic unitary group, or the fixed-point

set of the involution A 7→ JA−1 on SU(2n) where J =

(
0 In
In 0

)
.

We now introduce the famous Bott Periodicity Theorem. A sketch of the proof
will be given in later sections:

Theorem 4.9 (Bott). The homotopy groups of the classic groups are periodic:

(1) πk(U) ∼= πk+2(U)
(2) πk(O) ∼= πk+4(Sp)
(3) πk(Sp) ∼= πk+4(O)

By (2) and (3), πk(O) ∼= πk+8(O) and πk(Sp) ∼= πk+8(Sp).

In general, a sequence of Lie groups K ⊂ H ⊂ G gives the fiber bundle

G/K

G/H

H/K

If we consider the sequence U(m) ⊂ U(n)× U(m) ⊂ U(n+m), then we have

U(n+m)/U(n)

U(n+m)/U(n)× U(m)

U(m)

Also, we have the bundle

U(n) −→ U(n+m) −→ U(n+m)/U(n),

Applying πk to this bundle, we have

πk(U(n+m)/U(n)) = 0 for k � n

as the homotopy groups of the unitary group stabiles. If we apply πk to the earlier
bundle, we have for k � n:

0 πk+1

(
U(n+m)

U(n)×U(m)

)
πk(U(m)) πk

(
U(n+m)
U(n)

)
= 0∼
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Corollary 4.10. For k � n, we have

πk(U(m)) ∼= πk+1

(
U(n+m)

U(n)× U(m)

)
,

where U(n+m)
U(n)×U(m) is the Grassmanian of n-planes in the n+m complex vector space.

Sending m→∞, we have

πk(U) = πk+1(BU(n)),

where BU(n) is the classifying space for U(n) or the set of Grassmannian n-
dimensional subspaces in an infinite-dimensional complex Hilbert space.

5. The Billiard-ball Problem

In this section, we discuss an application of Morse theory. Think of a mass
bouncing inside a domain with elastic reflections off the boundary. The angle
between the trajectory and the tangent line of the boundary on both sides of the
reflection must be the same. We are interested in the case of the mass tracing a
closed trajectory, along which the mass reflects off the boundary finite times, say
k. We say such a trajectory has period k. Figure 6 shows the case when k = 3.
(For more on the Billiard-Ball problem, refer to [5]).

Figure 6.

Question: How many closed trajectories of period k = 3 are there in a domain
bounded by the boundary X?

Consider the function

l = |x1 − x2|+ |x2 − x3|+ |x3 − x1|
If we vary one point, say x2 along the tangent space of the boundary, then

∂l

∂x2
=

d

dx2
(〈x1 − x2, x1 − x2〉

1
2 + 〈x3 − x2, x3 − x2〉

1
2 )

=

〈
µ,

x1 − x2√
|x1 − x2|

〉
+

〈
µ,

x3 − x2√
|x3 − x2|

〉
where µ is any unit tangent vector in the tangent space of the boundary at x2.
Then

∂l

∂x2
= 0 ⇔

〈
µ,

x1 − x2√
|x1 − x2|

+
x3 − x2√
|x3 − x2|

〉
= 0
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Notice that x1−x2√
|x1−x2|

+ x3−x2√
|x3−x2|

is the angle bisector of the directions from x2 to

x1 and x3. Therefore the above condition is exactly saying that this angle bisector
is a normal vector of the tangent plane, which means x2 is a reflection point of the
trajectory. The same argument applies for x1, x3. Combining them gives us:

(x1, x2, x3) is a critical point of l ⇔ x1x2x3 determines a period-3 trajectory

At this point, for k ≥ 3, it is very hard to proceed, so we consider the simpler
case when k = 2. First, l is a real-valued function on Sn × Sn/Z2 = Sn ∗ Sn,
the symmetric product of two Sn’s. Sn comes from the fact that the boundary is
set to be a closed convex hypersurface of Rn+1. We quotient Sn × Sn by Z2 since
swapping the two reflection points doesn’t change the trajectory they represent.
We can then apply Morse Theory.

Example 5.1. Suppose the boundary is an n-dimensional ellipsoid embedded in
Rn+1. Then the critical points of the l are exactly the pair of diagonals, which are
the minimums, and pair of antipodals along the n + 1 axes of the ellipsoid. The
indices of the antipodals as critical points are 2n, 2n− 1, 2n− 2, ..., n.

Figure 7.

If we want to obtain the homology of Sn ∗ Sn, we have to apply the completion
principle since the indices of the critical points are consecutive, but it is not clear
how to apply them. However, since we already know that only the chords passing
through the center are relevant trajectories, we can restrict the length function l
to these situations. Each chord can be determined by one of its intersections with
the ellipsoid. Antipodal points determine the same chord, so l becomes a function
from RPn to R which is exactly the function constructed in example 3.2. Then by
example 3.2, the completion principle applies to l : RPn → R, and thus also applies
to l : Sn ∗ Sn → R.

Example 5.2. Suppose the boundary is Sn embedded in Rn+1. Then the critical
points of l : Sn ∗ Sn → R are the diagonals, which are the minimum, or the
antipodal pairs, which are the maximums. However, the critical points are all
degenerate. In fact, the minimums form a submanifold which can be viewed as Sn

and the maximums form a submanifold which can be viewed as RPn.

To deal with such a situation, we define a non-degenerate critical manifold,
generalizing the concept of a non-degenerate critical point.

Definition 5.3. Let f be a smooth function on the manifold M . The connected
submanifold N of M will be called a non-degenerate critical manifold of f , if

(1) N is a closed manifold of critical points of f ;
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(2) for all x ∈ N , the null space of the Hessian of fx is precisely the tangent
space to N .

We can also extend the notion of the index of a critical point. Assume N is
connected and consider the normal bundle ν(N) −→ N . Then the Hessian of f
defines a self-adjoint endomorphism of the normal bundle . νN = ν+

N ⊕ ν
−
N . Then

the index of the critical manifold N is simply the fiber dimension of λN of ν−N .
Now, we would like to know how a critical manifold N counts in the Poincare

series of M . We have the following result:

Proposition 5.4. A non-degenerate critical manifold N counts as tλN · Pt(N)

This is a consequence of the following theorem:

Theorem 5.5. Let f be a smooth function on M such that for a ≤ x ≤ b, there
is only one critical value x = c, a < c < b. Suppose furthermore that f−1(c) is the
non-degenerate critical manifold N . If M b is compact, then:

Mb = Ma ∪ the disk bundle of ν−N

6. More on Lie Groups

Let G be a compact Lie group. Consider left-invariant vector fields. The set of
left-invariant vector fields on G is called g, the Lie algebra of G.

Since Adg defined by g 7→ ghg−1 is a an automorphism of G, by taking its
derivative at the origin e, we have Adg : X 7→ gXg−1, an automorphism of TeG.
This is the adjoint action of G on its Lie algebra g.

Definition 6.1. The group homomorphism Ad : G → Aut(g), g 7→ Adg is called
the adjoint representation of G.

We also have the Lie bracket operation on g: [X,Y ] = XY − Y X, which is also
left-invariant. The Lie brackets satisfy the following axioms:

• (anticommutativity) [X,Y ] = −[Y,X]
• (Jacobi identity) [X, [Y,Z]]+[Y, [Z,X]]+[Z, [X,Y ]] = 0, or adX is a deriva-

tion where adX = [X,−].

The Lie bracket can also be obtained as the derivative of g 7→ Adg;

lim
t→0

AdetYX −X
t

= lim
t→0

(1 + tY + ...)X(1− tY + ...)−X
t

= lim
t→0

t(Y X −XY ) + t2(...)

t
= Y X −XY = [Y,X] = adYX.

Example 6.2. Let G = SO(3), then g = R3. The Lie bracket would just be the

cross-product: [X,Y ] = ~X × ~Y . SO(3) acts on R3 by rotations and the orbits of
are just the 2-spheres centered at the origin. Some consequences follow:

(1) Any linear function f : R3 → R restricts to a perfect Morse function on the
orbits (each orbit), even for the center.

(2) All the indices of the critical points of such functions are even.

In fact, (1) and (2) are properties of the adjoint representation in any compact
connected Lie group.
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Theorem 6.3. (1) and (2) hold for any compact connected Lie group.

(1) Any linear function f : g→ R restricts to a perfect Morse function on the
orbits of Ad.

(2) All the indices of the critical points of such functions are even.

In the theorem above, compactness is necessary since it allows us to find a bi-
invariant Riemannian structure on G by averaging an arbitrary left-invariant metric
over the right translations. Correspondingly, this implies that there exists an Ad-
invariant inner product on g, which we denote as ( , ). This inner product makes
ad skew-adjoint since t 7→ (AdetY (X),AdetY (Z)) is constant and its derivative at
t = 0 is

([Y,X], Z) + (X, [Y, Z]) = (adYX,Z) + (X, adY Z).

The canonical form of a skew-adjoint map consists of its kernel and squares of the
form (

0 λ
−λ 0

)2

= −
(
λ2 0
0 λ2

)
.

In particular the Killing form

〈X,Y 〉 := trace(adX · adY )

becomes non-positive and trace(adX ·adX) = 0 only when X lies in the center of g.
Take X ∈ g, X 6= 0. Let gX = {Y ∈ g : [X,Y ] = 0} = ker adX . Also denote

gX = {[X,Y ] : Y ∈ g} = im adX , then we have the following theorem:

Theorem 6.4. The following is a short exact sequence:

0 gX g gX 0
adX

where

g = gX ⊕ gX

is an orthogonal decomposition that is invariant under adU for all U ∈ gX . More-
over

g = ∪g∈GAdggX ,

i.e., any element in g can be conjugated to an element in gX .

Proof. Since ( , ) is invariant under adX , we have

(gX , g
X) = (gX , [X, g]) = ([gX , X], g) = 0.

So

g = gX ⊕ gX .

Next adU invariance follows from

adU ([X,Y ]) = [adUX,Y ] + [X, adUY ] = [X, adUY ].

To prove the last statement fix Y ∈ g− gX and let g0 be a maximum point for

g 7→ (Y,AdgX)

the differential of this map at g is given by

Z 7→ (Y, adZAdgX) = (adAdgXY,Z).

Thus adAdg0X
Y = 0 showing that Y ∈ gAdg0X

= Adg0gX . �



16 GUORAN YE

Consider the orbit of Ad in g containing X. The tangent space of the orbit at
X is by definition: {

lim
t→0

AdetYX −X
t

= −adXY | Y ∈ g

}
So in fact, gX is just the tangent space of the orbit of Ad containing X at X.

Note that every element in g is contained in a maximal Abelian subalgebra.
Such subalgebras are called Cartan subalgebras. All such subalgebras are in fact
conjugate to each other and their dimension is called the rank of G.

Theorem 6.5. For an open and dense set of X ∈ g the subalgebra gX is a Cartan
subalgebra.

Proof. Let h ⊂ g be a Cartan subalgebra.
First note that if X1, ..., Xk is a basis for h, then Y ∈ h−gX1

∩· · ·∩gXk commutes
with the basis elements and thus maximality of the Cartan algebra shows that such
Y cannot exist. So h = gX1 ∩ · · · ∩ gXk .

We next claim that for an open dense set of (t1, ..., tk) ∈ Rk we have

gY1
∩ · · · ∩ gYk = g∑ tiYi

as long as Y1, ..., Yk commute, which is obviously the case in a Cartan subalgebra.
Clearly the inclusion ⊂ always holds and the righthand side has minimal dimension
for an open dense set (t1, ..., tk) ∈ Rk. Thus we only need to establish equality for
one such (t1, ..., tk) where no coordinate vanishes. Moreover, by induction on k we
see that it suffices to show the claim for k = 2. If Z ∈ gt1Y1+t2Y2

− (gY1
∩ gY2

), then
we have

0 6= t1 [Y1, Z] = −t2 [Y2, Z] ∈ gY1 ∩ gY2

and

adt1Y1+t2Y2
([Y1, Z]) = [adt1Y1+t2Y2

Y1, Z]+[Y1, adt1Y1+t2Y2
Z] = [Y1, adt1Y1+t2Y2

Z] = 0.

We note that since Y1, Y2 commute also adY1 , adY2 commute. Thus gY1 ∩ gY2 is
invariant under both adY1

, adY2
and in particular also for adt1Y1+t2Y2

for all t1, t2.
So as long as adt1Y1+t2Y2

is invertible on gY1 ∩gY2 , such Z doesn’t exist, so we have

gt1Y1+t2Y2
= gY1

∩ gY2
.

Such nonzero scalars t1, t2 clearly exist and in fact form an open and dense set in
R2.

This shows that h = gX for an open dense set of X ∈ h∗ ⊂ h. By theorem 6.4 we
have g = ∪g∈GAdgh so ∪g∈G {Adgh∗} is an open dense set consisting of X where
gX is a Cartan subalgebra. �

Definition 6.6. We say that X is regular if gX is a Cartan subalgebra. The
subgroup, egX , is Abelian and has dimension equal to the rank, it is a maximal
torus in G as any maximal Abelian subgroup of a compact group is compact.

Let N ⊂ Rn and p a point not in N . Look at the function l2p where lp is the

distance function from the point p. Then q ∈ N is a critical point of l2p|N if p
is a focal point of N at q and the index of the critical point is the sum of the
multiplicities of the focal points on the segment pq.
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Example 6.7. Let N be the unit sphere S2 embedded in R3. Let p be a point in
R3, p /∈ S2. The critical points of l2p are obviously the intersection points q1 and

q2 of the line p0 with S2. Hessl2p(q1) has index 0 (l2x is degenerate, for no point

between p and q1, i.e. has no focal point) and Hessl2p(q2) has index 2, for there is

only one point x between p and q2 such that Hessl2x(q2) is degenerate, which is 0
and ν(Hessl20(q2)) = 2, i.e., q2 is a focal point of l20|N with multiplicity 2.

Figure 8.

Let OY be an orbit of Ad, say gY g−1, Y 6= 0. We’ve seen that the tangent space
of the orbit at Y is gY .

Take a regular X and consider square of the distance function l2X on the orbit.
For any point Y ′ ∈ OY , we have

l2X(Y ′) = |Y ′ −X|2 = |Y ′|2 − 2〈Y ′, X〉+ |X|2

We want to look for the critical points of this function, or the focal points of OY .
Notice that Y is a critical point when the line Y X is perpendicular to OY at Y
and we have the following lemma:

Lemma 6.8. If at one of its points, a line is perpendicular to an orbit, then that
line is perpendicular to all orbits which it intersects.

Proof. Let the line X+tZ be perpendicular to OX at X. Since the tangent space is
gX , this means that ([A,X], Z) = 0 for all A ∈ g. Since ([A,Z], Z) = (A, [Z,Z]) = 0
for all A ∈ g, we find: ([A,X+ tZ], Z) = ([A,X], Z)+ t([A,Z], Z) = 0 for all A ∈ g.
Then the line is perpendicular to OX+tZ at X + tZ for all t. �

Let’s see some examples.

Example 6.9. Let G be SU(3), then g is the space of skew-adjoint complex ma-
trices A, such that A+ Āt = 0 and traceA = 0. Consider the subset of g:

h =


iθ1 0 0

0 iθ2 0
0 0 iθ3

 | θ1 + θ2 + θ3 = 0

 .

This is a Cartan subalgebra. Let h∗ denote the subset of h for which θ1, θ2, θ3 are
all different. In geometric language, h∗ consists of those points in the vector space
h, which do not lie on any of the hyperplanes θi − θj = 0, i, j = 1, 2, 3, i < j.
Obviously, h∗ consists of “almost all” points of h it is also the set of regular vectors
from theorem 6.5.

We would like to visualize h, especially the ”irregular” set where the critical
points lie. h is two dimensional, thus a plane. All Y ∈ h such that θ1 = θ2 form a
line in this plane. Accordingly, we draw three lines and have the following diagram:
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Figure 9.

The intersection of the three lines corresponds to the point Y where θ1 = θ2 =
θ3 = 0. The Weyl group is the permutation group on 3 elements. In general, such
diagrams are constructed as follows.

Let’s recall the short exact sequence

0 gX g gX 0
adX

Fix a regular X, set h = gX . Set m = gX , then we have

g = h⊕m

which is the more standard notation of the decomposition mentioned earlier. By
lemma 6.8 and the statement about critical points just prior to that lemma, we can
see that given a generic P ∈ h∗, the critical points of l2P |O are exactly the points in
O ∩ h and these points are independent of the choice of P ∈ h∗.

To find these critical points geometrically we construct the infinitesimal diagram,
or the root system of G. First we have an Euclidean space with dimension equal the
rank of G. Consider the set {dim gY − dim h} for all Y ∈ h and draw the positive
ones in the Euclidean space. The hyperplanes correspond to the lines in figure 9
and are called root spaces. The critical points then lie on these root spaces. The
Weyl group of G is the subgroup of the isometry group of the root system which is
generated by reflections through the hyperplanes orthogonal to the roots.

Example 6.10. (1) SU(2): We have

h =

{(
iθ1 0
0 iθ2

)
, θ1 + θ2 = 0

}
So the rank is 1. Here dim gY > 1 only when θ1 = θ2 = 0, so we only draw
one point on a line. The Weyl group is Z2.

(2) SO(4), SO(5), G2 all have rank 2, see figure 10, 11, 12.

On the Lie algebra level, only things that commute are in the Cartan subalgebra
h. On the Lie group level, only things that commute are in the maximal torus
eh = T .

Consider G/T , the “flag variety” of G. The Poincare series of G/T can be
calculated by the following theorem.

Pick a generic point X ∈ h such that it is not on a plane in the diagram. Then
define the function λ : h → Z by λ(Y ) = twice the number of hyperplanes crossed
by the straight line segment from X to Y for all Y ∈ h. Obviously, λ is constant
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Figure 10. SO(4)

Figure 11. SO(5)

Figure 12. G2

on each region divided by the hyperplanes. Call these regions the cells, and λ(α)
the value of λ in the cell ∆α, then we have

Theorem 6.11. The Poincare series of G/T is given by

Pt(G/T ) =
∑
α

tλ(α)

where ∆ runs over the cells of the diagram.

Example 6.12. When G = SO(4), we have the diagram as shown in figure 13. So
the Poincare series is

Pt(G/T ) = 1 + 2t2 + t4 = (1 + t2)2.

The cohomology is that of S2 × S2



20 GUORAN YE

Figure 13.

Example 6.13. G = G2, then we have the diagram as shown in figure 14. So the
Poincare series is

Pt(G/T ) = 1 + 2t2 + 2t4 + 2t6 + 2t8 + 2t10 + t12 = (1 + t2)(1 + t2 + t4 + t6 + t8 + t10)

The cohomology is that of S2 × CP 5

Figure 14.

We now consider a more global point of view. Recall: g = h ⊕ m and look at
Ad|T . h is invariant under Ad, so Ad acts on m, and m is a module for T . Moreover,
m is the direct sum of 2-dimensional representations. We may write m =

⊕
Eα,

where Eα are planes. The diagram of G is just T with the sets Tα marked where
Tα is kernel of representation on Eα.

Now we think of the corresponding diagram in h. Since exp : h → T is the
universal covering of the torus, we have a lattice. The lattice points are the kernel
of the covering map, or the center of the Weyl group. The resulting diagram looks
like a series of the previous diagrams one centered at each lattice point of a torus.

Figure 15. SO(4)
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Figure 16. SU(3)

Figure 17. G2

Example 6.14. SO(4), SU(3), G2: see figure 15, 16, 17.

Starting from a lattice point, we call the section between two adjacent hyper-
planes a fundamental chamber. We can also define λ on these diagrams as in the
previous cases. Then we have the following theorem:

Theorem 6.15. The Poincare series of the loop space is:

Pt(ΩG) =
∑
α

tλ(α)

α is over the cells of the fundamental chamber.

Example 6.16. Consider SU(3), then we have the fundamental chamber as in
figure 18. Then the Poincare series is

Pt(ΩSU(3)) = 1 + t2 + 2t4 + 2t6 + 3t8 + ... =
1

1− t2
1

1− t4
,

which as we shall see in the next section is related to the loop spaces for S3 and
S5. From this example, it’s also clear that one consequence of the theorem is that
the homology ΩG has no torsion.

We also note that

Pt(SU(3)/T ) = 1 + 2t2 + 2t4 + t6 = (1 + t2)(1 + t2 + t4).

So SU(3)/T has the same homology as S2 × CP 2. Note that we have a natural
fibration

T → S3 × S5 → S2 × CP 2

which indicates the connection between the two Poincare series.
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Figure 18.

Example 6.17. Consider G2, then we have the fundamental chamber as in figure
19. Then the Poincare series is

Pt(ΩG2) = 1+t2+t4+t6+t8+2t10+2t12+2t14+2t16+2t18+3t20... =
1

1− t2
1

1− t10
,

which as we shall see in the next section is related to the loop spaces for S3 and
S11. From example 6.13, we also note that

Pt(G2/T ) = 1+2t2 +2t4 +2t6 +2t8 +2t10 + t12 = (1+ t2)(1+ t2 + t4 + t6 + t8 + t10).

So G2/T has the same homology as S2×CP 5. Note that we have a natural fibration

T → S3 × S11 → S2 × CP 5

which indicates the connection between the two Poincare series.

Figure 19.

Theorems 6.11 and 6.15 are the key results of Bott’s famous 1956 paper. ([6])
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7. Morse Theory Proper

In order to understand the homotopy of a manifold, we do Morse theory on its
path space. A natural choice of the Morse function is the arclength functional.
However, the arclength functional is invariant under change of parametrization, so
minima, if they exist, do not come with a fixed parameter. This problem can be
overcome by considering the energy functional.

Definition 7.1. Let M be a connected complete Riemannian manifold, define the
path space of M as

E = {piecewise smooth maps c : [0, 1]→M}.
Define the path space from a to b as

Ω(a, b) = {piecewise smooth maps c : [0, 1]→M, c(0) = a, c(1) = b}.

Definition 7.2. Given a piecewise smooth path c : [0, 1]→M , define the energy
functional S : E → R as

S(c) =
1

2

∫ 1

0

〈 ˙c(t), ˙c(t)〉dt.

Consider the fiber bundle: Ω(a, b) → E → M × M , we have the following
proposition:

Proposition 7.3. πk(Ω(a, b)) = πk+1(M) for any a, b ∈M .

Proof Sketch. This follows from the long exact sequence of homotopy groups for
Ω(a, b)→ E →M ×M by noting that E is contractible.

Alternately observe that when k = 0, the two sides of the equation are just two
different ways of writing the fundamental group of M up to conjugation. In general,
take a = b then Ω(a, b) = Ω(M) is the loop space of M , then

πk(Ω(a, b)) = [Sk,ΩM ]
∗
= [ΣSk,M ] = [Sk+1,M ] = πk+1(M)

where ΣSk is the suspension of Sk and ∗ is the Eckmann-Hilton duality. �

Having this proposition, we now understand why doing Morse theory on the
path space gives us the homotopy groups of the manifold. Now consider the energy
functional restricted to Ω(a, b), then we have

• Theorems A and B hold for S|Ω(a,b).
• The critical points of S on Ω(a, b) are the geodesics from a to b.
• The index theorem holds.

Theorem 7.4 (The Index Theorem). Let g : [0, 1]→M be a geodesic from a to b.
Then g is a critical point of S|Ω(a,b) and the index λ(g) is the number of conjugate
points g(t) with 0 < t < 1 counted with its multiplicity.

Example 7.5. Let M = S2, we know that the geodesics are the paths along great
circles and two points are conjugate if they are antipodal points or the same point.
In both cases, they are conjugate with multiplicity 1.

Suppose a and b are not antipodals, then the geodesics from a to b are g0, g1, g2, ...
with 0, 1, 2, ... conjugate points respectively.

By the index theorem, these geodesic are critical points of S|Ω(a,b) with indices
0, 1, 2, .... Therefore, by theorems A and B, we have

Ω(a, b) = e0 ∪ e1 ∪ e2 ∪ ...
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Figure 20.

We can then apply the completion principle. For example, we can consider the
closed submanifold N1 of Ω(a, b) consisting of paths that are in the intersection of
a plane with S2. With a and b fixed on the plane, the plane can only rotate with
the line segment ab as an axis, so N1 is diffeomorphic to S1. Then N1 is a closed
submanifold with g1 as the non-degenerate maximum of S|N1

.
The Poincare series then follows:

Pt(ΩS
2) = 1 + t+ t2 + ... =

1

1− t
.

Example 7.6. For M = Sn, everything is the same except that all conjugate
points have multiplicity n− 1, so we have

ΩSn = e0 ∪ en−1 ∪ e2(n−1) ∪ ... Pt(ΩS
n) =

1

1− tn−1
.

Moreover, since e0 ∪ en−1 = Sn−1, we have

ΩSn = Sn−1 ∪ e2(n−1) ∪ ...
So πk(Sn−1) = πk+1(ΩSn) for k ≤ 2n−4. Combining with proposition 7.3 we have
the following theorem:

Theorem 7.7 (The Freudenthal Suspension Theorem). The homotopy group πk(Sn−1)
is isomorphic to πk+1(Sn) for k ≤ 2n− 4.

We can also prove the theorem by starting with Ω(a, b) where a and b are an-
tipodal points. Then the minimal set of S|Ω(a,b) forms a critical submanifold dif-

feomorphic to Sn−1 (see figure 20) and all other critical points have index at least
2(n− 1), which also gives us

ΩSn = Sn−1 ∪ e2(n−1) ∪ ...

Figure 21.
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The Freudenthal suspension theorem can be generalized to the following:

Theorem 7.8. The homotopy groups πn+k(Sn) stabilize for n ≥ k + 2.

We call these homotopy groups the stable homotopy groups of the spheres.

8. Proof of the Periodicity Theorem

Proposition 8.1. In a compact Lie group C, let T be a maximal torus. Let p ∈ T
be a generic point. Then every geodesic in a bi-invariant metric, that starts at the
identity and ends at p, lies entirely in T .

In the universal cover, the geodesics lie in the universal cover of T , which is an
Euclidean space. So the geodesics are straight lines.

Proof. Since we’ve seen in section 6 that the tangent space of the maximal torus
and the tangent space of the orbit are orthogonal complements, the following lemma
would be sufficient to prove the result:

Lemma 8.2. Suppose s is a geodesic segment that is perpendicular to, L, an orbit
of a group of isometries G, then s is perpendicular to all orbits it intersects

Consider the orbit space C/G, which may not be a Riemannian manifold, but is
still a metric space and has the concept of minimizing geodesics. Given a geodesic
s in C perpendicular to an orbit L, it is then a lift of a minimizing geodesic in
C/G, which is called the “horizontal lift”. Then s must be a minimizing geodesic
between any orbits, which could only be the case when it is orthogonal to all the
orbits. (Reference: [8]) �

Now we try to prove the periodicity theorem for the unitary group. First, we
start with U(2n). In fact, it’s sufficient to consider SU(2n), and the geodesics in
this case are more obvious. Take a = e, b = −e, both in the maximal torus of
SU(2n). By proposition 8.1, all geodesics in Ω(a, b) are on the maximal torus.
Consider the geodesic:

eit

. . .

eit

e−it

. . .

e−it


, 0 ≤ t ≤ π.

It can be easily verified that this geodesic does not cross any root spaces, and thus
has index 0. In fact, all minimal geodesics are of this form up to permutations
along the diagonal. So the minimum critical manifold is U(2n)/U(n) × U(n). It
can be proved that all other geodesics cross some root spaces, and have indices at
least 2n+ 2. Therefore, the loop space of SU(2n) is

U(2n)

U(n)× U(n)
∪ ...(cells of dimension ≥ 2n+ 2).

It follows that for k � n:

πk+1(U(2n)) = πk(ΩU(2n)) = πk(U(2n)/U(n)× U(n)) = πk−1(U(n))
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where the last equality is by the exact homotopy sequence of the fiber bundle

U(n)→ U(2n)/U(n)→ U(2n)/U(n)× U(n).

Thus πk(U) = πk+2(U) (see [2] for a more detailed proof).

More generally, we consider the case when the manifold is not necessarily a
group, but a symmetric space of the form G/K where G is a Lie group and the
stabilizer K is the fixed point set of an involution σ. Symmetric spaces also have
maximal tori, so the method we used before can also be applied.

LetG = SO(2n), J =

(
0 1
−1 0

)
. Consider the path from e = I to J , the minimal

geodesics form a submanifold SO/U while other critical points are of higher indices,
so we have

πk(ΩSO) = πk+1(SO/U)

In general, if M is a symmetric space, then the minimal geodesics also form a
symmetric space, so we can apply a similar method inductively and get:

• πk(ΩSO) = πk+1(SO/U)
• πk(ΩSO/U) = πk+1(U/Sp)
• πk(ΩU/Sp) = πk+1(Sp/Sp× Sp)
• πk(ΩSp/Sp× Sp) = πk+1(Sp)
• πk(ΩSp) = πk+1(Sp/U)
• πk(ΩSp/U) = πk+1(U/O)
• πk(ΩU/O) = πk+1(O/O ×O)
• πk(ΩO/O ×O) = πk+1(O)

Combining the eight equalities, we have the periodicity theorem:

Theorem 8.3 (Bott). The homotopy groups of the classic groups are periodic:

(1) πk(U) ∼= πk+2(U)
(2) πk(O) ∼= πk+4(Sp)
(3) πk(Sp) ∼= πk+4(O)

By (2) and (3), πk(O) ∼= πk+8(O) and πk(Sp) ∼= πk+8(Sp).
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68 (1988): 99-114.

[4] A. Hatcher: Algebraic Topology, Cambridge University Press, 2002.



BOTT’S LECTURE NOTES ON MORSE THEORY AT UCLA 27

[5] S. Tabachnikov. Geometry and billiards, Vol. 30, American Mathematical
Soc., 2005.

[6] R. Bott: An Applicaition of the Morse Theory to the Topology of Lie Groups,
Bulletin de la Societe Mathematique de France, vol. 84(1956), pp. 251-282.

[7] P. Petersen: Riemannian geometry, Vol. 171, New York, Springer, 2006.
[8] D. Alekseevsky, A. Kriegl, M. Losik P. W. Michor: The Riemannian geom-

etry of orbit spaces. The metric, geodesics, and integrable systems., Publ. Math.
Debrecen 62, 3-4 (2003), 1-30.


	1. Baby Morse Theory
	2. Smale's and Witten's approach to Morse Theory
	3. More on Baby Morse Theory
	4. Homotopy Groups of Compact Lie Groups
	5. The Billiard-ball Problem
	6. More on Lie Groups
	7. Morse Theory Proper
	8. Proof of the Periodicity Theorem
	9. Acknowledgement
	10. Reference

