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The basic Ricci identity is simply one of the many ways of defining curvature. It applies

universally to connections and curvatures of all bundles. The goal here is to show how it also leads

to the Bianchi identities.

Covariant Derivatives

Throughout this paper assume that we have a Riemannian manifold (M, g) and a bundle E ! M
with a metric and compatible connection. The connection on M and E are both denoted r. Thus

rXY and rXs denote the covariant derivatives of a vector field Y on M and section s of E in the

direction of X. In case E is a tensor bundle the connection r is the one induced by the Riemannian

(Levi-Civita) connection on M . Recall that the Riemannian connection is torsion free

rXY �rY X = LXY = [X,Y ]

and metric

0 = (rXg) (Y, Z) = DX (g (Y, Z))� g (rXY, Z)� g (Y,rXZ) .

The last condition also says that the metric g is parallel or has vanishing covariant derivative.

Using the covariant derivative on M and E it is possible to define covariant derivatives of mixed

“tensors” that involve both vector fields and sections. It is also possible to define covariant and Lie

derivatives of multi-linear objects, e.g., we have the covariant derivative of the covariant derivative

(rXr) Y s = rX (rY s)�rrXY s�rY (rXs) .

Note however, that this is not tensorial in X!

It is important to realize that this is not the same as the second covariant derivative of s

r2
X,Y s = rX (rY s)�rrXY s.

The two concepts are related by

r2
X,Y s = (rXr) Y s+rY (rXs) .

The Ricci Identities

The Ricci identity is simply one way of defining the curvature of sections

r2
X,Y s�r2

Y,Xs = RX,Y s

and it clearly agrees with the standard definition

RX,Y s = rX (rY s)�rX (rY s)�r[X,Y ]s

if we use the definition of the second covariant derivative and that the connection is torsion free.

From this identity one gets iterated Ricci identities by taking one more derivative

r3
X,Y,Zs�r3

Y,X,Zs = RX,Y rZs�rRX,Y Zs

1



and

r3
X,Y,Zs�r3

X,Z,Y s = (rXR)Y,Z s+RY,ZrXs.

These follow from the various way one can iterate covariant derivatives:

r3
X,Y,Zs = r2

X,Y (rZs)�rr2
X,Y Zs

and

r3
X,Y,Zs = rX

�
r2

�
Y,Z

s+r2
Y,Z (rXs)

and then using the Ricci identity.

The Bianchi Identities

The Lie derivative of the Riemannian (Levi-Civita) connection is defined as

(LXr)Y Z = LX (rY Z)�rLXY Z �rY LXZ

= rXrY Z �rrXY Z �rY rXZ

�rrY ZX +rrY XZ +rY rZX

= RX,Y Z +r2
Y,ZX.

This Lie derivative is tensorial in Y, Z as well as symmetric. The symmetry comes from taking Lie

derivatives of the identity:

LY Z = rY Z �rZY.

Thus

(LXL)Y Z = (LXr)Y Z � (LXr)Z Y

but here the left hand side vanishes due to the Jacobi identity

(LXL)Y Z = LX (LY Z)� LLXY Z � LY LXZ

= [X, [Y, Z]] + [Z, [X,Y ]] + [Y, [Z,X]]

= 0.

The first Bianchi identity now follows from the Ricci and Jacobi identities in the following way:

0 = (LXr)Y Z � (LXr)Z Y

= RX,Y Z +r2
Y,ZX �RX,ZY �r2

Z,Y X

= RX,Y Z +RZ,XY +RY,ZX.

The second Bianchi identity similarly follows by using the first Bianchi identity and the Ricci

identities for third covariant derivatives. First note that

(rXR)Y,Z s = r3
X,Y,Zs�r3

X,Z,Y s�r3
Y,Z,Xs+r3

Z,Y,Xs+rRY,ZXs.
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We then note that if we add over the cyclic permutations of X,Y, Z then the 12 third covariant

derivatives cancel and the 3 remaining terms cancel due to the first Bianchi identity

(rXR)Y,Z s+ (rZR)X,Y s+ (rY R)Z,X s

= r3
X,Y,Zs�r3

X,Z,Y s�r3
Y,Z,Xs+r3

Z,Y,Xs+rRY,ZXs

+r3
Z,X,Y s�r3

Z,Y,Xs�r3
X,Y,Zs+r3

Y,X,Zs+rRX,Y Zs

+r3
Y,Z,Xs�r3

Y,X,Zs�r3
Z,X,Y s+r3

X,Z,Y s+rRZ,XY s

= rRX,Y Z+RZ,XY+RY,ZXs

= 0.

The Extended Jacobi Identity

Finally we mention that the Jacobi identity naturally extends to tensors in the following fashion.

We can always tale Lie derivatives of tensors LXT . The natural extension then says

LXLY T � LY LXT = L[X,Y ]T

When T is a function this is the definition of the Lie bracket, when T is a vector field it is the

Jacobi identity. With a bit of work it is not hard to show that this holds on all tensors. Probably

the simplest approach is to show that it also holds for 1-forms and then on tensor products f!1 ⌦
· · ·⌦ !s ⌦X1 ⌦ · · ·⌦Xt, where f is a function, !i 1-forms, and Xj vector fields, by using that Lie

derivatives satisfies Leibniz’ rule

LZ (T1 ⌦ T2) = (LZT1)⌦ T2 + T1 ⌦ LZT2.

This version of the Jacobi identity can then be rewritten in the terminology we used above:

(LXL)Y T = LXLY T � LLXY T � LY LXT = 0.
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