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OPERATOR

PETER PETERSEN

Abstract. The goal is to define two concepts that make computations of
Laplacians of Tensors considerably simpler. This allows us in almost no time
to prove many major theorems that use the Bochner Technique.

Introduction

The object of this note is to better understand Lichnerowicz Laplacians for a
tensor and show that the curvature term can be deconstructed fairly easily. The
strategy comes from considering the Hodge Laplacian on forms. Weitzenböck real-
ized, prior to Hodge’s work, that the Hodge Laplacian can be decomposed into two
terms, one is the connection Laplacian, the other a tensorial term that depends on
the curvature of the manifold. This term is often called the Weitzenböck curvature
operator on forms. This curvature operator will be extended to tensors. When this
term is added to the connection Laplacian we obtain one version of what is called
the Lichnerowicz Laplacian.

One step in our reduction is modeled on W.A. Poor’s approach to the Hodge
Laplacian, which in turn was inspired by work of Chern, and only relies on the
canonical representation of the orthogonal group on tensors. This allows us to
include all tensors and also take it one step further. There have been many other
attempts to understand the Hodge Laplacian on forms. One particularly effective
approach uses spin calculus as well as other added constructions.

Along the way we shall see that almost all curvature concepts: Ricci, sectional,
isotropic, complex sectional curvatures etc are related to a Weitzenböck curvature
of a articular type of tensor.

The Weitzenböck curvature operator on a tensor is defined by

Ric (T ) (X1, ..., Xk) =

X
(R (ej , Xi)T ) (X1, ..., ej , ..., Xk)

We use a variation of the Ricci tensor to symbolize this as it is the Ricci tensor
when evaluated on vector fields and 1-forms. The more standard notation involving
W is too easily confused with the Weyl tensor

The Lichnerowicz Laplacian is defined as
�LT = r⇤rT + cRic (T )

for a suitable constant c > 0. We shall see below that the Hodge Laplacian on forms
is of this type with c = 1. In addition, interesting information can also be extracted
for symmetric (0, 2) tensors as well as the curvature tensor via this operator when
we use c = 1

2 .

2000 Mathematics Subject Classification. 53C20.
Supported in part by NSF-DMS grant 1006677.

1



2 PETER PETERSEN

The Bochner technique works for tensors that lie in the kernel of some Lich-
nerowicz Laplacian

�LT = r⇤rT + cRic (T ) = 0.

The idea is to use one of two maximum principles to show that T is parallel. In
order to apply the maximum principle we need

g (r⇤rT, T )  0

which by the equation for T is equivalent to showing
g (Ric (T ) , T ) � 0.

The two maximum principles that have been used most in the past are stated in
the next lemma.

Lemma. Let (M, g) be a complete Riemannian manifold and T a smooth tensor
such that

g (r⇤rT, T )  0.

If |T | has a maximum or |T | 2 L2, then T is parallel.

Proof. Note that when M is closed both conditions on T are trivially satisfied.
In case |T | has a maximum we can simply apply the maximum principle to the

function |T |2 .
When M is closed and oriented the divergence theorem also offers an alternative

proof by observing

0 
ˆ

|rT |2 dvol

=

ˆ
g (r⇤rT, T ) dvol

 0.

This proof has been extended by Yau to the case where M is noncompact using
the assumption |T | 2 L2 (see ) ⇤

The two assumptions we make about T

�LT = 0

and
g (Ric (T ) , T ) � 0

require some discussion. The first assumption is usually implied by showing that
some other naturally defined Laplacian � satisfies a Weitzenböck formula

� = r⇤rT + cRic (T )

The fact that �T = 0 might come from certain natural restrictions on the tensor
or even as a consequence of having nontrivial topology. The second assumption

g (Ric (T ) , T ) � 0

is often difficult to check and in many cases it took decades to figure what curvature
assumptions gave the best results. The goal here is to first develop a different
formula for Ric (T ) and second to change T in a suitable fashion so as to create a
significantly simpler formula for g (Ric (T ) , T ). This formula will immediately show
that g (Ric (T ) , T ) is nonnegative when the curvature operator is nonnegative. It
will also make it very easy to calculate precisely what happens when T is a (0, 1) or
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(0, 2) tensor. It is worthwhile mentioning that the original proofs of some of these
facts were quite complicated and only developed long after the Bochner technique
had been introduced.

1. Lichnerowicz Laplacians

In this section ....
Conventions

(r⇤T ) (X2, ..., Xk) = � (rEiT ) (Ei, X2, ..., Xk)

1.1. Forms. The first obvious case to try this philosophy on is that of the Hodge
Laplacian on k-forms as we already know that harmonic forms compute the topology
of the underlying manifold.

Theorem 1.1. (Weitzenböck, 1923) For any form the Hodge Laplacian is the Lich-
nerowicz Laplacian with c = 1. Specifically,

4! = (d� + �d) (!)

= r⇤r! +Ric (!) .

Proof. We shall follow the proof discovered by W.A. Poor. To perform the calcu-
lations we need

�! (X2, ..., Xk) = �
X

(rEi!) (Ei, X2, ..., Xk) ,

d! (X0, ..., Xk) =

X
(�1)

i
(rXi!)

⇣
X0, ..., ˆXi, ..., Xk

⌘

and employ the usual assumptions about all covariant derivatives of vector fields
vanishing at a fixed point p 2 M. We this in mind we get

d�! (X1, ..., Xk) =

X
(�1)

i+1 rXi�!
⇣
X1, ..., ˆXi, ..., Xk

⌘

=

X
(�1)

i rXirEj!
⇣
Ej , X1, ..., ˆXi, ..., Xk

⌘

= �
X

rXirEj! (X1, ..., Ej , ..., Xk)

�d! (X1, ..., Xk) = �
X

rEjd! (Ej , X1, ..., Xk)

= �
X

rEjrEj! (X1, ..., Xk)

�
X

(�1)

i rEjrXi!
⇣
Ej , X1, ..., ˆXi, ..., Xk

⌘

= (r⇤r!) (X1, ..., Xk)

+

X
rEjrXi! (X1, ..., Ej , ..., Xk)

Thus

4! = r⇤r! +

X
(R (Ej , Xi)!) (X1, ..., Ej , ..., Xk)

= r⇤r! �
X

(R (Ej , Xi)!) (X1, ..., Ej , ..., Xk)

= r⇤r! +Ric (!)

⇤
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1.2. The Curvature Tensor. We show that a suitably defined Laplacian is in fact
a Lichnerowicz Laplacian. This Laplacian is a symmetrized version of (rX (r⇤R)) (Y, Z,W )

so as to make it have the same symmetries as R. It appears as the right hand side
in the formula below.

Theorem 1.2. The curvature tensor R on a Riemannian manifold satisfies

(r⇤rR) (X,Y, Z,W ) +

1

2

Ric (R) (X,Y, Z,W )

=

1

2

(rXr⇤R) (Y, Z,W )� 1

2

(rY r⇤R) (X,Z,W )

1

2

(rZr⇤R) (W,X, Y )� 1

2

(rWr⇤R) (Z,X, Y )

Proof. By far the most important ingredient in the proof is that we have the second
Bianchi identity at our disposal. We will begin the calculation by considering
the (0,4)-curvature tensor R. Fix a point p, let X,Y, Z,W be vector fields with
rX = rY = rZ = rW = 0 at p and let Ei be normal coordinates at p. Then

(r⇤rR) (X,Y, Z,W ) = �
nX

i=1

�
r2

Ei,Ei
R
�
(X,Y, Z,W )

=

nX

i=1

�
r2

Ei,XR
�
(Y,Ei, Z,W ) +

�
r2

Ei,Y R
�
(Ei, X, Z,W )

=

nX

i=1

�
r2

X,Ei
R
�
(Y,Ei, Z,W ) +

�
r2

Y,Ei
R
�
(Ei, X, Z,W )

+

nX

i=1

(R (Ei, X) (R)) (Y,Ei, Z,W ) + (R (Ei, Y ) (R)) (Ei, X, Z,W )

= (rXr⇤R) (Y, Z,W )� (rY r⇤R) (X,Z,W )

�
nX

i=1

(R (Ei, X) (R)) (Ei, Y, Z,W ) + (R (Ei, Y ) (R)) (X,Ei, Z,W )

where we note that the last two terms are half of the expected terms in �Ric (R) (X,Y, Z,W ) .
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Using that R is symmetric in the pairs X,Y and Z,W we then obtain

(r⇤rR) (X,Y, Z,W ) =

1

2

(r⇤rR) (X,Y, Z,W )� 1

2

(r⇤rR) (Z,W,X, Y )

=

1

2

((rXr⇤R) (Y, Z,W )� (rY r⇤R) (X,Z,W ))

+

1

2

((rZr⇤R) (W,X, Y )� (rWr⇤R) (Z,X, Y ))

�1

2

nX

i=1

(R (Ei, X) (R)) (Ei, Y, Z,W ) + (R (Ei, Y ) (R)) (X,Ei, Z,W )

�1

2

nX

i=1

(R (Ei, Z) (R)) (Ei,W,X, Y ) + (R (Ei,W ) (R)) (Z,Ei, X, Y )

=

1

2

((rXr⇤R) (Y, Z,W )� (rY r⇤R) (X,Z,W ))

+

1

2

((rZr⇤R) (W,X, Y )� (rWr⇤R) (Z,X, Y ))

�1

2

Ric (R) (X,Y, Z,W )

⇤

One might expect that, as with the Hodge Laplacian, there should also be terms
where one takes the divergence of certain derivatives of R. However, the second
Bianchi identity shows that these terms already vanish for R. In particular, R is
harmonic if it is divergence free: r⇤R = 0.

1.3. Symmetric (0, 2) Tensors. Let h be a symmetric (0, 2) tensor. We can define
a connection dependent exterior derivative drh as follows

drh (X,Y, Z) = (rXh) (Y, Z)� (rY h) (X,Z) .

While this definition is a bit mysterious it does occur naturally in differential ge-
ometry. Originally it comes from considering the second fundamental II for an
immersed hypersurface Mn ! Rn+1. In this case the Codazzi-Mainardi equations
can be expressed as

drII = 0.

The second natural situation is the Ricci tensor where the second Bianchi identity
implies

�
drRic

�
(Z,W, Y ) = (r⇤R) (Y, Z,W ) .

Using this exterior derivative we obtain a formula that is similar to what we saw
for forms and the curvature tensor.

Theorem 1.3. Any symmetric (0, 2) tensor h on a Riemannian manifold satisfies

(rXr⇤h) (X) +

�
r⇤drh

�
(X,X) = (r⇤rh) (X,X) +

1

2

(Ric (h)) (X,X)

Proof. Observe that on the left hand side the terms are

(rXr⇤h) (X) = �
�
r2

X,Ei
h
�
(Ei, X)
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and
�
r⇤drh

�
(X,X) = �

�
rEid

rh
�
(Ei, X,X)

= �
�
r2

Ei,Ei
h
�
(X,X) +

�
r2

Ei,Xh
�
(Ei, X)

Adding these we obtain

(rXr⇤h) (X) +

�
r⇤drh

�
(X,X) = (r⇤rh) (X,X) +

�
r2

Ei,Xh
�
(Ei, X)�

�
r2

X,Ei
h
�
(Ei, X)

= (r⇤rh) (X,X) + (R (Ei, X)h) (Ei, X)

Using that h is symmetric we finally conclude that

(R (Ei, X)h) (Ei, X) =

1

2

(Ric (h)) (X,X)

thus finishing the proof. ⇤

A symmetric (0, 2) tensor is called a Codazzi tensor if drh vanishes and harmonic
if in addition it is divergence free. This characterization can be simplified slightly.

Proposition 1.4. A symmetric (0, 2) tensor is harmonic iff it is a Codazzi tensor
and has constant trace.

Proof. In general we have that

(r⇤h) (X) = � (rEih) (Ei, X)

= � (rEih) (X,Ei)

= � (rXh) (Ei, Ei) +
�
drh

�
(X,Ei, Ei)

= �DX (trh) +
�
drh

�
(X,Ei, Ei)

Thus Codazzi tensors are divergence free iff their trace is constant. ⇤

This shows that hypersurfaces that have constant mean curvature have harmonic
second fundamental form. This fact has been exploited by both Lichnerowicz and
Simons. For the Ricci tensor to be harmonic it suffices to assume that it is Codazzi,
but this in turn is a strong condition as it is the same as saying that the full curvature
tensor is harmonic.

Corollary 1.5. The Ricci tensor is harmonic iff the curvature tensor is harmonic.

Proof. We know that the Ricci tensor is a Codazzi tensor precisely when the cur-
vature tensor has vanishing divergence. The contracted Bianchi identity together
with the above proposition then tells us

2DXscal = � (r⇤
Ric) (X)

= DX (trRic)

= DX (scal)

Thus the scalar curvature must be constant and the Ricci tensor divergence free. ⇤

2. Natural Derivations

In differential geometry there are many natural derivations on tensors coming
from various combinations of derivatives. We shall attempt to tie these together in
a natural and completely algebraic fashion by using that all (1, 1) tensors naturally
act as derivations on tensors.
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2.1. Endomorphisms as Derivations. The goal is to show that (1, 1) tensors
naturally act as derivations on the space of all tensors.

We use the natural homomorphism

Gl (V ) ! Gl (T (V ))

where T (V ) is the space of all tensors over the vector space V. This respects the
natural grading of tensors: The subspace of (s, t)-tensors is spanned by

v1 ⌦ · · ·⌦ vs ⌦ �1 ⌦ · · ·⌦ �t

where v1, ..., vs 2 V and �1, ...,�t : V ! R are linear functions. The natural
homomorphism acts trivially on scalars, on vectors

g · v = g (v) ,

on 1-forms
g · � = � � g�1,

and on general tensors:

g · (v1 ⌦ · · ·⌦ vs ⌦ �1 ⌦ · · ·⌦ �t)

= g (v1)⌦ · · ·⌦ g (vs)⌦
�
�1 � g�1

�
⌦ · · ·⌦

�
�t � g�1

�

The derivative of this action yields a linear map

End (V ) ! End (T (V ))

which for each L 2 End (V ) induces a derivation on T (V ) . Specifically if L 2
End (V ) , then

Lv = L (v)

on vectors, while on 1-forms
L� = �� � L

and general tensors

L (v1 ⌦ · · ·⌦ vs ⌦ �1 ⌦ · · ·⌦ �t)

= L (v1)⌦ · · ·⌦ vs ⌦ �1 ⌦ · · ·⌦ �t

+ · · ·
+v1 ⌦ · · ·⌦ L (vs)⌦ �1 ⌦ · · ·⌦ �t

�v1 ⌦ · · ·⌦ vs ⌦ (�1 � L)⌦ · · ·⌦ �t

� · · ·
�v1 ⌦ · · ·⌦ vs ⌦ �1 ⌦ · · ·⌦ (�t � L)

As the natural derivation comes from an action that preserves symmetries of
tensors we immediately obtain.

Proposition 2.1. The linear map

End (V ) ! End (T (V ))

L ! LT

is a Lie algebra homomorphism that preserves symmetries on tensors.
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We also need to know how this derivation interacts with an inner product. The
inner product on T (V ) is given by declaring

ei1 ⌦ · · ·⌦ eip ⌦ ej1 ⌦ · · ·⌦ ejq

an orthonormal basis when e1, ..., en is an orthonormal basis for V and e1, ..., en the
dual basis for V ⇤.

Proposition 2.2. If V has an inner product, then
The adjoint of L : V ! V extends to become the adjoint for L : T (V ) ! T (V ).
If L 2 so (V ) , i.e., L is skew-adjoint, then L commutes with type change of

tensors.
If L 2 so (V ), then L commutes with contractions of symmetric tensors.

2.2. Derivatives. Note that both the Lie derivative LU and the covariant deriva-
tive rU act as derivations on tensors. However, these operations are non-trivial on
functions. Therefore, they are not of the type we just introduced above.

Proposition 2.3. If we think of rU as the (1, 1) tensor X ! rXU , then

LU = rU � (rU)

Proof. It suffices to check that this identity holds on vector fields and functions.
On functions it reduces to the definition of directional derivatives, on vectors from
the definition of Lie brackets. ⇤

This proposition indicates that one can make sense of the expression rTU where
T is a tensor and U a vector field. It has in other places been named AXT , but as
that now generally has been accepted as the A-tensor for a Riemannian submersion
we have not adopted the older notation.

2.3. Curvatures. For any tensor T we define the curvature of T as follows

RX,Y T = (rX (rY T ))� (rY (rXT ))�
�
r[X,Y ]T

�

= r2
X,Y T �r2

Y,XT

Note that RX,Y acts as a derivation on tensors. Moreover as the Hessian of a
function is symmetric

r2
X,Y f = r2

Y,Xf

it follows that it acts trivially on functions. This shows that the Ricci identity holds

RX,Y = R (X,Y )

where on the right hand side we think of R (X,Y ) as a (1, 1) tensor acting on
tensors. As an example note that when T is a (0, k) tensor then

(RX,Y T ) (X1, . . . , Xk) = (R (X,Y )T ) (X1, . . . , Xk)

= �T (R (X,Y )X1, . . . , Xk)

...
�T (X1, . . . , R (X,Y )Xk)
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3. Computing g (Ric (T ) , T )

The various types of derivations introduced in the previous section enable us to
better understand the curvature expressions g (Ric (T ) , T ). We start by extending
Poor’s result for forms to general tensors. We then make a change to the tensor T
that further simplifies this expression.

3.1. Simplification of Ric (T ). Since R (X,Y ) : TpM ! TpM is always skew-
symmetric it can be decomposed using an orthonormal basis of skew-symmetric
transformations ⌅↵ 2 so (TpM) . A tricky point enters our formulas at this point.
It comes from the fact that if v and w are orthonormal, then v ^ w 2 ⇤

2TpM is a
unit vector, while the corresponding skew symmetric operator, a rotation of ⇡/2 in
span {v, w} , has Euclidean norm

p
2. To avoid confusion and unnecessary factors

we assume that so (TpM) is endowed with the metric that comes from ⇤

2TpM.
With that in mind we have

R (X,Y ) = g (R (X,Y ) ,⌅↵)⌅↵

= g (R (X ^ Y ) ,⌅↵)⌅↵

= g (R (⌅↵) , X ^ Y )⌅↵

= �g (R (⌅↵)X,Y )⌅↵

where the last line is due to the convention

g ((x ^ y) (v) , w) = �g (x ^ y, v ^ w) .

This allows us to rewrite the Weitzenböck curvature operator.

Lemma 3.1. For any (0, k) tensor T

Ric (T ) = �
X

R (⌅↵) (⌅↵T ) ,

�LT = r⇤rT � c
X

R (⌅↵) (⌅↵T )

Proof. This is a straightforward calculation:

Ric (T ) (X1, ..., Xk) =

X
(R (ej , Xi)T ) (X1, ..., ej , ..., Xk)

= �
X

g (R (⌅↵) ej , Xi) (⌅↵T ) (X1, ..., ej , ..., Xk)

= �
X

(⌅↵T ) (X1, ..., g (R (⌅↵) ej , Xi) ej , ..., Xk)

=

X
(⌅↵T ) (X1, ..., R (⌅↵)Xi, ..., Xk)

= �
X

(R (⌅↵) (⌅↵T )) (X1, ..., Xi, ..., Xk)

⇤

At first sight we have replaced a simple sum over j and i with a possibly more
complicated sum. The next result justifies the reformulation.

Corollary 3.2. If R � 0, then g (Ric (T ) , T ) � 0.

Proof. Select the orthonormal basis ⌅↵ to consist of eigenvectors for R, i.e., R (⌅↵) =

�↵⌅↵. When taking inner products with T and using that R (⌅↵) is skew symmetric
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we obtain

�
X

g (R (⌅↵) (⌅↵T ) , T ) =

X
g (⌅↵T,R (⌅↵)T )

=

X
�↵ |⌅↵T |2

This shows that the curvature term is nonnegative when the curvature operator is
nonnegative. ⇤

This corollary immediately implies:

Theorem 3.3. (D. Meyer 1971 and D. Meyer-Gallot 1975) Let (M, g) be a closed
Riemannian manifold. If the curvature operator is nonnegative, then all harmonic
forms are parallel. Moreover, when the curvature operator is positive the only par-
allel p-forms have p = 0, n.

Proof. The first statement is immediate given the Weitzenböck formula for forms.
For the second part we note that when the curvature operator is positive then the
formula

0 = g (Ric (!) ,!) =
X

�↵ |⌅↵!|2

shows that ⌅↵! = 0 for all ↵. Hence by linearity L! = 0 for all skew-symmetric L.
If we assume k < n and select L so that L (ei) = 0 for i < k, L (ek) = ek+1, then

0 = (L!) (e1, ..., ek) = �! (e1, ..., ek�1, ek+1)

Since the basis was arbitrary this shows that ! = 0. ⇤

Next we present a similar result for the curvature tensor.

Theorem 3.4. (Tachibana, 1974) Let (M, g) is a closed Riemannian manifold. If
the curvature operator is nonnegative and r⇤R = 0, then rR = 0. If in addition
the curvature operator is positive, then (M, g) has constant curvature.

Proof. We know from above that

r⇤rR+

1

2

Ric (R) = 0

So if the curvature operator is nonnegative, then rR = 0.
Moreover, when the curvature operator is positive it follow,s as in the case of

forms, that LR = 0 for all L 2 so (TpM) . This condition implies, as we shall
show below, that R (x, y, y, z) = 0 and R (x, y, v, w) = 0 when the vectors are
perpendicular. This in turn shows that any bi-vector x^ y is an eigenvector for R,
but this can only happen if R = kI for some constant k.

To show that the mixed curvatures vanish first select L so that L (y) = 0 and
L (x) = z, then

0 = LR (x, y, y, x) = �R (L (x) , y, y, x)�R (x, y, y, L (x))

= �2R (x, y, y, z) .

Polarizing in y = v + w, then shows that

R (x, v, w, z) = �R (x,w, v, z)



WEITZENBÖCK CURVATURE 11

The Bianchi identity then implies
R (x, v, w, z) = R (w, v, x, z)�R (w, x, v, z)

= �2R (w, x, v, z)

= 2R (x,w, v, z)

= �2R (x, v, w, z)

showing that R (x, v, w, z) = 0. ⇤
3.2. Simplification of g (Ric (T ) , T ). The goal is now to work out the formula
for 1-forms and general (0, 2) tensors. In both cases one easily recovers the results
that are already known for such tensors.

Having redefined the Ricci curvature of tensors, we take it a step further and
also discard the orthonormal basis ⌅↵. To assist in this note that a (0, k)-tensor T

can be changed to a tensor ˆT with values in ⇤

2TM . Implicitly this works as follows

g
⇣
L, ˆT (X1, ..., Xk)

⌘
= (LT ) (X1, ..., Xk) for all L 2 so (TM) = ⇤

2TM.

Lemma 3.5. For any (0, k) tensor T we have

g (Ric (T ) , T ) = g
⇣
R

⇣
ˆT
⌘
, ˆT

⌘
.

Proof. This is a straight forward calculation

g (Ric (T ) , T ) =

X
g (⌅↵T,R (⌅↵)T )

=

X
(⌅↵T ) (ei1 , ..., eik) (R (⌅↵)T ) (ei1 , ..., eik)

=

X
g
⇣
⌅↵, ˆT (ei1 , ..., eik)

⌘
g
⇣
R (⌅↵) , ˆT (ei1 , ..., eik)

⌘

=

X
g
⇣
R

⇣
g
⇣
⌅↵, ˆT (ei1 , ..., eik)

⌘
⌅↵

⌘
, ˆT (ei1 , ..., eik)

⌘

=

X
g
⇣
R

⇣
ˆT (ei1 , ..., eik)

⌘
, ˆT (ei1 , ..., eik)

⌘

= g
⇣
R

⇣
ˆT
⌘
, ˆT

⌘

⇤
This new expression for g (Ric (T ) , T ) is clearly nonnegative when the curvature

operator is nonnegative. In addition it also occasionally allows us to show that it
is nonnegative under less restrictive hypotheses.

We obtain the well known result by Bochner that Ricci curvature controls 1-forms
and vector fields.

Proposition 3.6. If ! is a 1-form and X the dual vector field, then

!̂ (Z) = Z ^X

and
g (R (!̂) , !̂) = Ric (X,X) .

Proof. In this case
(L!) (Z) = �! (L (Z))

= �g (X,L (Z))

= g (L,Z ^X)
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so
!̂ (Z) = Z ^X.

This shows that the curvature term in the Bochner formula becomes

�
X

g (R (⌅↵) (⌅↵!) ,!) =

X
g (⌅↵!, R (⌅↵)!)

=

X
g (!̂ (Ei) ,R (!̂ (Ei)))

=

X
g (R (Ei ^X) , Ei ^X)

=

X
R (X,Ei, Ei, X)

= Ric (X,X)

⇤

More generally one can show that if ! is a p-form and

g (⌦ (X1, ..., Xp�1) , Xp) = ! (X1, ..., Xp) ,

then

!̂ (X1, ..., Xp) =

pX

i=1

(�1)

p�i
Xi ^ ⌦

⇣
X1, ..., ˆXi, ..., Xp

⌘
.

Moreover, note that !̂ can only vanish if ! vanishes.
Next we focus on understanding Ric

⇣
ˆh
⌘

for any (0, 2)-tensor. Given a (0, 2)-
tensor h there is a corresponding (1, 1)-tensor called H

h (z, w) = g (H (z) , w)

The adjoint of H is denoted H⇤.

Proposition 3.7. Let H be a (1, 1)-tensor, then

ˆh (z, w) = �H (z) ^ w + z ^H⇤
(w)

and ˆh = 0 iff h = �g.

Proof. We start by observing that

(Lh) (z, w) = �h (L (z) , w)� h (z, L (w))

= �g (H (L (z)) , w)� g (H (w) , L (z))

= �g (L (z) , H⇤
(w))� g (L (z) , H (w))

= g (L, z ^H⇤
(w)) + g (L, z ^H (w))

= g (L,�H (z) ^ w + z ^H⇤
(w))

Note that if h = �g then H = �I = H⇤, thus ˆh = 0. Next assume that ˆh = 0. Then
for all z, w we have

z ^H⇤
(H (w)) = H (z) ^H (w)

= �H (w) ^H (z)

= �w ^H⇤
(H (z))

= H⇤
(H (z)) ^ w

But that only be true if H⇤H = �2I and H = �I. ⇤
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This indicates that we have to control curvatures of the type

g (R (�H (z) ^ w + z ^H⇤
(w)) ,�H (z) ^ w + z ^H⇤

(w)) .

If H is normal, then it can be diagonalized with respect to an orthonormal basis
in the complexified tangent bundle. Assuming that H (z) = �z and H (w) = µw
where z, w 2 TpM ⌦ C are orthonormal we obtain

g
⇣
R (�H (z) ^ w + z ^H⇤

(w)) ,�H (z) ^ w + z ^H⇤
(w)

⌘
= |��+ µ̄|2 g (R (z ^ w) , z ^ w) .

The curvature term g (R (z ^ w) , z ^ w) looks like a complexified sectional cur-
vature and is in fact called the complex sectional curvature. It can be recalculated
without references to complexifications. If we let z = x+

p
�1y and w = u+

p
�1v,

x, y, u, v 2 TM then

g (R (z ^ w) , z̄ ^ w̄) = g (R (x ^ u� y ^ v) , x ^ u� y ^ v)

+g (R (x ^ v + y ^ u) , x ^ v + y ^ u)

= g (R (x ^ u) , x ^ u) + g (R (y ^ v) , y ^ v)

+g (R (x ^ v) , x ^ v) + g (R (y ^ u) , y ^ u)

�2g (R (x ^ u) , y ^ v) + 2g (R (x ^ v) , y ^ u)

= R (x, u, u, x) +R (y, v, v, y) +R (x, v, v, x) +R (y, u, u, y)

+2R (x, u, y, v)� 2R (x, v, y, u)

= R (x, u, u, x) +R (y, v, v, y) +R (x, v, v, x) +R (y, u, u, y)

�2 (R (v, y, x, u) +R (x, v, y, u))

= R (x, u, u, x) +R (y, v, v, y) +R (x, v, v, x) +R (y, u, u, y)

+2R (y, x, v, u)

= R (x, u, u, x) +R (y, v, v, y) +R (x, v, v, x) +R (y, u, u, y)

+2R (x, y, u, v)

The first line in this derivation shows that complex sectional curvatures are nonneg-
ative when R � 0. Thus we see that it is weaker than working with the curvature
operator. On the other hand it is stronger than sectional curvature.

There are three special cases depending on the dimension of span {x, y, u, v}.
When y = v = 0 we obtain the standard definition of sectional curvature. When
x, y, u, v are orthonormal we obtain the so called isotropic curvature, and finally
if u = v we get a sum of two sectional curvatures

2R (x, u, u, x) + 2R (y, u, u, y)

also called a second Ricci curvature, when x, y, u are orthonormal.
The next result is a general version of two separate theorems. Simons and Berger

did the case of symmetric tensors and Micallef-Wang the case of 2-forms.

Proposition 3.8. Let h be a (0, 2) tensor such that H is normal. If the complex
sectional curvatures are nonnegative, then g

⇣
R

⇣
ˆh
⌘
, ˆh

⌘
� 0.

Proof. We can use complex orthonormal bases as well as real bases to compute
g
⇣
R

⇣
ˆh
⌘
, ˆh

⌘
. Using that H is normal we obtain a complex orthonormal basis ei
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of eigenvectors H (ei) = �iei and H⇤
(ei) = ¯�iei. Using that we quickly obtain

g
⇣
R

⇣
ˆh
⌘
, ˆh

⌘
=

X
g
⇣
R

⇣
ˆh (ei, ej)

⌘
, ˆh (ei, ej)

⌘

=

X
g
⇣
R (�H (ei) ^ ej + ei ^H⇤

(ej)) ,�H (ei) ^ ej + ei ^H⇤
(ej)

⌘

=

X����i +
¯�j

��2 g (R (ei ^ ej) , ei ^ ej)

⇤

In the special case where H is self-adjoint the eigenvalues/vectors are real we need
only use the real sectional curvatures. When H is skew-adjoint the eigenvectors are
purely imaginary unless they correspond to zero eigenvalues. This shows that we
must use the isotropic curvatures and also the second Ricci curvatures when M is
odd dimensional. However, none of the terms involve real sectional curvatures.

These characterizations can be combined to show

Proposition 3.9. g
⇣
R

⇣
ˆh
⌘
, ˆh

⌘
� 0 for all (0, 2)-tensors on TpM if and only if

all complex sectional curvatures on TpM are nonnegative.

Proof. We decompose h = hs+ha into symmetric and skew symmetric parts. Then

g
⇣
R

⇣
ˆh
⌘
, ˆh

⌘
= g

⇣
R

⇣
ˆhs

⌘
, ˆhs

⌘
+ g

⇣
R

⇣
ˆha

⌘
, ˆha

⌘
+ g

⇣
R

⇣
ˆhs

⌘
, ˆha

⌘
+ g

⇣
R

⇣
ˆha

⌘
, ˆhs

⌘

= g
⇣
R

⇣
ˆhs

⌘
, ˆhs

⌘
+ g

⇣
R

⇣
ˆha

⌘
, ˆha

⌘
+ 2g

⇣
R

⇣
ˆhs

⌘
, ˆha

⌘

However,

g
⇣
R

⇣
ˆhs

⌘
, ˆha

⌘
=

X
g
⇣
R

⇣
ˆhs (ei, ej)

⌘
, ˆha (ei, ej)

⌘

= �
X

g
⇣
R

⇣
ˆhs (ej , ei)

⌘
, ˆha (ej , ei)

⌘

= �g
⇣
R

⇣
ˆhs

⌘
, ˆha

⌘

So
g
⇣
R

⇣
ˆh
⌘
, ˆh

⌘
= g

⇣
R

⇣
ˆhs

⌘
, ˆhs

⌘
+ g

⇣
R

⇣
ˆha

⌘
, ˆha

⌘

and the result follows from the previous proposition. ⇤

From this one can now easily recover the results about 2-forms, the Ricci tensor
and second fundamental form found in.....

4. Laplacians with Diffusion

The goal here is to add first order terms to the Lichnerowicz Laplacian.

4.1. Generalized Divergence. When the Riemannian measure is changed from
being dvol to e�fdvol it is natural to also change the way we compute divergences
so as to make sure they are still adjoints to exterior and covariant derivatives. To
this end we define

�f = ef�e�f
= � + irf

= r⇤
+ irf = efr⇤e�f

= r⇤
f

Proposition 4.1. r⇤
f is the adjoint to r and d with respect to the measure e�fdvol.
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Proof. We calculateˆ
g (d!,!0

) e�fdvol =

ˆ
g
�
d!, e�f!0� dvol

=

ˆ
g
�
!, �

�
e�f!0�� dvol

=

ˆ
g
�
!, ef�

�
e�f!0�� e�fdvol

=

ˆ
g (!, �f!

0
) e�fdvol

Likewise ˆ
g (rS, T ) e�fdvol =

ˆ
g
�
rS, e�fT

�
dvol

=

ˆ
g
�
S,r⇤ �e�fT

��
dvol

=

ˆ
g
�
S, efr⇤ �e�fT

��
e�fdvol

=

ˆ
g
�
S,r⇤

fT
�
e�fdvol

⇤
The previous proposition certainly works for tensors with compact support and

thus by extension in W 1,2, the Hilbert space of tensors in L2
�
e�fdvol

�
with weak

derivatives also in L2
�
e�fdvol

�
. This is quite interesting as we can, e.g., use

(M, g) = (Rn, can) with f =

1
2 |x|

2
. In this case the measure is proportional to

the Gaussian measure and thus has finite volume. This means that bounded ten-
sors with bounded derivatives lie in W 1,2.

More generally one can consider
�U = � + iU

r⇤
U = r⇤

+ iU

for a vector field U, but this divergence operator will not necessarily be the adjoint
to d or r for any measure. Nevertheless calculations of Lichnerowicz Laplacians
are just as simple using this more general divergence.

4.2. Bochner with Diffusion. As long as we use the maximum principle we can
easily generalize the Bochner technique to work when we have a diffusion term.
The important observation is

Lemma 4.2. Let T be a tensor such that

g (r⇤
UrT, T )  0,

If |T | has a maximum, then T is parallel.

In case U = rf, we can also use integration.

Lemma 4.3. Assume that
´
e�fdvol < 1. Let T 2 L2

�
e�fdvol

�
be a tensor such

that
g
�
r⇤

frT, T
�
 0,

then T is parallel.
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4.3. Lichnerowicz Laplacians with Diffusion. We start by checking what hap-
pens for Hodge Laplacians using the generalized divergence operator. In this case
the natural U -Hodge Laplacian becomes

�U = �Ud+ d�U

= �d+ d� + iUd+ diU

= �+ LU

and is thus the standard Hodge Laplacian with a Lie derivative as diffusion term.

Proposition 4.4. The U -Hodge Laplacian on forms satisfies the Weitzenböck for-
mula

�U! = r⇤
Ur! +Ric (!)� (rU)!.

Proof. Lie derivatives and covariant derivatives are related by the derivation coming
from the (1, 1) tensor rU

LU = rU �rU

Since we already know that � = r⇤r+Ric on forms this will balance the terms
in the formula that only depend on U. ⇤

The Lichnerowicz Laplacians also generalize in a natural fashion. In view of this
proposition is it natural to define a new Weitzenböck curvature as follows:

RicU = Ric� (rU) .

In the case of 1-forms it was introduced by Lichnerowicz who simply called it the
C tensor. Today it is better known as the Bakry-Emery tensor.

This leads to the U -Lichnerowicz Laplacian on tensors
�L,U = r⇤

Ur+ cRicU

= r⇤
Ur+ c (Ric� (rU)) , c > 0.

In case U = rf we also use the notation
Ricf = Ric� (rrf) = Ric� Sf ,

�L,f = r⇤
fr+ cRicf .

It is useful to have a formula for g ((rU)T, T ) since that term now gets added
to the curvature term. Let rU = SU + S0

U be the decomposition of the operator
rU into symmetric and skew symmetric parts.

Proposition 4.5. If T is a (0, k) tensor then

g ((rU)T, T ) = g (SUT, T ) =
1

2

(LUg) (T, T )

Proof. Since S0
U is skew symmetric we clearly have that

g (S0
UT, T ) = 0

This proves the first equality.
To check the second equality note that:

g ((rU)T, T ) = �g (LUT, T ) + g (rUT, T )

= �g (LUT, T ) +
1

2

DU |T |2

=

1

2

(LUg) (T, T ) .
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⇤

Next we show that diffusion terms can also be included when considering curva-
ture tensors.

Proposition 4.6. The curvature tensor satisfies

r⇤
UrR+

1

2

RicU (R) = �L,UR

=

1

2

(rXr⇤
UR) (Y, Z,W )� 1

2

(rY r⇤
UR) (X,Z,W )

1

2

(rZr⇤
UR) (W,X, Y )� 1

2

(rWr⇤
UR) (Z,X, Y )

Proof. We start with the formula

r⇤rR+

1

2

Ric (R) = �LR

=

1

2

(rXr⇤R) (Y, Z,W )� 1

2

(rY r⇤R) (X,Z,W )

1

2

(rZr⇤R) (W,X, Y )� 1

2

(rWr⇤R) (Z,X, Y )

To verify the proposition we need the extra terms that involve U to cancel out.
This relies on the second Bianchi identity. Assume as usual that X,Y, Z,W are
parallel at a some fixed point. On the left hand side we have

rUR� 1

2

(rU) (R)

To understand the right hand side we first need to observe that

(rXr⇤
UR) (Y, Z,W ) = (rX (r⇤R+ iUR)) (Y, Z,W )

= (rXr⇤R) (Y, Z,W ) +rX (R (U, Y, Z,W ))

= (rXr⇤R) (Y, Z,W ) + (rXR) (U, Y, Z,W ) +R (rXU, Y, Z,W )
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This allows us to simplify the U terms on the right hand side:

+

1

2

(rXR) (U, Y, Z,W )� 1

2

(rY R) (U,X,Z,W )

+

1

2

(rZR) (U,W,X, Y )� 1

2

(rWR) (U,Z,X, Y )

+

1

2

R (rXU, Y, Z,W )� 1

2

R (rY U,X,Z,W )

+

1

2

R (rZU,W,X, Y )� 1

2

R (rWU,Z,X, Y )

= �1

2

(rXR) (Y, U, Z,W )� 1

2

(rY R) (U,X,Z,W )

�1

2

(rZR) (W,U,X, Y )� 1

2

(rWR) (U,Z,X, Y )

+

1

2

R (rXU, Y, Z,W ) +

1

2

R (X,rY U,Z,W )

+

1

2

R (rZU,W,X, Y ) +

1

2

R (Z,rWU,X, Y )

=

1

2

(rUR) (X,Y, Z,W ) +

1

2

(rUR) (X,Y, Z,W )

+

1

2

R (rXU, Y, Z,W ) +

1

2

R (X,rY U,Z,W )

+

1

2

R (X,Y,rZU,W ) +

1

2

R (X,Y, Z,rWU)

= (rUR) (X,Y, Z,W )� 1

2

(rU)R (X,Y, Z,W )

⇤

Finally for (0, 2)-tensors we obtain.

Corollary 4.7. If h is a symmetric (0, 2) tensor, then

(rXr⇤
Uh) (X) +

�
r⇤

Ud
rh

�
(X,X) = (r⇤

Urh) (X,X) +

1

2

(RicU (h)) (X,X)

Proof. Since we know that

(rXr⇤h) (X) +

�
r⇤drh

�
(X,X) = (r⇤rh) (X,X) +

1

2

(Ric (h)) (X,X)

we can isolate the terms that depend on U. Thus we must show

(rX iUh) (X) +

�
iUd

rh
�
(X,X) = (rUh) (X,X)� 1

2

((rU)h) (X,X)

This follows if we start on the left hand side

(rXh) (U,X) + (rUh) (X,X)� (rXh) (U,X) + h (rXU,X) = (rUh) (X,X) + h (rXU,X)

= (rUh) (X,X)� 1

2

((rU)h) (X,X)

⇤

Add something about what a natural assumption on h might be. Having it be
Codazzi would seem natural but we know that that is not what happens to the Ricci
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tensor for solitons. In fact the natural condition for the curvature tensor r⇤
UR = 0

translates into
r⇤

URic = 0

and
�
drRic

�
(Z,W, Y ) = (r⇤R) (Y, Z,W ) = �R (U, Y, Z,W ) = R (Z,W, Y, U) .

4.4. Ricci Solitons. A Ricci soliton is a metric that satisfies

Ric +

1

2

LUg = �g,

As endormorphisms
Ric + SU = �I

on all tensors
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