
120A Lecture Notes
Peter Petersen

January 8, 2010

1 Vector-Matrix Preliminaries

Given a basis e; f for a two dimensional vector space we expand vectors using matrix
multiplication

v = vee+ vff =
�
e f

� � ve
vf

�
and the matrix representation [L] for a linear map/transformation L can be found from�

L (e) L (f)
�
=

�
e f

�
[L]

=
�
e f

� � Lee Lef
Lfe Lff

�
Next we relate matrix multiplication and the dot product in R3: We think of vectors
as being columns or 3 � 1 matrices. Keeping that in mind and using transposition of
matrices we immediately obtain:

XtY = X � Y;
Xt
�
X2 Y2

�
=

�
X �X2 X � Y2

�
�
X1 Y1

�t
X =

�
X1 �X
Y1 �X

�
�
X1 Y1

�t �
X2 Y2

�
=

�
X1 �X2 X1 � Y2
Y1 �X2 Y1 � Y2

�
;

�
X1 Y1 Z1

�t �
X2 Y2 Z2

�
=

24 X1 �X2 X1 � Y2 X1 � Z2
Y1 �X2 Y1 � Y2 Y1 � Z2
Z1 �X2 Z1 � Y2 Z1 � Z2

35
These formulas can be used to calculate the coef�cients of a vector with respect to

a general basis. Recall �rst that if E1; E2 is an orthonormal basis for R2; then

X = (X � E1)E1 + (X � E2)E2
=

�
E1 E2

� �
E1 E2

�t
X

So the coef�cients for X are simply the dot products with the basis elements. More
generally we have
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Theorem 1 Let U:V be a basis for R2; then

X =
�
U V

� ��
U V

�t �
U V

���1 �
U V

�t
X

=
�
U V

� ��
U V

�t �
U V

���1 � U �X
V �X

�

Proof. First write

X =
�
U V

� � Xu

Xv

�
The goal is to �nd a formula for the coef�cients Xu; Xv in terms of the dot products
X � U;X � V: To that end we notice�

U �X
V �X

�
=

�
U V

�t
X

=
�
U V

�t �
U V

� � Xu

Xv

�
Showing directly that�

Xu

Xv

�
=
��

U V
�t �

U V
���1 � U �X

V �X

�
and conseqeuntly

X =
�
U V

� ��
U V

�t �
U V

���1 � U �X
V �X

�

There is a similar formula in R3 which is a bit longer. In pratice we shall only need
it in the case where the third basis vector is perpendicular to the �rst two. Also note
that if U; V are orthonormal then

�
U V

�t �
U V

�
=

�
1 0
0 1

�
and we recover the standard formula for the expansion of a vector in an orthonormal
basis.
Finally we mention the triple product formula

det
�
X Y Z

�
= X � (Y � Z)
= Xt (Y � Z)

2 Vector Calculus
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2.1 Chain Rule

d (V � c)
dt

=
h

@V
@x

@V
@y

@V
@z

i �dc
dt

�
2.2 Directional Derivatives
If h is a function on R3 and X = (P;Q;R) then

DXh = P
@h

@x
+Q

@h

@y
+R

@h

@z

= (rh) �X
= [rh]t [X]

=
h

@h
@x

@h
@y

@h
@z

i
[X]

and for a vector �eld V we get

DXV =
h

@V
@x

@V
@y

@V
@z

i
[X] :

We can also calculate directional derivatives by selecting any curve such that _c (0) =
X: Along the curve the chain rule says:

d (V � c)
dt

=
h

@V
@x

@V
@y

@V
@z

i �dc
dt

�
= D _cV

Thus
DXV =

d (V � c)
dt

(0)

3 Curves

Local theory. arc length. That arclength is a good measure for the length of a curve
requires some justi�cation.

Theorem 2 The straight line is the shortest curve between any two points in Euclid-
ean space.

Proof. We shall give two almost identical proofs. Without loss of generality we
assume that we have a curve c (t) : [a; b] ! Rk where c (a) = 0; and c (b) = p: We
wish to show that L (c) � jpj : To that end we select a unit vector �eld X which is
also a gradient �eld X = rf: Two natural choices are possible: For the �rst simply
let f (x) = x � p

jpj ; for the second f (x) = jxj : In the �rst case the gradient is simply
a parallel �eld and de�ned everywhere, in the second case we obtain the radial �eld
which is not de�ned at the origin. When using the second �eld we need to restrict the
domain of the curve to [a0; b] such that c (a0) = 0 but c (t) 6= 0 for t > a0: This is
clearly possible as the set of points where c (t) = 0 is a closed subset of [a; b] ; so a0 is
just the maximum value where c vanishes.
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This allows us to perform the following calculation using Cauchy-Schwarz, the
chain rule, and the fundamental theorem of calculus. When we are in the second case
the intergrals are possibly improper at t = a0; but clearly turn out to be perfectly well
de�ned since the integrand has a continuous limit as t approaches a0

L (c) =

Z b

a0

j _cj dt

=

Z b

a0

j _cj jrf j dt

�
Z b

a0

j _c � rf j dt

=

Z b

a0

����d (f � c)dt

���� dt
�

�����
Z b

a0

d (f � c)
dt

dt

�����
= jf (c (b))� f (c (a0))j
= jf (x)� f (0)j
= jf (x)j
= jpj

We can even go backwards and check what happens when L (c) = jpj : It appears
that we must have equality in two places where we had inequality. Thus we have
d(f�c)
dt � 0 everywhere and _c is proportional to rf everywhere. This implies that c is

a possibly singular reparametrization of the straight line from 0 to p:
Discuss, parametrized curves, implicitly given curves (level sets), integral curves of

a vector �eld, orthogonal curves, integral curves to second order system.

4 General Frames

We shall now consider the general problem of taking derivatives of a basis U (t) ; V (t)
that depends on t; and veiwed as a choice of basis at c (t) : Given U (t) ; a natural
choice for V (t) would be the unit vector orthogonal to U (t) : Also we shall usually
use U (t) = _c (t) or U (t) = T (t) : The goal is to identify the matrix [D] that appears
in

d

dt

�
U V

�
=
�

d
dtU

d
dtV

�
=
�
U V

�
[D]

We know a complicated formula

[D] =
��

U V
�t �

U V
���1 �

U V
�t � d

dtU
d
dtV

�
which simpli�es to
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Theorem 3 Let U (t) ; V (t) be an orthonormal frame that depends on a parameter
t; then

d

dt

�
U V

�
=

�
U V

� � 0 �
�� 0

�
;

� = U � d
dt
V = �V � d

dt
U

or
d

dt
U = �V;

d

dt
V = ��U

Proof. We use that �
U V

�t �
U V

�
=

�
1 0
0 1

�
and the derivative of this�

0 0
0 0

�
=

�
d
dtU

d
dtV

�t �
U V

�
+
�
U V

�t � d
dtU

d
dtV

�
=

� �
d
dtU

�
� U

�
d
dtU

�
� V�

d
dtV

�
� U

�
d
dtV

�
� V

�
+

�
U � ddtU U � ddtV
V � ddtU V � ddtV

�
Showing that �

d

dt
U

�
� U = 0 =

�
d

dt
V

�
� V;�

d

dt
V

�
� U = �V � d

dt
U

Our formula for [D] then becomes

[D] =
�
U V

�t � d
dtU

d
dtV

�
=

�
U � ddtU U � ddtV
V � ddtU V � ddtV

�
=

�
0 �
�� 0

�

Occasionally we need one more derivative

d2

dt2
�
U V

�
=

�
U V

� � ��2 d�
dt

�d�
dt ��2

�
;

d2U

dt2
= ��2U � d�

dt
V;

d2V

dt2
=

d�

dt
U � �2V:
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5 Global stuff

rotation index with tangent/normal circular image. convex curves. ovals. Isoperimetric.

6 Space Curves

Serret-Frenet. Observe that there are no relations between curvature and torsion. Gen-
eralized helices and other curiosities.

7 Surfaces

We de�ne a parametrized surface as a function x (u; v) : U � R2 ! R3 where @x
@u

and @x
@v are linearly independent. For parametrized surfaces we generally do not worry

about self inetersections or other topological pathologies. This is just as with curves
and allows us a great deal of �exibility. When we need to worry about these issues, or
rather we wish to avoid them, then we resort to the more restrictive class of surfaces
that comes from the next two general constructions.
A special case is the Monge patch
Implicitly given surfaces as level sets.
A surfaceM � R3 is then a subset which is locally represented as a graph over two

coordinates. Note that a parametrized surface might not be a surface in this sense if it
intersects itself or otherwise gets arbitrarily close to itself.
The tangent space

TpM = span

�
@x

@u
;
@x

@v

�
;

and normal space
NpM = (TpM)

?

Proposition 4 Both tangent and normal spaces are subspaces that do not depend on
a choice of parametrization.

Proof. This would seem intuitively clear, just as with curves, where the tangent line
does not depend on parametrizations. For cuves it boils down to the simple fact that
velocities for different parametrizations are proportional and hence de�ne the same
tangent lines. With surfaces something similar happens, but it is a bit more involved.
Suppose we have two different parametrizations of the same surface:

x (s; t) = x (u; v)

This tells us that the parameters are functions of each other

u = u (s; t) ; v = v (s; t)

s = s (u; v) ; t = t (u; v)
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The chain rule then gives us

@x

@u
=
@x

@s

@s

@u
+
@x

@t

@t

@u
2 span

�
@x

@s
;
@x

@t

�
similarly

@x

@v
2 span

�
@x

@s
;
@x

@t

�
and in the other direction

@x

@s
;
@x

@t
2 span

�
@x

@u
;
@x

@v

�
This shows that a a �xed point p on a surface the tangent space does not depend on
how the surface is parametrized. The normal space is then also well de�ned.
It is often useful to �nd coordinates suited to a particular situation. Most often this

entails �nding parameters so that @x@u and
@x
@v are proportional to some �xed directions.

Theorem 5 Assume that we have linearly independent tangent vector �elds X;Y
de�ned on a surface M: Then it is possible to �nd a parametrization x (u; v) in a
neighborhood of any point such that @x@u is proportional to X and @x

@v is proportional
to Y:

Proof. The vector �elds have integral curves forming a net on the surface. Apparently
the goal is to reparametrize the curves in this net in some fashion. The dif�culty lies
in ensuring that the levels where u is constant correspond to the v-curves, and vice
versa. We proceed as with a classical construction of Cartesian coordinates. Select a
point p and let the u-axis be the integral curve forX through p; similarily set the v-axis
be the integral curve for Y through p: Both of these curves retain the parametriza-
tions that make them integral curves for X and Y: Thus p will naturally correspond to
(u; v) = (0; 0) :We now wish to assign (u; v) coordinates to a point q near p: There are
also unique integral curves forX and Y through q: These will be our way of projecting
onto the chosen axes and will in this way yield the desired coordinates. Speci�cally
u (q) is the parameter where the integral curve for Y through q intersecs the u-axis,
and similarly with v (q) : In general integral curves can intersect axes in several places
or might not intersect them at all. However, a continuity argument offers some justi-
�cation when we consider that the axes themselves are the proper integral curves for
the qs that lie on these axes and so q suf�ciently close to both axes should have a well
de�ned set of coordinates. We also note that as the projection happens along integral
curves we have ensured that coordinate curves are simply reparametrizations of inte-
gral curves. To completely justify this construction we need to know quite a bit about
the existence, uniqueness and smoothness of solutions to differential equations and the
inverse function theorem also comes in handy.
Excercise: A generalized cylinder is determined by a planar regular curve and a

vector not in the same plane. Construct a natural parametrization and show that it gives
a parametrized surface. What if the planar curve is given by an equation and you also
want the surface to be given by an equation?
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Excercise: A generalized cone is generated by a planar regular curve and a point
not in that plane. Construct a natural parametrization and determine where it yields a
parametrized surface. What if the planar curve is given by an equation and you also
want the surface to be given by an equation?
Excercise: A ruled surface is given by a parametrization of the form

x (s; t) = � (s) + t� (s)

It is evidently a surface that is a union of lines (rulers). Give conditions on �; � and the
parameter t that guarantee we get a parametrized surface. A special case occures when
� is unit speed and � = �0: These are also called tangent developables.
Excercise: A surface of revolution is determined by a planar regular curve and

a line that is never perpendicular to the tangent vectors of the curve. The surface is
generated by rotating the curve around the line. Construct a natural parametrization
and show that it is a parametrized surface. What if the planar curve is given by an
equation and you also want the surface to be given by an equation?
Excercise: Many classical surfaces are of the form

F (x; y; z) = ax2 + by2 + cz2 + dx+ ey + fz + g = 0

Give conditions on the coef�cients such that it is generates a surface (g = 0 takes
special care). Under what conditions does it become a surface of revolution around
the z-axis? Under what conditions does it become a cylinder or cone? Why are these
elliptic when abc > 0 and hyperbolic when abc < 0?When abc 6= 0 rewritte it in the
form

F (x; y; z) = a (x� x0)2 + b (y � y0)2 + c (z � z0)2 + h = 0

8 The Abstract Framework

As with curves, parametrized surfaces can have intersections and other nasty compli-
cations that do not come up with the other three cases. Nevertheless it is usually easier
to develop formulas for parametrized surfaces.
For a parametrized surface x (u; v) we have the velocities of the coordinate vector

�elds
@x

@u
;
@x

@v
While these can be normalized to be unit vectors we can't guarantee that they are
orthogonal. Nor can we �nd parameters that make the coordinate �elds orthonormal.
We shall see that there are geometric obstructions to �nding such parametrizations.
Before discussing general surfaces it might be instructive to see what happens if

x (u; v) is simply a reparametrization of the plane. Thus @x@u ;
@x
@v form a basis at each

point x: Taking partial derivatives of these �elds give us

@

@u

�
@x
@u

@x
@v

�
=

h
@2x
@u2

@2x
@u@v

i
=
�
@x
@u

@x
@v

�
[�u] ;

@

@v

�
@x
@u

@x
@v

�
=

h
@x
@v@u

@2x
@v2

i
=
�
@x
@u

@x
@v

�
[�v]
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or in condensed form

@

@w

�
@x
@u

@x
@v

�
=
h

@2x
@w@u

@2x
@w@v

i
=
�
@x
@u

@x
@v

�
[�w] ; w = u; v

The matrices [�w] tell us how the tangent �elds change with respect to themselves. A
good example comes from considering polar coordinates x (r; �) = (r cos �; r sin �)

@x

@r
=

�
cos �
sin �

�
;
@x

@�
=

�
�r sin �
r cos �

�
@2x

@r@�
=

@2x

@�@r
=

�
� sin �
cos �

�
;
@2x

@r2
= 0;

@2x

@�2
=

�
�r cos �
�r sin �

�
so

@

@r

�
@x
@r

@x
@�

�
=

h
@2x
@r@r

@2x
@r@�

i
=
�
@x
@r

@x
@�

� � 0 0
0 1

r

�
@

@�

�
@x
@r

@x
@�

�
=

h
@2x
@�@r

@2x
@�@�

i
=
�
@x
@r

@x
@�

� � 0 �r
1
r 0

�

[�r] =

�
0 0
0 1

r

�
;

[��] =

�
0 �r
1
r 0

�
The key is that only Cartesian coordinates have the property that its coordinate �elds

are constant. When using general coordinates we are naturally forced to �nd these
quantities. To see why this is consider a curve c (t) = (r (t) cos � (t) ; r (t) sin � (t)) in
the plane. It velocity is the naturally given by

_c = _r
@x

@r
+ _�

@x

@�

If we wish to calculate its acceleration then we must compute the derivatives of the
coordinate �elds. This involves the chain rule as well as the formulas just developed

�c = �r
@x

@r
+ ��

@x

@�
+ _r

d

dt

@x

@r
+ _�

d

dt

@x

@�

= �r
@x

@r
+ ��

@x

@�
+ _r

�
dr

dt

@

@r
+
d�

dt

@

@�

�
@x

@r
+ _�

�
dr

dt

@

@r
+
d�

dt

@

@�

�
@x

@�

= �r
@x

@r
+ ��

@x

@�
+ _r2

@2x

@r2
+ 2 _r _�

@2x

@r@�
+ _�

2 @2x

@�2

= �r
@x

@r
+ ��

@x

@�
+ 2 _r _�

1

r

@x

@�
� _�2r @x

@r

=
�
�r � r _�2

� @x
@r
+

 
�� +

2 _r _�

r

!
@x

@�
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Note that r _�
2
corresponds to the centrifugal force that you feel when forced to move in

a circle. The term �� + 2 _r _�
r is related to Kepler's second law under a central force �eld.

In this context that simply means that

�� +
2 _r _�

r
= 0

if the force and hence acceleration is radial. This in turn implies that r2 _� is constant as
Kepler's law states.
The general goal will be to develop a similar set of ideas for surfaces and in addition

to �nd other ways of calculating [�w] that depend on the geometry of the tangent �elds.
Before generalizing we make another rather startling observation. Taking one more

derivative we obtain

@2

@w2@w1

�
@x
@u

@x
@v

�
=

@

@w2

��
@x
@u

@x
@v

�
[�w1 ]

�
=

�
@

@w2

�
@x
@u

@x
@v

��
[�w1 ] +

�
@x
@u

@x
@v

� �@�w1
@w2

�
=

�
@x
@u

@x
@v

�
[�w2 ] [�w1 ] +

�
@x
@u

@x
@v

� �@�w1
@w2

�
=

�
@x
@u

@x
@v

��
[�w2 ] [�w1 ] +

�
@�w1
@w2

��
Switching the order of the derivatives should not change the outcome,

@2

@w1@w2

�
@x
@u

@x
@v

�
=
�
@x
@u

@x
@v

��
[�w1 ] [�w2 ] +

�
@�w2
@w1

��
but it does look different when we use w1 = u and w2 = v: Therefore we can conclude
that

[�v] [�u] +

�
@�u
@v

�
= [�u] [�v] +

�
@�v
@u

�
or �

@�v
@u

�
�
�
@�u
@v

�
+ [�u] [�v]� [�v] [�u] = 0:

For polar coordinates this can be veri�ed directly:�
@�r
@�

�
�
�
@��
@r

�
= 0�

�
0 �1
� 1
r2 0

�
=

�
0 1
1
r2 0

�
[�r] [��]� [��] [�r] =

�
0 0
0 1

r

� �
0 �r
1
r 0

�
�
�
0 �r
1
r 0

� �
0 0
0 1

r

�
=

�
0 1
1
r2 0

�
This means that the two matrices of functions [�u] ; [�v] have some nontrivial rela-

tions between them that are not evident from the de�nition.
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For a surface x (u; v) in R3 we add to the tangent vectors the normal

n (u; v) =
@x
@u �

@x
@v��@x

@u �
@x
@v

��
in order to get a basis. While n does depend on the parametrizations we note that as
it is normal to a plane in R3 there are in fact only two choices �n; just as with planar
curves.
This means we shall consider frames

�
@x
@u

@x
@v n

�
and derivatives of such

frames

@

@w

�
@x
@u

@x
@v n

�
=
h

@2x
@w@u

@2x
@w@v

@n
@w

i
=
�
@x
@u

@x
@v n

�
[Dw]

where w can be either u or v:
The entries ofDw are divided up into parts. The �rst depends only on tangential in-

formation, the �rst two rows and columns, and corresponds to the [�w] that we de�ned
in the plane using general coordinates. The second depends on normal information, the
third row and column. Since n is a unit vector the 33 entry actually vanishes:

0 =
@ jnj2

@w
= 2n � @n

@w

showing that @n@w lies in the tangent space and hence does not have a normal component.
As before we have

@2

@w1@w2

�
@x
@u

@x
@v n

�
=

@2

@w2@w1

�
@x
@u

@x
@v n

�
In particular,

[Du] [Dv] +

�
@Dv
@u

�
= [Dv] [Du] +

�
@Du
@v

�
or �

@Dv
@u

�
�
�
@Du
@v

�
+ [Du] [Dv]� [Dv] [Du] = 0

As we shall see, other interesting features emerge when we try to restrict attention to
the tangential and normal parts of these matrices.
Elie Cartan developed an approach that uses orthonormal bases, but he clearly had

to give up on the idea of using coordinate vector �elds. Thus he chose an orthonormal
frame E1; E2; E3 along part of the surface with the property that E3 = n is normal to
the surface, and consequently E1; E2 form an orthonormal basis for the tangent space.
The goal is again to take derivatives. For that purpose we can still use parameters

@

@w

�
E1 E2 E3

�
=
�
@E1
@w

@E2
@w

@E3
@w

�
=
�
E1 E2 E3

�
[Dw]

The �rst observation is that [Dw] is skew-symmetric since we used an orthonormal
basis: �

E1 E2 E3
�t �

E1 E2 E3
�
=

24 1 0 0
0 1 0
0 0 1

35
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so

0 =
@

@w

��
E1 E2 E3

�t �
E1 E2 E3

��
=

�
@

@w

�
E1 E2 E3

��t �
E1 E2 E3

�
+
�
E1 E2 E3

�t @
@w

�
E1 E2 E3

�
=

��
E1 E2 E3

�
[Dw]

�t �
E1 E2 E3

�
+
�
E1 E2 E3

�t �
E1 E2 E3

�
[Dw]

= [Dw]
t
+ [Dw]

In particular, there will only be 3 entries to sort out. This is a signi�cant reduction
from what we had to deal with above. What is more, the entries can easily be found by
computing the dot products

Ei �
@Ej
@w

This is also in sharp contrast to what happens in the above situation as we shall see.
Taking one more derivative will again yield a formula�

@Dw2
@w1

�
�
�
@Dw1
@w2

�
= [Dw2 ] [Dw1 ]� [Dw1 ] [Dw2 ]

where both sides are skew symmetric.
Given the simplicity of using orthonormal frames it is perhaps puzzling why one

would bother developing the more cumbersome approach that uses coordinate �elds.
The answer lies, as with curves, in the unfortunate fact that it is often easier to �nd
coordinate �elds than orthonormal bases that are easy to work with. Monge patches are
prime examples. For speci�c examples and many theoretical developments, however,
Cartan's approach has some advantages.

9 The First Fundamental Form

Let x (u; v) : U ! R3 be a parametrized surface. At each point of this surface we get
a basis

@x

@u
(u; v) ;

@x

@v
(u; v) ;

n (u; v) =
@x
@u �

@x
@v��@x

@u �
@x
@v

��
These vectors are again parametrized by u; v: The �rst two vectors are tangent to the
surface and give us an unnormalized version of the tangent vector for a curve, while the
third is the normal and is naturally normalized just as the normal vector is for a curve.
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One of the issues that make surface theory more dif�cult than curve theory is that there
is no canonical parametrization along the lines of the arclength parametrization for
curves.
The �rst fundamental form is the symmetric positive de�nite form that comes from

the matrix

[I] =
�
@x
@u

@x
@v

�t � @x
@u

@x
@v

�
=

�
@x
@u �

@x
@u

@x
@u �

@x
@v

@x
@v �

@x
@u

@x
@v �

@x
@v

�
=

�
guu guv
gvu gvv

�
For a curve the analogous term would simply be the square of the speed�

d

dt

�t
d

dt
=
d

dt
� d
dt
:

This form dictates how one computes dot products of vectors tangent to the surface
assuming they are expanded according to the basis @x@u ;

@x
@v

X = Xu @x

@u
+Xv @x

@v
=
�
@x
@u

@x
@v

� � Xu

Xv

�
Y = Y u

@x

@u
+ Y v

@x

@v
=
�
@x
@u

@x
@v

� � Y u
Y v

�

I (X;Y ) =
�
Xu Xv

� � guu guv
gvu gvv

� �
Y u

Y v

�
=

�
Xu Xv

� �
@x
@u

@x
@v

�t � @x
@u

@x
@v

� � Y u
Y v

�
=

��
@x
@u

@x
@v

� � Xu

Xv

��t��
@x
@u

@x
@v

� � Y u
Y v

��
= XtY

= X � Y
In particular, we see that while the metric coef�cients gw1w2 depend on our parame-
trization. The dot product I (X;Y ) of two tangent vectors remains the same if we
change parameters. Note that I stands for the bilinear form I (X;Y ) which does not
depend on parametrizations, while [I] is the matrix representation for a �xed parame-
trization.
Our �rst surprising observation is that the normalization factor

��@x
@u �

@x
@v

�� can be
computed from [I] :

Lemma 6 ����@x@u � @x@v
����2 = det [I] = guugvv � (guv)2

13



Proof. The proof is a bit more general. Fix two vectors m;n 2 R3: The quantity
jm� nj represents the area of the parallelogram with sidesm and n: This area can also
be calculated by the height�base formula. Ifm is the base then we have to �nd h jmj :
The height can be calculated by the Pythagorean theorem if we know the projection
ontom: The projection of n ontom is

(n �m)m
jmj2

So we have

h2 +

����� (n �m)mjmj2

�����
2

= jnj2

Isolating h2 and multiplying my jmj2 yields

jm� nj2 = h2 jmj2

= jmj2
0@jnj2 � ����� (n �m)mjmj2

�����
2
1A

= jmj2 jnj2 � jmj2 j(n �m)j
2 jmj2

jmj4

= (m �m) (n � n)� (m � n)2

This is what we wanted to prove.
The inverse

[I]
�1
=

�
guu guv
gvu gvv

��1
=

�
guu guv

gvu gvv

�
can be used to �nd the expansion of a tangent vector by computing its dots products
with the basis:

Proposition 7 If X 2 TpM; then

X =

�
guu

�
X � @x

@u

�
+ guv

�
X � @x

@v

��
@x

@u
+

�
gvu

�
X � @x

@u

�
+ gvv

�
X � @x

@v

��
@x

@v

=
�
@x
@u

@x
@v

�
[I]
�1 � @x

@u
@x
@v

�t
X

and more generally for any Z 2 R3

Z =

�
guu

�
Z � @x

@u

�
+ guv

�
Z � @x

@v

��
@x

@u
+

�
gvu

�
Z � @x

@u

�
+ gvv

�
Z � @x

@v

��
@x

@v
+ (Z � n)n

=
�
@x
@u

@x
@v

�
[I]
�1 � @x

@u
@x
@v

�t
Z + (Z � n)n

Proof. We already suspect that this formula works for X 2 TpM as we worked with
it in R2: Clearly a similar formula holds in R3 as well. Note that the operation�

@x
@u

@x
@v

�
[I]
�1 � @x

@u
@x
@v

�t
14



can be applied to any vector in R3: It simply projects the vector to a vector in the
tangent space. For a general vector Z 2 R3 we therefore have to split it up in the
tangential component and normal component

Z = X + (Z � n)n;
X = Z � (Z � n)n

and then apply our result to X:
De�ning the gradient of a function is another important use of the �rst fundamental

form as well as its inverse. Let f (u; v) be viewed as a function on the surface x (u; v) :
Our de�nition of the gradient should de�nitly be so that it conforms with the chain rule
for a curve c (t) = x (u (t) ; v (t)) : Thus on one hand we want

d (f � c)
dt

= rf � _c

=
�
(rf)u (rf)v

�
[I]

�
du
dt
dv
dt

�
while the chain rule also dictates

d (f � c)
dt

=
�
@f
@u

@f
@v

� � du
dt
dv
dt

�
Thus �

(rf)u (rf)v
�
=
�
@f
@u

@f
@v

�
[I]
�1

or

rf =
�
@x
@u

@x
@v

� � (rf)u
(rf)v

�
=

�
@x
@u

@x
@v

� ��
@f
@u

@f
@v

�
[I]
�1
�t

=
�
@x
@u

@x
@v

�
[I]
�1 � @f

@u
@f
@v

�t
=

�
guu

@f

@u
+ guv

@f

@v

�
@x

@u
+

�
gvu

@f

@u
+ gvv

@f

@v

�
@x

@v

In particular, we see that changing coordinates changes the gradiant in such a way that
it isn't simply the vector corresponding to the partial derivatives! The other nice feature
is that we now have a concept of the gradient that gives a vector �eld independently of
parametrizations. The de�ning equation

d (f � c)
dt

= rf � _c = I (rf; _c)

gives an implicit de�nition of rf that makes sense without reference to parametriza-
tions of the surface.
Exercise: If we have a parametrization where

[I] =

�
1 0
0 gvv

�
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then the coordinate function f (u; v) = u has

ru = @x

@u
:

Exercise: Show that it is always possible to �nd an orthogonal parametrization,
i.e., guv vanishes.
Exercise: Show that if

@guu
@v

=
@gvv
@u

= guv = 0

then we can reparametrize u and v separately, i.e., u = u (s) and v = v (t) ; in such a
way that we have Cartesian coordinates:

gss = gtt = 1;

gst = 0

Exercise: Show that if
@2x

@u@v
= 0

then
x (u; v) = F (u) +G (v)

and conclude that we we are in the situation of the previous exercise.

10 The Gauss Formulas

With all of this in mind we are now going to compute the partial derivatives of our basis
in both the u and v directions. Since these derivatives might not be tangential we get a
formula that looks like

@2x

@w1@w2
=
�
@x
@u

@x
@v

�
[I]
�1 � @x

@u
@x
@v

�t @2x

@w1@w2
+

�
@2x

@w1@w2
� n
�
n

The goal here and in the next section is to show that the tangential part of this formula

�w1w2 =
�
@x
@u

@x
@v

�
[I]
�1 � @x

@u
@x
@v

�t @2x

@w1@w2

can be computed directly form the �rst fundamental form and without knowledge of
the second derivatives @2x

@w1@w2
: Note that this is similar to what we did for a reparame-

trization of the plane.
To accomplish this we need some more notation:

�w1w2w =
@2x

@w1@w2
� @x
@w

Lw1w2 =
@2x

@w1@w2
� n

16



The �rst line de�nes the Christoffel symbols of the �rst kind. The second line the
second fundamental form

IIn (X;Y ) =
�
Xu Xv

�
[IIn]

�
Y u

Y v

�
=

�
Xu Xv

� � Luu Luv
Lvu Lvv

� �
Y u

Y v

�
The superscript n refers to the choice of normal and is usually supressed since there
are only two choices for the normal �n: This also tells us that nIIn is independent of
the normal.
To further simplify expressions we also need to do the appropriate multiplication

with gw4w5 to �nd the coef�cients also called the Christoffel symbols of the second
kind:

�ww1w2 = gwu�w1w2u + g
wv�w1w2v;�

�uw1w2
�vw1w2

�
=

�
guu guv

gvu gvv

� �
�w1w2u
�w1w2v

�
= [I]

�1 � @x
@u

@x
@v

�t @2x

@w1@w2

This now gives us the tangential component as

�w1w2 =
�
@x
@u

@x
@v

�
[I]
�1 � @x

@u
@x
@v

�t @2x

@w1@w2

= �uw1w2
@x

@u
+ �vw1w2

@x

@v

The second derivatives of x (u; v) can now be expressed as follows in terms of the
Christoffel symbols of the second kind and the second fundamental form. These are
often called the Gauss formulas:

@2x

@u2
= �uuu

@x

@u
+ �vuu

@x

@v
+ Luun

@2x

@u@v
= �uuv

@x

@u
+ �vuv

@x

@v
+ Luvn =

@2x

@v@u
@2x

@v2
= �uvv

@x

@u
+ �vvv

@x

@v
+ Lvvn

or
@2x

@w1@w2
= �uw1w2

@x

@u
+ �vw1w2

@x

@v
+ Lw1w2n

or
@

@w

�
@x
@u

@x
@v

�
=
�
@x
@u

@x
@v n

� 24 �uwu �uwv
�vwu �vwv
Lwu Lwv

35
This means that we have introduced notation for the �rst two columns in [Dw] : We
shall wait a bit to deal with the last column.
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As we shall see, and indeed already saw when considering polar coordinates in
the plane, these formulas are important for de�ning accelerations of curves. They
are however also important for giving a proper de�nition of the Hessian or second
derivative matrix of a function on a surface. This will be explored in an exercise later.

11 Calculating Christoffel Symbols

Next we seek formulas for the Christoffel symbols that involve only the �rst funda-
mental form. This shows that they can be computed knowing only the �rst derivatives
of x (u; v) despite the fact that they are de�ned using the second derivatives!

Proposition 8

�uuu =
1

2

@guu
@u

�uvu =
1

2

@guu
@v

= �vuu

�vvv =
1

2

@gvv
@v

�uvv =
1

2

@gvv
@u

= �vuv

�uuv =
@guv
@u

� 1
2

@guu
@v

�vvu =
@guv
@v

� 1
2

@gvv
@u

Proof. We select to prove only two of these as the proofs are all similar. We use
the product rule just as we did when computing derivatives of dot products for the
Frenet-Serret formulas. Note that we use the �rst calculation to �nish off the second
calculation.

�uvu =
@2x

@u@v
� @x
@u

=

�
@

@v

�
@x

@u

��
� @x
@u

=
1

2

@

@v

�
@x

@u
� @x
@u

�
=
1

2

@guu
@v

�uuv =
@2x

@u@u
� @x
@v

=

�
@

@u

�
@x

@u

��
� @x
@v

=
@

@u

�
@x

@u
� @x
@v

�
�
�
@x

@u
� @
@u

@x

@v

�
=

@guv
@u

� @x
@u

� @
2x

@u@v

=
@guv
@u

� 1
2

@guu
@v
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There is a uni�ed formula for all of these equations. While it uni�es it also compli-
cates and is less useful for actual calculations:

�w1w2w =
1

2

�
@gw2w
@w1

+
@gw1w
@w2

� @gw1w2
@w

�

The product rule for derivatives also tells us that

@gw1w2
@w

= �ww2w1 + �ww1w2

Note that this formula is now also a direct consequence of our new formulas for the
Christoffel symbols in terms of the derivatives of the metric coef�ents.

The proposition can also be used to �nd the Christoffel symbols of the second kind.
For example

�uuv = guu�uvu + g
uv�uvv

=
1

2

�
guu

@guu
@v

+ guv
@gvv
@u

�

While this can't be made simpler as such, it is possible to be a bit more ef�cient when
calculations are done. Speci�cally we often do calculations in orthogonal coordinates,
i.e., guv � 0: In such coordinates

guv = 0

guu = (guu)
�1

gvv = (gvv)
�1

�uuu =
1

2

@guu
@u

�uvu =
1

2

@guu
@v

= �vuu

�vvv =
1

2

@gvv
@v

�uvv =
1

2

@gvv
@u

= �vuv

�uuv = �1
2

@guu
@v

�vvu = �1
2

@gvv
@u
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and

�uuu =
1

2
guu

@guu
@u

=
1

2

@ ln guu
@u

�vuu = �1
2
gvv

@guu
@v

�vvv =
1

2
gvv

@gvv
@v

=
1

2

@ ln gvv
@v

�uvv = �1
2
guu

@gvv
@u

�uuv =
1

2
guu

@guu
@v

=
1

2

@ ln guu
@v

�vuv =
1

2
gvv

@gvv
@u

=
1

2

@ ln gvv
@u

We often have more speci�c information. This could be that the metric coef�cients
only depend on one of the parameters, or that guu = 1: In such circumstances it is quite
managable to calculate the Christoffel symbols. What is more, it is always possible to
�nd parametrizations where guu � 1 and guv � 0 as we shall see.

12 Generalized and Abstract Surfaces

It is possible to work with generalized surfaces into Euclidean spaces of arbitrary di-
mension: x (u; v) : U ! Rk for any k � 2:What changes is that we no longer have a
normal vector n: In fact for k = 2 we could just let n be (0; 0; 1) after letting R2 be the
(x; y) coordinates in space. While for k � 4 we get a whole family of normal vectors,
not unlike what happened for space curves. What all of these surfaces do have in com-
mon is that we can de�ne the �rst fundamental form and with it also the Christoffel
symbols of the �rst and second kind using the formulas in terms of derivatives of g.
This leads us to the possibility of an abstract de�nition of a surface that is independent
of a particular map into some coordinate space Rk:
One of the simplest examples of a generalized surface is the �at torus in R4: It is

parametriezed by
x (u; v) = (cosu; sinu; cos v; sin v)

and its �rst fundamental form is

I =

�
1 0
0 1

�
just as we have for Cartesian coordinates in the plane. This is why it is called the �at
torus. It is in fact not possible to have a �at torus in R3:
An abstract parametrized surface consists of a domain U � R2 and a �rst funda-

mental form
I =

�
guu guv
guv gvv

�
that de�nes inner products of vectors X;Y with the same base point p 2 U

I (X;Y ) =
�
Xu Xv

� � guu guv
gvu gvv

� �
Y u

Y v

�
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where
X = (Xu; Xv) ; Y = (Y u; Y v)

are the representations of the vectors using the standard (u; v) coordinates on U: Note
the �rst fundamental form consists of three functions and so gives an inner products
that varies from point to point. For this to give us an inner product we also have to
make sure that it is positive de�nite:

0 < I (X;X)

=
�
Xu Xv

� � guu guv
guv gvv

� �
Xu

Xv

�
= XuXuguu + 2X

uXvguv +X
vXvgvv

Proposition 9 I is positive de�nite if and only if guu + gvv; and guugvv � (guv)2 are
positive.

Proof. If I is positive de�nite, then we see that guu and gvv are positive by letting
X = (1; 0) and (0; 1) resp. Next let X =

�p
gvv;�

p
guu
�
to get

0 < I (X;X) = 2guugvv � 2
p
guu
p
gvvguv

Thus we have
�guv <

p
guu
p
gvv

showing that
guugvv > (guv)

2
:

To check that I is positive de�nite we have to use that it is symmetric. The charac-
teristic polynomial is

�2 � (guu + gvv)�+ guugvv � (guv)2

The minimum of this upward pointing parabola is obtained at

� =
1

2
(guu + gvv)

and has the value

guugvv � (guv)2 �
1

4
(guu + gvv)

2
= �1

4
(guu � gvv)2 � (guv)2 < 0

Thus there are two real roots. The spectral theorem for symmetric matrices could also
have been invoked at this point to establish that the eigenvalues are both real. It is now
easy to see that [I] is positive de�nite if its eigenvalues are positive. Two real numbers
have to be positive if their sum and product are both positive. In this case the sum of the
eigenvalues is the trace guu+gvv while the product is the determinant guugvv� (guv)2
so our assumptions guarantee that the eigenvalues are positive.
There is an interesting example of an abstract surface on the upper half plane de-

�ned by H = f(u; v) : v > 0g ; where the metric coef�cients are

[I] =

�
guu guv
gvu gvv

�
=
1

v2

�
1 0
0 1

�
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One can show that for each point p 2 H; there is a small neighborhood U containing p
and x (u; v) : U ! R3 such that

�
@x
@u

@x
@v

�t � @x
@u

@x
@v

�
=

�
@x
@u �

@x
@u

@x
@u �

@x
@v

@x
@v �

@x
@u

@x
@v �

@x
@v

�
=
1

v2

�
1 0
0 1

�
In other words we can locally represent the abstract surface as a surface in space. How-
ever, a very dif�cult theorem of Hilbert shows that one cannot represent the entire sur-
face in space, i.e., there is no function x (u; v) : H ! R3 de�ned on the entire domain
such that�

@x
@u

@x
@v

�t � @x
@u

@x
@v

�
=

�
@x
@u �

@x
@u

@x
@u �

@x
@v

@x
@v �

@x
@u

@x
@v �

@x
@v

�
=
1

v2

�
1 0
0 1

�
Janet-Burstin-Cartan showed that if the metric coef�cients of an abstract surface are

analytic, then one can always locally represent the abstract surface in R3: Nash showed
that any abstract surface can be represented by a map x (u; v) : U ! Rk on the entire
domain, but only at the expense of making k very large. Based in part on Nash's work
Greene and Gromov independently showed that one can always locally represent an
abstract surface in R5:

13 Acceleration and Geodesics

We'll now consider curves on a parametrized surface x (u; v) : U ! R3: The curve is
parametrized in U as (u (t) ; v (t)) and becomes a space curve c (t) = x (u (t) ; v (t))
that lies on our parametrized surface.
The velocity is

_c =
dc

dt
=
dx

dt
=
@x

@u

du

dt
+
@x

@v

dv

dt
=
�
@x
@u

@x
@v

� � du
dt
dv
dt

�
Next we calculate the acceleration as if it were a space curve, but using the velocity
representation we just gave. Recall that we can decompose any vector into normal and
tangential components. For the acceleration this is

�c =
�
@x
@u

@x
@v

�
[I]
�
@x
@u

@x
@v

�t
�c+ (�c � n)n

The goal is to calculate each of these components in terms of dudt ;
dv
dt and

d2u
dt2 ;

d2v
dt2 : This

will lead us to another surprising result.

Theorem 10 The acceleration can be calculated as

�c =
�
@x
@u

@x
@v n

� 24 d2u
dt2 + �

u ( _c; _c)
d2v
dt2 + �

v ( _c; _c)
II ( _c; _c)

35
=

�
d2u

dt2
+ �u ( _c; _c)

�
@x

@u
+

�
d2v

dt2
+ �v ( _c; _c)

�
@x

@v
+ nII ( _c; _c) ;

22



where

�w ( _c; _c) =
X

w1;w2=u;v

�ww1w2
dw1
dt

dw2
dt

=
�
du
dt

dv
dt

� � �wuu �wuv
�wvu �wvv

� �
du
dt
dv
dt

�

Proof. We start from the formula for the velocity and take derivatives. This clearly
requires us to be able to calculate derivatives of the tangent �elds @x@u ;

@x
@v : Fortunately

the Gauss formulas tell us how that is done. This leads us to the acceleration as follows

�c =
d

dt

��
@x
@u

@x
@v

� � du
dt
dv
dt

��
=

�
@x
@u

@x
@v

� " d2u
dt2
d2v
dt2

#
+

�
d

dt

�
@x
@u

@x
@v

�� � du
dt
dv
dt

�

which after the chain rule

d

dt
=
du

dt

@

@u
+
dv

dt

@

@v

becomes

�c =
�
@x
@u

@x
@v

� " d2u
dt2
d2v
dt2

#

+
du

dt

�
@

@u

�
@x
@u

@x
@v

�� � du
dt
dv
dt

�
+
dv

dt

�
@

@v

�
@x
@u

@x
@v

�� � du
dt
dv
dt

�

The Gauss formulas help us with the last two terms

�
@

@w

�
@x
@u

@x
@v

�� � du
dt
dv
dt

�
=

�
@x
@u

@x
@v n

� 24 �uwu �uwv
�vwu �vwv
Lwu Lwv

35� du
dt
dv
dt

�

=
@x

@u

�
�uwu �uwv

� � du
dt
dv
dt

�
+
@x

@v

�
�vwu �vwv

� � du
dt
dv
dt

�
+n
�
Lwu Lwv

� � du
dt
dv
dt

�
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which after further rearranging allows us to conclude

�c =
�
@x
@u

@x
@v

� " d2u
dt2
d2v
dt2

#

+
@x

@u

�
du
dt

dv
dt

� � �uuu �uuv
�uvu �uvv

� �
du
dt
dv
dt

�
+
@x

@v

�
du
dt

dv
dt

� � �vuu �vvu
�vvu �vvv

� �
du
dt
dv
dt

�
+n
�
du
dt

dv
dt

� � Luu Luv
Lvu Lvv

� �
du
dt
dv
dt

�

=
�
@x
@u

@x
@v n

� 24 d2u
dt2 + �

u ( _c; _c)
d2v
dt2 + �

v ( _c; _c)
II ( _c; _c)

35
Alternately the whole calculation could have been done using summations

�c =
d2c

dt2

=
@x

@u

d2u

dt2
+
@x

@v

d2v

dt2

+

�
@2x

@u2
du

dt
+
@2x

@u@v

dv

dt

�
du

dt
+

�
@2x

@u@v

du

dt
+
@2x

@v2
dv

dt

�
dv

dt

=
@x

@u

d2u

dt2
+
@x

@v

d2v

dt2
+

X
w1;w2=u;v

@2x

@w1@w2

dw1
dt

dw2
dt

=
@x

@u

 
d2u

dt2
+

X
w1;w2=u;v

�uw1w2
dw1
dt

dw2
dt

!

+
@x

@v

 
d2v

dt2
+

X
w1;w2=u;v

�vw1w2
dw1
dt

dw2
dt

!

+n

 X
w1;w2=u;v

Lw1w2
dw1
dt

dw2
dt

!

=
@x

@u

�
d2u

dt2
+ �u ( _c; _c)

�
+
@x

@v

�
d2v

dt2
+ �v ( _c; _c)

�
+ nII ( _c; _c)

Note that we have shown

Theorem 11 (Meusnier) The normal component of the acceleration satis�es

(�c � n)n = �cII = nII ( _c; _c)
In particular two curves with the same velocity at a point have the same normal accel-
eration components.
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The tangential component is more complicated

�
@x
@u

@x
@v

�
[I]
�
@x
@u

@x
@v

�t
�c = �cI =

@x

@u

�
d2u

dt2
+ �u ( _c; _c)

�
+
@x

@v

�
d2v

dt2
+ �v ( _c; _c)

�
But it seems to be a more genuine acceleration as it inlcudes second derivatives. It
actually tells us what acceleration we feel on the surface. Note that the tangential
acceleration only depends on the �rst fundamental form.
We say that c is a geodesic on the surface if the tangential part of the acceleration

vanishes �cI = 0; or speci�cally

d2u

dt2
+ �u ( _c; _c) = 0;

d2v

dt2
+ �v ( _c; _c) = 0:

This is equivalent to saying that �c is normal to the surface or that �c = nII ( _c; _c) :

Proposition 12 A geodesic has constant speed.

Proof. Let c (t) be a geodesic. We compute the derivative of the square of the speed:

d

dt
I ( _c; _c) =

d

dt
( _c � _c) = 2�c � _c = 2II ( _c; _c)n � _c = 0

since n and _c are perpendicular. Thus c has constant speed.
Note that we used the second fundamental form to give a simple proof of this result.

It is desirable and indeed possible to give a proof that only refers to the �rst fundamental
form. The key lies in showing that we have a product rule for I ( _c; _c) that works just
inside the surface. Since

I
�
�cI; _c

�
= �c � _c

this is fairly obvious. The goal would be to do the calculation using only the �rst
fundamental form and that takes quite a bit more work.
Next we address existence of geodesics.

Theorem 13 Given a point p = x (u0; v0) and a tangent vector V = V u @x@u (u0; v0)+
V v @x@v (u0; v0) 2 TpM there is a unique geodesic c (t) = x (u (t) ; v (t)) de�ned on
some small interval t 2 (�"; ") with the inital values

c (0) = p;

_c (0) = V:

Proof. The existence and uniqueness part is a very general statement about solutions
to differential equations. In this case we note that in the (u; v) parameters we must
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solve a system of second order equations

d2u

dt2
= �

�
du
dt

dv
dt

� � �uuu �uuv
�uvu �uvv

� �
du
dt
dv
dt

�
d2v

dt2
= �

�
du
dt

dv
dt

� � �vuu �vuv
�vvu �vvv

� �
du
dt
dv
dt

�
with the initial values

(u (0) ; v (0)) = (u0; v0) ;

( _u (0) ; _v (0)) = (V u; V v) :

As long as � is suf�ciently smooth there is a unique solution to such a system of
equations given the initial values. The domain (�"; ") on which such a solution exists
is quite hard to determine. It'll depend on the domain of parameters U , the initial
values, and �nally on �:
This theorem allows us to �nd all geodesics on spheres and in the plane without

calculation.
In the plane straight lines c (t) = p + vt are clearly geodesics. And since these

solve all possible intial problems there are no other geodesics.
On S2 we claim that the great circles

c (t) = p cos (jvj t) + v

jvj sin (jvj t)

p 2 S2;

p � v = 0

are geodesics. Note that this is a curve on S2; and that c (0) = p, _c (0) = v: Next we
see that the acceleration

�c (t) = �p jvj2 cos (jvj t)� v jvj sin (jvj t) = � jvj2 c (t)

computed in R3 is normal to the sphere. Thus �cI = 0: This means that we have also
solved all initial value problems on the sphere.
Exercise: Let c (s) be a unit speed curve on a surface with normal n: Show that it

is a geodesic if and only if
[c0; c00; n] = 0

Exercise: Let c (s) be a unit speed curve on a surface with normal n: De�ne T as
the usual tangent to the curve and

S = n� T

as the normal to the curve in the surface. Show that

d

ds

�
T S n

�
=
�
T S n

� 24 0 ��g ��n
�g 0 ��g
�n �g 0
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for functions �g; �n; �g: They are called geodesic curvature, normal curvature, and
geodesic torsion respectively. Further show that S and �cI are proportional and that

�g = I
�
S; �cI

�
= S � dT

ds
;

�n = II ( _c; _c) = n � dT
ds
;

�g = II (S; _c) = n � dS
ds
:

Exercise: Show that the geodesic curvature can be computed as

�g =
@
@u

�
T � @x@v

�
� @

@v

�
T � @x@u

�p
det [I]

Exercise: De�ne the Hessian of a function on a surface abstractly by

Hessf (X;Y ) = I (DXrf; Y )

Show that the entries in the matrix [Hessf ] de�ned by

Hessf (X;Y ) =
�
Xu Xv

�
[Hessf ]

�
Y u

Y v

�
are given as

@2f

@w1@w2
+
�
@f
@u

@f
@v

� � �uw1w2
�vw1w2

�
Further relate these entries to the dot products

@rf
@w1

� @x
@w2

14 Unparametrized Geodesics

It is often simpler to �nd the unparametrized form of the geodesics, i.e., in a given
parametrization they are easier to �nd as functions u (v) or v (u) : We start with a
tricky characterization showing that one can characterize geodesics without referring
to the arclength parameter. The idea is that a regular curve can be reparametrized to be
a geodesic if and only if its tangential acceleration �cI is tangent to the curve.

Lemma 14 A regular curve c (t) = x (u (t) ; v (t)) can be reparametrized as a geo-
desic if and only if

dv

dt

�
d2u

dt2
+ �u ( _c; _c)

�
=
du

dt

�
d2v

dt2
+ �v ( _c; _c)

�
:
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Proof. Let s correspond to a reparametrization of the curve. When switching from t
to s we note that the left hand side becomes

dv

dt

�
d2u

dt2
+ �u ( _c; _c)

�
=

dv

dt

�
d2u

dt2
+ �u

�
dc

dt
;
dc

dt

��
=

ds

dt

dv

ds

 
d2s

dt2
du

ds
+

�
ds

dt

�2
d2u

ds2
+ �u

�
ds

dt

dc

ds
;
ds

dt

dc

ds

�!

=
ds

dt

dv

ds

 
d2s

dt2
du

ds
+

�
ds

dt

�2
d2u

ds2
+

�
ds

dt

�2
�u
�
dc

ds
;
dc

ds

�!

=
ds

dt

d2s

dt2
dv

ds

du

ds
+

�
ds

dt

�3
dv

ds

�
d2u

ds2
+ �u

�
dc

ds
;
dc

ds

��
with a similar formula for the right hand side. Here the �rst term

ds

dt

d2s

dt2
dv

ds

du

ds

is the same on both sides, so we have shown that the equation is actually independent
of parametrizations. In other words if it holds for one parametrization it holds for all
reparametrizations.
If c is a geodesic then the formula clearly holds for the arclength parameter.
Conversely if the equation holds for some parameter then it also holds for the ar-

clength parameter. Being parametrized by arclength gives us the equation

I
�
_c; �cI
�
=
�
du
dt

dv
dt

� � guu guv
gvu gvv

�"
d2u
dt2 + �

u ( _c; _c)
d2v
dt2 + �

v ( _c; _c)

#
= 0

Thus we have two equations

dv

dt

�
d2u

dt2
+ �u ( _c; _c)

�
� du
dt

�
d2v

dt2
+ �v ( _c; _c)

�
= 0;�

guu
du

dt
+ gvu

dv

dt

��
d2u

dt2
+ �u ( _c; _c)

�
+

�
guv

du

dt
+ gvv

dv

dt

��
d2v

dt2
+ �v ( _c; _c)

�
= 0

Since

det

�
dv
dt �du

dt

guu
du
dt + guv

dv
dt gvu

du
dt + gvv

dv
dt

�
=

dv

dt

�
gvu

du

dt
+ gvv

dv

dt

�
+
du

dt

�
guu

du

dt
+ guv

dv

dt

�
= j _cj2 = 1

the only possible solution is

d2u

dt2
+ �u ( _c; _c) = 0 =

d2v

dt2
+ �v ( _c; _c) ;
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showing that c is a geodesic.
Depending on our parametrization (u; v) geodesics can be pictured in many ways.

We'll study a few cases where geodesics take on some familiar shapes.
Consider the sphere where great circles are described by

ax+ by + cz = 0;

x2 + y2 + z2 = 1

If we use the parametrization 1p
1+s2+t2

(s; t; 1) ; or in other words xz = s;
y
z = t then

these equations simply become straight lines in (s; t) coordinates:

as+ bt+ c = 0

Or we could use
�
u; v;

p
1� u2 � v2

�
and note that the equations become�

a2 + c2
�
u2 + 2abuv +

�
b2 + c2

�
v2 = c2

which are the equations of ellipses whose axes go through the origin and are inscribed
as well as tangent to the unit circle. This is how you draw great circles on the sphere!
The �rst fundamental form is given by

[I] =

"
1 + u2

1�u2�v2
uv

1�u2�v2
uv

1�u2�v2 1 + v2

1�u2�v2

#
Here is an intrinsic metric on the (u; v) plane where we have simply switched signs

from above

[I] =

"
1� u2

1+u2+v2 � uv
1+u2+v2

� uv
1+u2+v2 1� v2

1+u2+v2

#
Using the parameter independent approach to geodesics one can show that they turn
out to be hyperbolas whose axes go through the origin�

a2 � c2
�
u2 + 2abuv +

�
b2 � c2

�
v2 = c2

This metric can also be reparametrized to have its geodesics be straight lines. The later
reparametrization is:

s =
up

1 + u2 + v2

t =
vp

1 + u2 + v2

and the geodesics given by
as+ bt+ c = 0:

We shall later explicitly �nd the geodesics on the upper half plane using the equations
developed here.
Exercise: Show that geodesics satisfy a second order equation of the type

d2v

du2
= A

�
dv

du

�3
+B

�
dv

du

�2
+ C

dv

du
+D

and identify the functions A;B;C;D with the appropriate Christoffel symbols.
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15 Shortest Curves

The goal is to show that the shortest curves are geodesics, and conversely that suf�-
ciently short geodesics are minimal in length. For the latter using geodesic coordinates
makes an argument that is similar to the Euclidean version using a unit gradient �eld.

16 Invariance Issues

We offer a geometric approach to show that the second fundamental form is, like the
�rst fundamental form, de�ned in such a way that selecting a different parametrization
will not affect it.
The key observation is that if we have a surface M and a point p 2 M; then the

tangent space TpM is de�ned independently of our parametrizations. Correspondingly
the normal spaceNpM = (TpM)

? of vectors inR3 perpendicular to the tangent space
are also de�ned independently of parametrizations. Therefore, if we have a vector Z in
Euclidean space then its projection onto both the tangent space and the normal space
are also independently de�ned.
Consider a curve c (t) on the surface. We know that the velocity _c and acceleration

�c can be calculated without reference to parametrizations. This means that the projec-
tions of �c onto the tanget space, �cI; and onto the normal space, nIIn ( _c; _c) ; can also be
computed without reference to parametrizations. This shows that tangential and normal
accelerations are well de�ned.
This also takes care of nIIn (X;Y ) if we use two important observations. The �rst

is called polarization, the idea is that symmetric bilinear forms have the property:

nIIn (X;Y ) =
1

2
(nIIn (X + Y;X + Y )� nIIn (X;X)� nIIn (Y; Y ))

Thus it suf�ces to show that nIIn (Z;Z) is well de�ned. But this follows from knowing
that nIIn ( _c; _c) is invariant and that any tangent vector is the velocity of some curve.

17 The Weingarten Map and Equations

There is a similar set of equations for the entries in the second fundamental form that
also lead us to the partial derivatives of n (u; v) : Together these are also known as the
Weingarten equations. But �rst we need to introduce the Weingarten map. It is related
to the second fundamental form in the same way the Christoffel symbols of the second
kind are related to the symbols of the �rst kind. Its matrix or the entries of its matrix
are

Lw2w1 = gw2uLuw1 + g
w2vLvw1 ;

[L] = [I]
�1
[II] ;�

Luu Luv
Lvu Lvv

�
=

�
guu guv

gvu gvv

� �
Luu Luv
Lvu Lvv

�
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When using matrix language we must be careful in our de�nitions as [I]�1 [II] and
[II] [I]

�1 are generally not the same. The abstract Weingarten map L will be a self-
adjoint map with respect to the �rst fundamental form

I (L (X) ; Y ) = I (X;L (Y ))

but this does not guarantee that its matrix representation [L] is symmetric. This will
only be the case if we are lucky enough to have used an orthonormal basis.

Proposition 15
I (L (X) ; Y ) = II (X;Y )

In particular L is self-adjoint as II is symmetric.

Proof. We have

II (X;Y ) =
�
Xu Xv

�
[II]

�
Y u

Y v

�
;

I (L (X) ; Y ) =
�
Xu Xv

�
[L]

t
[I]

�
Y u

Y v

�
and by de�nition

[L] = [I]
�1
[II]

so
[L]

t
= [II] [I]

�1

as [I] and [II] are symmetric. This shows that I (L (X) ; Y ) = II (X;Y ) :
Next we �nd a new formula for L:

Proposition 16 (Weingarten Equations)

Lw1w2 = � @x

@w2
� @n
@w1

;

[II] = �
�
@n
@u

@n
@v

�t � @x
@u

@x
@v

�
= �

�
@x
@u

@x
@v

�t � @n
@u

@n
@v

�
@n

@u
= �Luu

@x

@u
� Lvu

@x

@v
= �L

�
@x

@u

�
@n

@v
= �Luv

@x

@u
� Lvv

@x

@v
= �L

�
@x

@v

�
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Proof. The strategy is just as with Christoffel symbols, but works out a bit more easily

Lw1w2 =
@2x

@w1@w2
� n

=

�
@

@w1

�
@x

@w2

��
� n

=
@

@w1

�
@x

@w2
� n
�
� @x

@w2
� @n
@w1

= � @x

@w2
� @n
@w1

were we used that n is perpendicular to @x
@w2

:

For the second set of equations we note�
L
�
@x
@u

�
L
�
@x
@v

� �
=

�
@x
@u

@x
@v

�
[L]

=
�
@x
@u

@x
@v

�
[I]
�1
[II]

= �
�
@x
@u

@x
@v

�
[I]
�1 � @x

@u
@x
@v

�t � @n
@u

@n
@v

�
But n is a unit vector �eld so

n � @n
@w

=
1

2

@

@w
jnj2 = 0

showing that @n@w is a tanget vector. In particular�
L
�
@x
@u

�
L
�
@x
@v

� �
= �

�
@n
@u

@n
@v

�
The Weingarten equations can also be combined into one equation

@n

@w
= �Luw

@x

@u
� Lvw

@x

@v
= �L

�
@x

@w

�
:

The Gauss formulas and Weingarten equations together tell us how the derivatives
of our basis @x@u ;

@x
@v ; n relate back to the basis. They can be collected as follows:

Corollary 17 (Gauss and Weingarten Formulas)

@

@w

�
@x
@u

@x
@v n

�
=

�
@x
@u

@x
@v n

�
[Dw]

=
�
@x
@u

@x
@v n

� 24 �uwu �uwv �Luw
�vwu �vwv �Lvw
Lwu Lwv 0
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18 The Gauss Curvature and Map

One of the interesting features of the Weingarten map is that its trace 2H = Luu + L
v
v

and determinantK = LuuL
v
v�LvuLuv yield functions on the surface that are independent

of the chosen parametrization. Clearly the entries themselves do depend on parame-
trizations. This means that if we have two parametrizations around a point p 2M; then
the calculation ofH andK at p will not depend on what parametrization we use! H is
called the mean curvature and K the Gauss curvature. We saw that for a �xed choice
of normal the second fundamental form is de�ned independently of the parameters.
This will clearly also be true of the Weingarten map. The next theorem is therefore
obvious. Nevertheless it is instructive to offer a less inspired proof.

Theorem 18 The mean and Gauss curvatures do not depend on the parametrizations.

Proof. The key to proving this is to �rst realize that we know that the trace and
determinant of a matrix do not depend on the basis that is used to represent the matrix,
second we need to see that the Weingarten map changes according to the change of
basis rules when we change parametrizations. In these calculations we assume that the
normal vector �eld is �xed rather than given as a formula that depnds on the tangent
�elds. There are only two choices for the normal �eld�n; and II as well as L will also
change sign if we change sign for n: Note that this sign change does affect H; but not
K!

The Weingarten map is calculated by�
@n
@u

@n
@v

�
= �

�
@x
@u

@x
@v

� � Luu Luv
Lvu Lvv

�
and similarly in (s; t) coordinates�

@n
@s

@n
@t

�
= �

�
@x
@s

@x
@t

� � Lss Lst
Lts Ltt

�
Changing parametrizations is done using the chain rule which in matrix form looks

like �
@x
@s

@x
@t

�
=

�
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@u
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@v

� � @u
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@v
@t

�
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= �
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@u
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@v

� � @u
@s
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� �
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Lts Ltt

�
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showing that
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= �
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This in turn gives us
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Note that we have in fact shown that the linear map L : TpM ! TpM does not
depend on the parametrizations we use.
We can further �nd a very interesting formula for the Gauss curvature

Proposition 19 (Gauss)

K =

�
@n
@u �

@n
@v

�
� n��@x

@u �
@x
@v

��
Proof. Simply use the Weingarten equations to calculate

@n

@u
� @n
@v

=

�
�Luu

@x

@u
� Lvu

@x

@v

�
�
�
�Luv

@x

@u
� Lvv

@x

@v

�
= LuuL

v
v

@x

@u
� @x
@v

+ LvuL
u
v

@x

@v
� @x
@u

= (LuuL
v
v � LvuLuv )

@x

@u
� @x
@v

= K

����@x@u � @x@v
����n
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Note that the denominator is already computed in terms of the �rst fundamental
form ����@x@u � @x@v

����2 = guugvv � (guv)2
The numerator is actually very similar in nature as it is simply the corresponding ex-
pression for the so called Gauss map n (u; v) : U ! S2 (1) � R2 for the surface,
i.e., computed from the �rst fundamental form of n (u; v). This map is our analog of
the tangent spherical image. Note that for the unit sphere the unit normal at n is �n
depending on parametrizations. Thus

�
@n
@u �

@n
@v

�
� n represents the oriented area or

the parallelogram whose sides are @n
@u ;

@n
@v . Recall from curve theory that the tangent

spherical image was also related to curvature in a similar way. Here the formulas are a
bit more complicated as we use arbitrary parameters.
One classically de�nes the third fundamental form III as the �rst fundamental form

for n

[III] =
�
@n
@u

@n
@v

�t � @n
@u

@n
@v

�
=

�
@n
@u �

@n
@u

@n
@u �

@n
@v

@n
@v �

@n
@u

@n
@v �

@n
@v

�
This certainly makes sense, but n might not be a genuine parametrization if the Gauss
curvature vanishes. Note however that n is not just the normal to the surface, but also
to the unit sphere at n

@n

@u
� @n
@v

=

����@n@u � @n@v
����n

This is part of what we just established.
The three fundamental forms and two curvatures are related by a very interesting

formula which also shows that the third fundamental form is almost redundant.

Theorem 20
III� 2HII +KI = 0

Proof. We �rst reduce this statement to the Cayley-Hamilton theorem for the linear
map L: This relies on showing

I (L (X) ; Y ) = II (X;Y ) ;

I
�
L2 (X) ; Y

�
= III (X;Y )

and then proving that any 2� 2 matrix satis�es:

L2 � (tr (L))L+ det (L) I = 0

where I is the identity matrix. The last step can be done by a straightforward calcula-
tion.
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We already saw that I (L (X) ; Y ) = II (X;Y ) as that followed directly from [II] =
[I] [L]. We similarly have

[III] =
�
L
�
@x
@u

�
L
�
@x
@v

� �t �
L
�
@x
@u

�
L
�
@x
@v

� �
= [L]

t � @x
@u

@x
@v

�t � @x
@u

@x
@v

�
[L]

= [L]
t
[I] [L]

= [II] [L]

= [I] [L] [L]

= [I] [L]
2

showing that I
�
L2 (X) ; Y

�
= III (X;Y ) :

In a related vein we mention Gauss' amazing discovery that the Gauss curvature
can be computed knowing only the �rst fundamental form. Given the de�nition of K
this is certainly a big surprise. A different proof that uses our abstract framework will
be given in a later section. Here we use a more direct approach.

Theorem 21 (Theorema Egregium) The Gauss curvature can be computed know-
ing only the �rst fundamental form.

Proof. We start with the observation that

K = detL = det [I]
�1
det [II] ;

det [I] = guugvv � (guv)2

So we concentrate on

det [II] = det

�
Luu Luv
Lvu Lvv

�
= det

"
@2x
@u2 � n

@2x
@u@v � n

@2x
@v@u � n

@2x
@v2 � n

#

=
1

guugvv � (guv)2
det

"
@2x
@u2 �

�
@x
@u �

@x
@v

�
@2x
@u@v �

�
@x
@u �

@x
@v

�
@2x
@v@u �

�
@x
@u �

@x
@v

�
@2x
@v2 �

�
@x
@u �

@x
@v

� #
Which then reduces us to consider

det

"
@2x
@u2 �

�
@x
@u �

@x
@v

�
@2x
@u@v �

�
@x
@u �

@x
@v

�
@2x
@v@u �

�
@x
@u �

@x
@v

�
@2x
@v2 �

�
@x
@u �

@x
@v

� #
Here each entry in the matrix is a tripel product and hence a determinant of a 3 � 3
matrix

det
h

@2x
@w1@w2

@x
@u

@x
@v

i
=

@2x

@w1@w2
�
�
@x

@u
� @x
@v

�
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With that observation and recalling that a matrix and its transpose have the same deter-
minant we can calculate the products that appear in our 2� 2 determinant�

@2x

@u2
�
�
@x

@u
� @x
@v

���
@2x

@v2
�
�
@x

@u
� @x
@v

��
= det

h
@2x
@u2

@x
@u

@x
@v

i
det
h

@2x
@v2

@x
@u

@x
@v

i
= det

h
@2x
@u2

@x
@u

@x
@v

it
det
h

@2x
@v2

@x
@u

@x
@v

i
= det

�h
@2x
@u2

@x
@u

@x
@v

it h
@2x
@v2

@x
@u

@x
@v

i�

= det

264 @2x
@u2 �

@2x
@v2

@x
@u �

@2x
@v2

@x
@v �

@2x
@v2

@2x
@u2 �

@x
@u

@x
@u �

@x
@u

@x
@v �

@x
@v

@2x
@u2 �

@x
@v

@x
@u �

@x
@v

@x
@v �

@x
@v

375
= det

24 @2x
@u2 �

@2x
@v2 �vvu �vvv

�uuu guu guv
�uuv gvu gvv

35
=

@2x

@u2
� @

2x

@v2
det [I] + det

24 0 �vvu �vvv
�uuu guu guv
�uuv gvu gvv

35
and similarly �

@2x

@u@v
�
�
@x

@u
� @x
@v

���
@2x

@v@u
�
�
@x

@u
� @x
@v

��

= det

264 @2x
@u@v �

@2x
@u@v

@x
@u �

@2x
@u@v

@x
@v �

@2x
@u@v

@2x
@u@v �

@x
@u

@x
@u �

@x
@u

@x
@v �

@x
@v

@2x
@u@v �

@x
@v

@x
@u �

@x
@v

@x
@v �

@x
@v

375
= det

24 @2x
@u@v �

@2x
@u@v �uvu �uvv

�uvu guu guv
�uvv gvu gvv

35
=

@2x

@u@v
� @

2x

@u@v
det [I] + det

24 0 �uvu �uvv
�uvu guu guv
�uvv gvu gvv

35
Since we need to subtract these quantities we are �nally reduced to check the difference

@2x

@u2
� @

2x

@v2
� @2x

@u@v
� @

2x

@u@v

=
@

@v

�
@2x

@u2
� @x
@v

�
� @3x

@v@u2
� @x
@v

� @

@u

�
@2x

@u@v
� @x
@v

�
+

@3x

@2u@v
� @x
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@

@v
�uuv �

@

@u
�uvv

37



Thus

K =

det

"
@2x
@u2 �

�
@x
@u �

@x
@v

�
@2x
@u@v �

�
@x
@u �

@x
@v

�
@2x
@v@u �

�
@x
@u �

@x
@v

�
@2x
@v2 �

�
@x
@u �

@x
@v

� #
(det [I])

2

=

�
@
@v�uuv �

@
@u�uvv

�
det [I]

+

det

24 0 �vvu �vvv
�uuu guu guv
�uuv gvu gvv

35� det
24 0 �uvu �uvv
�uvu guu guv
�uvv gvu gvv

35
(det [I])

2

Exercise: Compute the mean and Gauss curvatures of the generalized cones, cylin-
ders, and tangent developables. It turns out that these are essentially the only surfaces
in space with vanishing Gauss curvature.

19 Principal Curvatures

The principal curvatures at a point p on a surface are the eigenvalues of the Wein-
graten map associated to that point, and the principal directions are the corresponding
eigenvectors. The fact that L is self-adjoint with respect to the �rst fundamental form
guarantees that we can always �nd an orthonormal set of principal directions, and that
the principal curvatures are real. This is a nice and general theorem from linear algebra,
variously called diagonalization of symmetric matrices or the spectral theorem. Since
the Weingraten map is a linear map on a two dimensional vector space we can give a
direct proof.

Theorem 22 For a �xed point p 2 M; we can �nd orthonormal principal directions
E1; E2 2 TpM

L (E1) = �1E1;

L (E2) = �2E2:

Moreover �1; �2 are both real.

Proof. The characteristic polynomial for L looks like

�2 � 2H�+K = 0:

The roots of this polynomial are real if and only if the discriminant is nonnegative:

4H2 � 4K � 0; or
H2 � K:
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If we select an orthonormal basis for TpM (it doesn't have to be related to a parame-
trization), the the matrix representation for L is symmetric

[L] =

�
a b
b d

�
and so

H =
a+ d

2
;

K = ad� b2:

This means we need to show that

ad� b2 �
�
a+ d

2

�2
; or

�b2 � a2 + d2

4

So the principal curvatures really are real. If they are also equal, then all vectors are
eigenvectors and so we can certainly �nd an orthonormal basis that diagonalizes L: If
the principal curvatures are not eual, then the corresponding principal directions are
forced to be orthogonal:

�1I (E1; E2) = I (L (E1) ; E2) = I (E1; L (E2)) = �2I (E1; E2) ; or
(�1 � �2) I (E1; E2) = 0:

This also makes it possible to calculate the second fundamental form in general
directions.

Theorem 23 (Euler) If X 2 TpM , and the principal curvatures are �1; �2; then

II (X;X) =
�
�1 cos

2 � + �2 sin
2 �
�
jXj2

where � is the angle between X and the principal direction corresponding to �1:

Proof. Simply selct an orthonormal basis E1; E2 or principal directions and use that

X = jXj (cos �E1 + sin �E2) ;
II (E1; E1) = �1;

II (E2; E2) = �2;

II (E1; E2) = 0 = II (E2; E1) :

As an important corollary we get a nice characterization of the principal curvatures.
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Corollary 24 Assume that the principal curvatures are ordered �1 � �2; then

max
jXj=1

II (X;X) = �1;

min
jXj=1

II (X;X) = �2:

....
Surfaces with constant L are parts of planes or spheres.
The height function that measures the distance from a point on the surface to the

tangent space TpM is given by

f (x) = (x� p) � n (p)
its partial derivatives in some parametrization are

@f

@w
=

@x

@w
� n (p) ;

@2f

@w1@w2
=

@2x

@w1@w2
� n (p)

So f has a critical point at p; and the second derivatives matrix there is simply [II] :
The second derivative test then tells us something about how the surface is placed in
relation to TpM: Speci�cally we see that if both principal curvatures have the same
sign, orK > 0; then the surface must locally be on one side of the tangent plane, while
if the principal curvatures have opposite signs, orK < 0; then the surface lies on both
sides.

Theorem 25 A parametrized surface all of whose principal curvatures are � " > 0
is convex on regions of a �xed size depending on " and the domain.

Proof. The important observation is that critical points for the height function are
isolated, and, unlike the curve situation, the complement is connected! Also critical
points are max or min by second derivative test. Probably need a domain B (0; R) �
R2 where the metric in polar coordinates has the form

[I] =

�
1 0
0 �2 (r; �)

�
and then restrict to B (0; "R) :
Exercise: Show that the principal curvatures are constant if and only if the Gauss

and mean curvatures are constant.
Exercise: A surface is called a ruled surface if it is a union of lines. Speci�cally

given curves � (u) and � (u)

x (u; v) = � (u) + v� (u)

Show that x2 + y2 � z2 = 1 is a surface of revolution that is also a ruled surface.
Compute its Gauss and mean curvatures.
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Exercise: Show that if a surface has the property that it has a straight line passing
through every point, then it hasK � 0:
Exercise: Show that a surface where �1 > �2 = 0 everywhere, must be a ruled

surface. Hint: Construct an orthogonal parametrization where L
�
@x
@v

�
= 0;

��@x
@v

�� = 1:
Then show that

x (u; v) = � (u) + v� (u)
Exercise: Show that ruled surfaces with vanishing Gauss curvature are, cones, cylin-
ders, or have � (u) proportional to d�

du :

20 Special Coordinates

The simplest types of coordinates one can expect to obtain on a general surface have
�rst fundamental forms where only one entry is a general function. We'll mention
some examples at the end of the section. We start by giving some special examples.

20.1 Cartesian and Oblique Coordinates

Cartesian coordinates on a surface is a parametrization where

[I] =

�
1 0
0 1

�
Oblique coordinates more generally come from a parametrization where

[I] =

�
a b
b d

�
for constants a; b; c with a; c > 0 and ad� b2 > 0:
Note that the Christoffel symbols all vanish if we have a parametrization where the

metric coef�cients are constant. In particular, the rather nasty formula we developed
in the proof of Theorema Egregium shows that the Gauss curvature vanishes. This
immediately tells us that Cartesian or oblique coordinates cannot exist if the Gauss
curvature doesn't vanish. When we have de�ned geodesic coordinates below we'll also
be able to show that surfaces with zero Gauss curvature admit Cartesian coordinates.

20.2 Surfaces of Revolution

Many features of surfaces show themselves for surfaces of revolution. While this is
certainly a special class of surfaces it is broad enough to give a rich family examples.
We consider

x (t; �) = (r (t) cos �; r (t) sin �; z (t)) :
It is often convenient to select or reparametrized (r; z) so that it is a unit speed curve.
In this case we use the parametrization

x (s; �) = (r (s) cos �; r (s) sin �; h (s)) ;

(r0)
2
+ (h0)

2
= 1
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We get the unit sphere by using r = sin s and h = cos s:
We get a cone, cylinder or plane, by considering r = (�t+ �) and h = t:When

 = 0 this is simply polar coordinates in the x; y plane. When � = 0 we get a cylinder,
while if both � and  are nontrivial we get a cone. When �2 + 2 = 1 we have a
parametrization by arclength.
The basis is given by

@x

@t
=

�
_r cos �; _r sin �; _h

�
;

@x

@�
= (�r sin �; r cos �; 0) ;

n =

�
� _h cos �;� _h sin �; _r

�
p
_h2 + _r2

and �rst fundamental form by

gtt = _h2 + _r2;

g�� = r2

gt� = 0

Note that the cylinder has the same �rst fundamental form as the plane if we use
Cartesian coordinates in the plane. The cone also allows for Cartesian coordinates, but
they are less easy to construct directly. This is not so surprising as we just saw that
it took different types of coordinates for the cylinder and the plane to recognize that
they admitted Cartesian coordinates. Pictorially one can put Cartesian coordinates on
the cone by slicing it open along a meridian and the unfolding it to be �at. Think of
unfolding a lamp shade.
Taking a surface of revolution using the arclength parameter s; we see that

@n

@s
=

@

@s
(�h0 cos �;�h0 sin �; r0)

= (�h00 cos �;�h00 sin �; r00)
@n

@�
=

@

@�
(�h0 cos �;�h0 sin �; r0)

= (h0 sin �;�h0 cos �; 0)

The Weingarten map is now found by expanding these two vectors. For the last equa-
tion this is simply

@n

@�
= (h0 sin �;�h0 cos �; 0)

= �h
0

r
(�r sin �; r cos �; 0)

= �h
0

r

@x

@�
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Thus we have

Ls� = L�s = 0;

L�� =
h0

r

This leaves us with �nding Lss: Since @x@s is a unit vector this is simply

Lss = �@n
@s
� @x
@s

= (h00 cos �; h00 sin �;�r00) � (r0 cos �; r0 sin �; h0)
= h00r0 � r00h0

Thus

K = (h00r0 � r00h0) h
0

r

H =
h0

r
+ h00r0 � r00h0

In the case of cylinder, plane, and cone we note that K vanishes, but H only vanishes
when it is a plane. This means that we have a selection of surfaces all with Cartesian
coordinates with different H:
We can in general simplify the Gauss curvature by noting that

1 = (r0)
2
+ (h0)

2

0 =
�
(r0)

2
+ (h0)

2
�0
= 2r0r00 + 2h0h00

Thus yielding

K =

 
r00
(r0)

2

h0
� r00h0

!
h0

r

=
r00

r

�
� (r0)2 � (h0)2

�
= �r

00

r

= �
@2

@s2

�p
grr
�

p
grr

This makes it particularly easy to calculate the Gauss curvature and also to construct
examples with a given curvature function. It also shows that the Gauss curvature can be
computed directly from the �rst fundamental form! For instance if we want K = �1;
then we can just use r (s) = exp (�s) for s > 0 and then adjust h (s) for s 2 (0;1)
such that

1 = (r0)
2
+ (h0)

2
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If we introduce a new parameter t = exp (s) > 1; then we obtain a new parametrization
of the same surface

x (t; �) = x (ln (t) ; �)

= (exp (� ln t) cos �; exp (� ln t) sin �; h (ln t))

=

�
1

t
cos �;

1

t
sin �; h (ln t)

�
To �nd the �rst fundamental form of this surface we have to calculate

d

dt
h (ln t) =

dh

ds

1

t

=

q
1� (r0)2 1

t

=

q
1� (� exp (�s))2 1

t

=
p
1� exp (�2 ln t)1

t

=

r
1� 1

t2
1

t

Thus

I =

�
1
t4 +

�
1� 1

t2

�
1
t2 0

0 1
t2

�
=

�
1
t2 0
0 1

t2

�
This is exactly what the �rst fundamental form for the upper half plane looked like.
But the domians for the two are quite different. What we have achieved is a local
representation of part of the upper half plane.
Exercise: Show that geodesics on a surface of revolution satisfy Clairaut's condi-

tion: r sin! is constant, where ! is the angle the geodesic forms with the meridians.

20.3 Monge Patches

This is more complicated than the previous case, but that is only to be expected as all
surfaces admit Monge patches. We consider x (u; v) = (u; v; f (u; v)) : Thus

@x

@u
=

�
1; 0;

@f

@u

�
;

@x

@v
=

�
0; 1;

@f

@v

�

n = �

�
@f
@u ;

@f
@v ;�1

�
r
1 +

�
@f
@u

�2
+
�
@f
@v

�2
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guu = 1 +

�
@f

@u

�2
;

gvv = 1 +

�
@f

@v

�2
;

guv =
@f

@u

@f

@v
;

[I] =

264 1 +
�
@f
@u

�2
@f
@u

@f
@v

@f
@u

@f
@v 1 +

�
@f
@v

�2
375

det [I] = 1 +

�
@f

@u

�2
+

�
@f

@v

�2

@2x

@w1@w2
=

�
0; 0;

@2f

@w1@w2

�
So we immediately get

�w1w2w3 =
@2f

@w1@w2

@f

@w3

Lw1w2 =

@2f
@w1@w2r

1 +
�
@f
@u

�2
+
�
@f
@v

�2
The Gauss curvature is then the determinant of

L =

�
Luu Luv
Lvu Lvv

�
=

�
guu guv

gvu gvv

� �
Luu Luv
Lvu Lvv

�

K =
1

det [I]
det

�
Luu Luv
Lvu Lvv

�

=

@2f
@u2

@2f
@v2 �

�
@2f
@u@v

�2
det [I]

2

We note that

[I]
�1

=
1

det [I]
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�
@f
@v

�2
�@f
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@v

�@f
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�
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�2
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[II] =
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det [I]

"
@2f
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@u@v
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and the Weingarten map

[L] = [I]
�1
[II]

=
1

(det [I])
3
2
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@2f
@v2

#

=
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3
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2664
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@2f
@u2 �
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@v
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@u@v

�
1 +

�
@f
@v

�2�
@2f
@u@v �

@f
@u

@f
@v

@2f
@v2�
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@f
@u

�2�
@2f
@u@v �

@f
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@f
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1 +

�
@f
@u

�2�
@2f
@v2 �

@f
@u

@f
@v

@2f
@u@v

3775
This gives us a general example where the Weingarten map might not be a symmetric
matrix.

20.4 Surfaces Given by an Equation
This is again very general. Note that any Monge patch (u; v; f (u; v)) also yields a
function F (x; y; z) = z� f (x; y) such that the zero level of F is precisely the Monge
patch. This case is also complicated by the fact that while the normal is easy to �nd, it
is proportional to the gradient of F; we don't have a basis for the tangent space without
resorting to a Monge patch. This is troublesome, but not insurmountable as we can
solve for the derivatives of F: Assume that near some point p we know @F

@z 6= 0; then
we can use x; y as coordinates. Our coordinates vector �elds look like

@x

@u
=

�
1; 0;

@f

@u

�
;

@x

@v
=

�
0; 1;

@f

@v

�
where

@f

@w
= �

@F
@x
@F
@z

Thus we actually get some explicit formulas

@x

@u
=

 
1; 0;�

@F
@x
@F
@z

!
;

@x

@v
=

 
0; 1;�

@F
@y

@F
@z

!
:

We can however describe the second fundamental form without resorting to coor-
dinates. We consider a surface given by an equation

F (x; y; z; ) = C

The normal can be calculated directly as

n =
rF
jrF j
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This shows �rst of all that we have a simple equation de�ning the tangent space at each
point p

TpM =
�
Y 2 R3 : Y � rF (p) = 0

	
Next we make the claim that

II (X;Y ) = � 1

jrF j I (DXrF; Y )

= � 1

jrF jY �DXrF

whereDX is the directional derivative. We can only evaluate II on tangent vectors, but
Y � DXrF clearly makes sense for all vectors. This has the advantage that we can
even use Cartesian coordinates in R3 for our tangent vectors. First we show that

L (X) = �DXn

Select a parametrization x (u; v) such that

@x
@u �

@x
@v��@x

@u �
@x
@v

�� = rF
jrF j

The Weingarten equations then tell us that

L

�
@x

@w

�
= � @n

@w
= �D @x

@w
n

We can now return to the second fundamental form. Let Y be another tangent
vector then, Y � rF = 0 so

�II (X;Y ) = �I (L (X) ; Y )
= Y �DXn

= Y �
�
DX

1

jrF j

�
rF + Y � 1

jrF jDXrF

= Y � 1

jrF jDXrF

Note that even when X is tangent it does not necessarily follow that DXrF is also
tangent to the surface.
To perform a calculation it is useful to know that

h
@rF
@x

@rF
@y

@rF
@z

i
=

264
@2F
@x2

@2F
@x@y

@2F
@x@z

@2F
@y@x

@2F
@y2

@2F
@y@z

@2F
@z@x

@2F
@z@y

@2F
@z2

375
is the second derivative matrix of f:
Exercise: If c is a curve, then it is a curve on F = C if c (0) lies on the surface and

_c � rF vanishes. If c is regular and a curve on F = C; then it can be reparametrized to
be a geodesic if and only if the tripel product [rF; _c; �c] vanishes.
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20.5 Geodesic Coordinates

This is a parametrization having a �rst fundamental form that looks like:

I =

�
1 0
0 r2

�
This is as with surfaces of revolution, but now r can depend on both u and v: Using a
central v curve, we let the u curves be unit speed geodesics orthogonal to the �xed v
curve. They are also often call Fermi coordinates after the famous physicist and seem
to have been used in his thesis on general relativity. They were however also used by
Gauss. These coordinates will be used time and again to simplify calculations in the
proofs of several theorems. The v-curves are well de�ned as the curves that appear
when u is constant. At u = 0 the u and v curves are perpendicular by constaruction, so
by continuity they can't be tangent as long as u is suf�ciently small. This shows that
we can always �nd such parametrizations.
Exercies: Show that

�uuu = 0

�uvu = 0 = �vuu

�vvv = r
@r

@v

�uvv = r
@r

@u
= �vuv

�uuv = 0

�vvu = �r @r
@u
;

�uw1w2 = �w1w2u

�vw1w2 =
1

r2
�w1w2v

and

K = �
@2r
@u2

r

20.6 Chebyshev Nets

These correspond to a parametrization where the �rst fundamental form looks like:

I =

�
1 c
c 1

�
=

�
1 cos �

cos � 1

�
;

� 2 (0; �)

These coordinates can be shown to exist even after describing the parameter curves
through a �xed point p:Real life interpretations that are generally brought up are �shnet
stockings or nonstretchable cloth tailored to the contours of the body. The idea is to
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have a material where the �bers are not changed in length or stretched, but are allowed
to change their mutual angles.
Exercise: Chebyshev notes have the property that

@2x

@u@v
= 0

�uvw = �uuu = �vvv = 0;

�uuv = �@�
@v
sin �

�vvu = �@�
@u
sin �

@2�

@u@v
= �K sin �

Exercise: Show that the geodesic curvatures �u and �v of the coordinates curves
in a Chebyshev net satisfy

�u =
@�

@v
;

�v =
@�

@u
:

Exercise: (Hazzidakis) Show that
p
det [I] = sin �; and integrating the Gauss

curvature over a coordinate rectangle yields:

�
Z
[a;b]�[c;d]

K sin �dudv = 2� � �1 � �2 � �3 � �4

where the angles �i are the interior angles.

20.7 Isothermal Coordinates

These are also more generally known as conformally �at coordinates and have a �rst
fundamental form that looks like:

I =

�
�2 0

0 �2

�
The proof that these always exist is called the local uniformization theorem. It is not
a simple result, but the importance of these types of coordinates in the development of
both classical and modern surface theory cannot be understated. There is also a global
result which we will mention at a later point. Gauss was the �rst to work with such
coordinates, and Riemann also heavily depended on their use. They have the properties
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that

�uuu =
@ ln�

@u

�uvu =
@ ln�

@v
= �vuu

�vvv =
@ ln�

@v

�uvv =
@ ln�

@u
= �vuv

�uuv = �@ ln�
@v

�vvu = �@ ln�
@u

;

�w3w1w2 =
1

�2
�w1w2w3 ;

K = � 1

�2

�
@2 ln�

@u2
+
@2 ln�

@v2

�
Exercise: A particularly nice special case occurs when

�2 (u; v) = U2 (u) + V 2 (v)

These types of metrics are called Liouville metrics. Compute their Christoffel symbols,
Gauss curvature, and show that when geodesics are written as v (u) or u (v) they they
solve a separable differential equation. Show also that the geodesic have the property
that

U2 sin2 ! � V 2 cos2 !
is constant, where ! is the angle the geodesic forms with the u curves.

21 Constant Gauss Curvature

The goal will be to give a canonical local structure for surfaces with constant Gauss
curvature. Given the plethora of surfaces with constant Gauss curvature we seek for
the moment only canonical coordinates. Minding was the �rst person to give the clas-
si�cation of the �rst fundamental form we obtain below. Riemann extended this result
to higher dimensions. We start by studying the case of vanishing Gauss curvature.

Theorem 26 If a surface has zero Gauss curvature, then it admits Cartesian coordi-
nates.

Proof. We shall assume that we have geodesic coordinates along a unit speed geodesic.
Thus the v-curve described by u = 0 is a geodesic, and by de�nition of geodesic
coordinates all of the u-curves are unit speed geodesics.
AssumingK = 0; we immediately obtain

r (u; v) = r (0; v) + u
@r

@u
(0; v)
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But

r (0; v) =

����@x@v
���� = 1

since the v-curve with u = 0 is unit speed. Next use that this curve is also a geodesic.
The explicit form in u; v parameters for the curve is simply c (v) = (0; v) so all second
derivatives vanish and the velocity is pointing in the v direction. Thus the geodesic
equations in particular tell us

0 = 0 +
�
0 1

� � �uuu �uuv
�uvu �uvv

� �
0
1

�
= �uvv (0; v)

= �vvu (0; v)

=
@r

@u
(0; v)

This shows that r = 1; and hence that we have Cartesian coordinates in a neighborhood
of a geodesic.
There are similar characterizations for spaces with constant positive or negative

curvature. These spaces don't have Cartesian coordinates, but geodesic coordinates
near a geodesic are obviously completely determined by the curvature regardless of
how the metric might otherwise be viewed.
To be more speci�c

r (0; v) =

����@x@v
���� = 1;

@r

@u
(0; v) = 0

as we just saw. Given these inital conditions the equation

K = �
@2r
@u2

r

dictates how r changes as a function of u

r (u; v) =

(
cos
�p
Ku
�

K > 0

cosh
�p
�Ku

�
K < 0

22 The Gauss and Codazzi Equations

Recall the Gauss formulas and Weingarten equations in combined form:

@

@w2

�
@x
@u

@x
@v n

�
=
�
@x
@u

@x
@v n

�
[Dw2 ]
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Taking one more derivative on both sides yields

@2

@w1@w2

�
@x
@u

@x
@v n

�
=

�
@

@w1

�
@x
@u

@x
@v n

��
[Dw2 ]

+
�
@x
@u

@x
@v n

� � @

@w1
Dw2

�
=

�
@x
@u

@x
@v n

�
[Dw1 ] [Dw2 ]

+
�
@x
@u

@x
@v n

� � @

@w1
Dw2

�
Now using that

@2

@w1@w2

�
@x
@u

@x
@v n

�
=

@2

@w2@w1

�
@x
@u

@x
@v n

�
we obtain after writing out the entries in the matrices2664

@�uw2u
@w1

@�uw2v
@w1

�@Luw2
@w1

@�vw2u
@w1

@�vw2v
@w1

�@Lvw2
@w1

@Lw2u
@w1

@Lw2v
@w1

0

3775+
24 �uw1u �uw1v �Luw1
�vw1u �vw1v �Lvw1
Lw1u Lw1v 0

3524 �uw2u �uw2v �Luw2
�vw2u �vw2v �Lvw2
Lw2u Lw2v 0

35

=

2664
@�uw1u
@w2

@�uw1v
@w2

�@Luw1
@w2

@�vw1u
@w2

@�vw1v
@w2

�@Lvw1
@w2

@Lw1u
@w2

@Lw1v
@w2

0

3775+
24 �uw2u �uw2v �Luw2
�vw2u �vw2v �Lvw2
Lw2u Lw2v 0

3524 �uw1u �uw1v �Luw1
�vw1u �vw1v �Lvw1
Lw1u Lw1v 0

35
If we restrict attention to the the general terms of the entries in the �rst two columns
and rows using w3; w4 as indices instead of u; v we end up with

@�w4w2w3
@w1

+
�
�w4w1u �w4w1v �Lw4w1

� 24 �uw2w3
�vw2w3
Lw2w3

35 = @�w4w1w3
@w2

+
�
�w4w2u �w4w2v �Lw4w2

� 24 �uw1w3
�vw1w3
Lw1w3

35
which can further be rearranged by isolating �s on one side:

@�w4w2w3
@w1

�
@�w4w1w3
@w2

+
�
�w4w1u �w4w1v

� � �uw2w3
�vw2w3

�
�
�
�w4w2u �w4w2v

� � �uw1w3
�vw1w3

�
= Lw4w1Lw2w3�L

w4
w2Lw1w3 ;

These are called the Gauss Equations.
The Riemann curvature tensor is de�ned as the left hand side of the Gauss equations

Rw4w1w2w3 =
@�w4w2w3
@w1

�
@�w4w1w3
@w2

+
�
�w4w1u �w4w1v

� � �uw2w3
�vw2w3

�
�
�
�w4w2u �w4w2v

� � �uw1w3
�vw1w3

�
It is clearly an object that can be calculated directly from the �rst fundamental form,
although it is certainly not always easy to do so. But there are some symmetries among
the indices that show that there is essentially only one nontrivial curvarure on a surface.
On the face of it each index has two possibilies so there are potentially 16 different
quantities! Here are some fairly obvious symmetries

Rw4w1w2w3 = �R
w4
w2w1w3 ;
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In particular there are at least 8 curvatures that vanish

Rw4www3 = 0

and up to a sign only 4 left to calculate

Ruuvu = �Ruvuu;
Rvuvu = �Rvvuu;
Ruuvv = �Ruvuv;
Rvuvv = �Rvvuv

A slightly less obvious formula is the Bianchi identity

Rw4w1w2w3 +R
w4
w3w1w2 +R

w4
w2w3w1 = 0

It too follows from the above de�nition, but with more calculations. Unfortunately it
doesn't reduce our job of computing curvatures. The �nal reduction comes about by
constructing

Rw1w2w3w4 = R
u
w1w2w3guw4 +R

v
w1w2w3gvw4

and showing that
Rw1w2w3w4 = �Rw1w2w4w3 :

This means that the only possibilities for nontrivial curvatures are

Ruvvu = Rvuuv = �Ruvuv = �Rvuvu:

All of the curvatures of both types turn out to be related to an old friend

Theorem 27 (Theorema Egregium) The Gauss curvature can be computed know-
ing only the �rst fundamental form

K =
Ruuvv
gvv

=
Rvvuu
guu

= �R
v
uvv

gvu
= �R

u
vuu

gvu

=
Ruvvu
det [I]

Proof. We know that
K = LuuL

v
v � LuvLvu

and �
Luu Luv
Lvu Lvv

�
=

�
guu guv

gvu gvv

� �
Luu Luv
Lvu Lvv

�
[L] = [I]

�1
[II]

Now let u = w1 = w4 and v = w2 = w3 in the Gauss equation. We take the strange
route of calculating so that we end up with second fundamental form terms. This is
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because [II] is always symmetric, while [L] might not be symmetric. Thus several
steps are somewhat simpli�ed.

Ruuvv = LuuLvv � LuvLuv
= (guuLuu + g

uvLvu)Lvv � (guuLuv + guvLvv)Luv
= guu (LuuLvv � LuvLuv)
= guu det [II]

= guu det [I] detL

= gvv detL

= gvvK

The second equality follows by a similar calculation. For the third (and in a similar
way fourth) the Gauss equations can again be used to calculate

Rvuvv = LvuLvv � LvvLuv
= (gvuLuu + g

vvLvu)Lvv � (gvuLuv + gvvLvv)Luv
= gvu (LuuLvv � LuvLuv)
= �gvuK

Finally note that

Ruvvu = Ruuvvguu +R
v
uvvgvu

= Kgvvguu +R
v
uvvgvu

= K (gvvguu � guvgvu)
= K det [I]

The other entries in the matrices above reduce to the Codazzi Equations

@Lw2w3
@w1

+
�
Lw1u Lw1v 0

� 24 �uw2w3
�vw2w3
Lw2w3

35 = @Lw1w3
@w2

+
�
Lw2u Lw2v 0

� 24 �uw1w3
�vw1w3
Lw1w3

35
or rearranged

@Lw2w3
@w1

� @Lw1w3
@w2

=
�
Lw2u Lw2v

� � �uw1w3
�vw1w3

�
�
�
Lw1u Lw1v

� � �uw2w3
�vw2w3

�
Exercise: Show that all of the possibilities for the Gauss-Codazzi equations can be

reduced to the equations that result from:

@2

@u@v

�
@x
@u

@x
@v n

�
=

@2

@v@u

�
@x
@u

@x
@v n

�
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Seven of these nine equations de�nitely have the potential to be different. Show further
that these equations follow from the three equations:

@�uvu
@u

� @�
u
uu

@v
+
�
�uuu �uuv

� � �uvu
�vvu

�
�
�
�uvu �uvv

� � �uuu
�vuu

�
= LuuLvu � LuvLuu;

@�vvu
@u

� @�
v
uu

@v
+
�
�vuu �vuv

� � �uvu
�vvu

�
�
�
�vvu �vvv

� � �uuu
�vuu

�
= LvuLvu � LvvLuu

@Lvu
@u

� @Luu
@v

+
�
Luu Luv

� � �uvu
�vvu

�
�
�
Lvu Lvv

� � �uuu
�vuu

�
= 0

Exercise: Use the Codazzi equations to show that if the principal curvatures �1 =
�2 are equal on some connected domain, then they are constant.
Exercise: If the principal curvatures �1 and �2 are not equal on some part of the

surface then we can construct an orthogonal parametrization where the tangent �elds
are principal directions or said differently the coordinate curves are lines of curvature:

L

�
@x

@u

�
= �1

@x

@u
;

L

�
@x

@v

�
= �2

@x

@v
:

Show that the Codazzi Equations can be written as

@�1
@v

=
1

2
(�2 � �1)

@ ln guu
@v

;

@�2
@u

=
1

2
(�1 � �2)

@ ln gvv
@u

:

Exercise: (Hilbert) The goal is to show that if there is a point p on a surface with
positive Gauss curvature, where �1 has a maximum and �2 a minimum, then the surface
has constant principal curvatures. We assume otherwise, in particular �1 (p) > �2 (p) ;
and construct a coordinate system where the coordinate curves are lines of curvature.
At p we have

@�1
@u

=
@�1
@v

= 0;
@2�1
@v2

� 0;

@�2
@u

=
@�2
@v

= 0;
@2�2
@u2

� 0:

Using the Codazzi equations from the previous exercise show that at p

@ ln guu
@v

= 0 =
@ ln gvv
@u

and after differentiation also at p that

@2 ln guu
@v2

� 0; @
2 ln gvv
@u2

� 0

55



Next show that at p

K = �1
2

�
1

gvv

@2 ln guu
@v2

+
1

guu

@2 ln gvv
@u2

�
� 0

Exercise: Using the developments in the previous exercise show that a surface with
constant principal curvatures must be part of a plane, sphere, or right circular cylinder.
Note that the two former cases happen when the principal curvatures are equal.
Exercise: Show that if we have a parametrization x (u; v) where all geodesics are

straight lines
au+ bv + c = 0

then

�vuu = �uvv = 0;

�uuu = 2�vuv;

�vvv = 2�uuv

Use the Gauss equations

gvvK = Ruuvv

guuK = Rvvuu

gvuK = �Rvuvv
gvuK = �Ruvuu

together with the de�nitions of Rw4w1w2w3 to show that

0 =
�
@K
@v �@K

@u

� � guu guv
gvu gvv

�
and conclude that the Gauss curvature is constant.

23 Local Gauss-Bonnet

Inspired by the idea that the integral of the curvature of a planar curve is related to how
the tangent moves we try to prove a similar result on surfaces. First we point out that
we cannot expect the same theorem to hold. Consider the equator on a sphere. This
curve is a geodesic and so has no geodesic curvature, on the other hand the tangent
�eld clearly turns around 360 degrees. Another similar example comes from a right
circular cylinder where meridians are all geodesics and also have tangents that turn
360 degress.
Throughout this section we assume that a parametrized surface is given:

x (u; v) : (au; bu)� (av; bv)! R3

where the domain is a rectangle. The key is that the domain should not have any holes
in it. We further assume that we have a smaller domain

R � (au; bu)� (av; bv)

56



that is bounded by a piecewise smooth curve

(u (s) ; v (s)) : [0; L]! (au; bu)� (av; bv)

running counter clockwise in the plane and such that c (s) == x (u (s) ; v (s)) is a unit
speed.
Integration of functions on the surface is done by de�ning a suitable integral using

the parametrization. To make this invariant under parametrizations we de�neZ
x(R)

fdA =

Z
R

f (u; v)
p
det [I]dudv =

Z
R

f (u; v)

����@x@u � @x@v
���� dudv

This ensures that if we use a different parametrization (s; t) where x (Q) = x (R) ;
then Z

R

f (u; v)

����@x@u � @x@v
���� dudv = Z

Q

f (s; t)

����@x@s � @x@t
���� dsdt:

We start by calculating the geodesic curvature of c assming further that the parame-
trization gives a geodesic coodinate system

I =

�
1 0
0 r2

�

Lemma 28 Let � be the angle between c and the u curves, then

�g =
d�

ds
+
@r

@u

1

r
sin �:

Proof. We start by pointing out that the velocity is

dc

ds
=

du

ds

@x

@u
+
dv

ds

@x

@v

= cos �
@x

@u
+
1

r
sin �

@x

@v

The natural unit normal �eld to c in the surface is then given by

S = � sin �@x
@u

+
1

r
cos �

@x

@v

Our geodesic curvature

�g = I
�
S; �cI

�
= S �

��
d2u

ds2
+ �u

�
dc

ds
;
dc

ds

��
@x

@u
+

�
d2v

ds2
+ �v

�
dc

ds
;
dc

ds

��
@x

@v

�
= � sin �

�
d2u

ds2
+ �u

�
dc

ds
;
dc

ds

��
+ r2

1

r
cos �

�
d2v

ds2
+ �v

�
dc

ds
;
dc

ds

��
= � sin �

�
d2u

ds2
+ �u

�
dc

ds
;
dc

ds

��
+ r cos �

�
d2v

ds2
+ �v

�
dc

ds
;
dc

ds

��
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We further have

d2u

ds2
=

d cos �

ds
= � sin �d�

ds
;

d2v

ds2
=

d 1r sin �

ds

=
�1
r2
dr

ds
sin � +

1

r
cos �

d�

ds

=
�1
r2

�
@r

@u

du

ds
+
@r

@v

dv

ds

�
sin � +

1

r
cos �

d�

ds

=
�1
r2
@r

@u
cos � sin � +

�1
r3
@r

@v
sin2 � +

1

r
cos �

d�

ds

And the Christoffel symbols are not hard to compute

�u
�
dc

ds
;
dc

ds

�
= �uvv

�
dv

ds

�2
= �r @r

@u

1

r2
sin2 �

=
�1
r

@r

@u
sin2 �

�v
�
dc

ds
;
dc

ds

�
= 2�vuv

du

ds

dv

ds
+ �vuv

�
dv

ds

�2
=

2

r

@r

@u

du

ds

dv

ds
+
1

r

@r

@v

�
dv

ds

�2
=

2

r2
@r

@u
sin � cos � +

1

r3
@r

@v
sin2 �

Thus

�g = � sin �
�
� sin �d�

ds
� 1
r

@r

@u
sin2 �

�
+ r cos �

�
1

r
cos �

d�

ds
+
1

r2
@r

@u
sin � cos �

�
=

d�

ds
+
1

r

@r

@u
sin3 � +

1

r

@r

@u
sin � cos2 �

=
d�

ds
+
@r

@u

1

r
sin �

We can now prove the local Gauss-Bonnet theorem. It is stated in the way that
Gauss and Bonnet proved it. Gauss considered regions bounded by geodesics thus
eliminating the geodesic curvature, while Bonnet presented the version given below.

Theorem 29 (Gauss-Bonnet) Assume as in the above Lemma that the parametriza-
tion gives a geodesic coordinate system. Let �i be the exterior angles at the points
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where c has vertices, thenZ
x(R)

KdA+

Z L

0

�gds = 2� �
X

�i

Proof. Z
x(R)

KdA =

Z
R

K
p
det [I]dudv

= �
Z
R

@2r
@u2

r
rdudv

= �
Z
R

@2r

@u2
dudv

The last integral can be turned into a line integral if we use Green's theoremZ
R

@2r

@u2
dudv =

Z
@R

@r

@u
dv

This line integral can now be recognized as one of the terms in the formula for the
geodesic curvature Z

@R

@r

@u
dv =

Z L

0

@r

@u

dv

ds
ds

=

Z L

0

@r

@u

1

r
sin �ds

=

Z L

0

�
kg �

d�

ds

�
ds

=

Z L

0

�gds�
Z L

0

d�

ds
ds

Thus we obtainZ
x(R)

KdA+

Z L

0

�gds = �
Z
R

@2r

@u2
dudv +

Z
@R

@r

@u
dv +

Z L

0

d�

ds
ds

=

Z L

0

d�

ds
ds

= 2� �
X

�i

Clearly there are subtle things about the regions R we are allowed to use. Aside
from the topological restriction on R there is also an orientation choice (counter clock-
wise) for @R in Green's theorem. If we reverse that orientation there is a sign change,
and the geodesic curvature also changes sign when we run backwards.
We used rather special coordinates as well, but it is possible to extend the proof to

work for all coordinate systems. The same strategy even works, but is complicated by
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the nasty formula we have for the Gauss curvature in general coordinates. Using Car-
tan's approach with selecting orthonormal frames rather than special coordinates makes
for a fairly simple proof that works within all coordinate systems. This is exploited in
an exercise below, but to keep things in line with what we have already covered we still
retsrict attention to how this works in relation to a parametrization.
Let us now return to our examples from above. Without geodesic curvature and

exterior angles we expect to end up with the formulaZ
x(R)

KdA = 2�

But there has to be a region R bounding the closed geodesic. On the sphere we can
clearly use the upper hemisphere. As K = 1 we end up with the well known fact that
the upper hemisphere has area 2�: On the cylinder, however, there is no reasonable
region bounding the meridian despite the fact that we have a valid geodesic coordinate
system. The issue is that the bounding curve cannot be set up to be a closed curve in a
parametrization where there is a rectangle containing the curve.
It is possible to modify the Gauss-Bonnet formula so that more general regions can

be used in the statement, but it requires topological information about the region R.
This will be studied in detail later and also in some interesting cases in the exercises
below.
Another very important observation about our proof is that it only referred to quan-

tities related to the �rst fundamental form. In fact, the result holds without further
ado for generalized surfaces and abstract surfaces as well, again with the proviso of
working within coordinates and regions without holes.
It is, however, possible to also get the second fundamental form into the picture if

we recall that

K

����@x@u � @x@v
���� = �@n@u � @n@v

�
� n = �

����@n@u � @n@v
����

then we see that
R
R
KdA also measures the signed area of the spherical image traced

by the normal vector, or the image of the Gauss map.
Exercise: Consider a surface of revolution and two meridians c1 and c2 on it. These

meridians bound a band or annular region x (R) : By subdividing the region and using
proper orientations and parametrizations on the curves show thatZ

x(R)

KdA =

Z
c1

�gds1 �
Z
c2

�gds2:

Exercise: Generalize the previous exercise to regions that are bounded both on the
inside and outside by smooth (or even piecewise smooth) curves.
Exercise: Assume now that the parametrization is not geodesic. Create tangent

vector �elds E1 and E2 forming an orthonormal basis for the tanget space everywhere
with the further property that E1 is proportional to the �rst tangent �eld @x

@u and

E1 � E2 = n =
@x
@u �

@x
@v��@x

@u �
@x
@v

�� :
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First show that

@

@w

�
E1 E2 n

�
=

�
E1 E2 n

�
[Dw] ;

[Dw] =

24 0 ��w ��w1
�w 0 ��w2
�w1 �w2 0

35 ;
and identify the entries with dots products X � @Y@w where X;Y are elements of the
frame. Next, show that

@

@u
[Dv]�

@

@v
[Du] + [Du] [Dv]� [Dv] [Du] = 0;

Separating out the middle entry in the �rst row of that equation we get

@�v
@u

� @�u
@v

= �u2�v1 � �v2�u1

Using the Weingarten equations and letting [L] be the matrix of the Weingarten map
with respect to E1; E2 show that

[L]
�
E1 E2

�t � @x
@u

@x
@v

�
=

�
�u1 �v1
�u2 �v2

�
and

K
p
det [I] = �u1�v2 � �u2�v1

Thus Z
x(R)

KdA = �
Z
R

�
@�v
@u

� @�u
@v

�
dudv

= �
Z
c

�udu+ �vdv

Finally prove the Gauss-Bonnet theorem by establishingZ
c

�udu+ �vdv =

Z �
kg �

d�

ds

�
ds

where � is the angle with E1 or @x@u : To aid the last calculation show that

dc

ds
= cos �E1 + sin �E2;

S = � sin �E1 + cos �E2;
d2c

ds2
= S

d�

ds
� sin � (cos ��u + sin ��v)E1

+cos � (cos ��u + sin ��v)E2 + ()n

where the coef�cient in front of n is irrelevant for computing the inner product with S
and hnce the geodesic curvature.
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24 Symmetries

So far we've discussed how quatities remain invariant if we change parameters at a
given point. A symmetry is a transformation of a surface that shows that our geo-
metrically de�ned quantities are the same at different points p and q if the symmetry
moves p to q: Basic examples of symmetries are rotations around the z axis for sur-
faces of revolution around the z axis, or mirror symmetries in meridians on a surface
of revolution. The sphere has an even larger number of symmetries as it is a surface of
revolution around any line through the origin. The plane also has rotational and mirror
symmetries, but in addition translations.

Some other examples we have seen that are less obvious came from geodesic co-
ordinates. There we saw that if we select geodesic coodinates around a geodesic in a
space of constant Gauss curvatureK; then we always get the same answer. This means
that locally any space of constant Gauss curvature must look the same everywhere, and
even that any two spaces of the same constant Gauss curvature are locally the same.

Symmetries are usually called isometries as they are de�ned as those maps that
preserve metric quatities, i.e., the �rst fundamental form. An alternate de�nition more
in spirit with the de�nition of a linear map is to see what it should do to a geodesic.
Linear maps preserve lines but not necessarily speed. Symmetries preserve geodesics
as well as their speeds. In other words if F : M ! M is a map and c (t) : I ! M
is a geodesic, then (F � c) (t) : I ! M should also be a geodesic with the same
speed as c: This condition is clearly not desirable as we could never check whether a
transformation is an isometry without �rst �nding the geodesics. Let us check what it
means for F to preserve the speed:

����dcdt
���� =

����d (F � c)dt

����
=

����DF �dcdt
�����

The second line is the chain rule for derivatives. The �rst reduction we can make is to
substitute _c = V with any tangent vector V: After squaring the norms we must check
that for all tangent vectors:

I (V; V ) = I (DF (V ) ; DF (V )) :

To be speci�c we have to pass to a parametrization x (u; v) and then �gure out how F
maps the parameters F (u; v) = (Fu (u; v) ; F v (u; v)) : DF is then the matrix of �rst
derivatives

[DF ] =

�
@Fu

@u
@Fu

@v
@Fv

@u
@Fv

@v

�
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and we have to check that if V = V u @x@u + V
v @x
@v and F (p) = q; then

I (V; V ) =
�
V u V v

� � guu (p) guv (p)
gvu (p) gvv (p)

� �
V u

V v

�
=

�
V u

V v

�t �
guu (p) guv (p)
gvu (p) gvv (p)

� �
V u

V v

�
=

��
@Fu

@u
@Fu

@v
@Fv

@u
@Fv

@v

� �
V u

V v

��t �
guu (q) guv (q)
gvu (q) gvv (q)

� �
@Fu

@u
@Fu

@v
@Fv

@u
@Fv

@v

� �
V u

V v

�
=

�
V u V v

� � @Fu

@u
@Fv

@u
@Fu

@v
@Fv

@v

� �
guu (q) guv (q)
gvu (q) gvv (q)

� �
@Fu

@u
@Fu

@v
@Fv

@u
@F v

@v

� �
V u

V v

�
= I (DF (V ) ; DF (V )) :

This comes down to checking that�
guu (p) guv (p)
gvu (p) gvv (p)

�
=

�
@Fu

@u
@Fv

@u
@Fu

@v
@Fv

@v

� �
guu (q) guv (q)
gvu (q) gvv (q)

� �
@Fu

@u
@Fu

@v
@F v

@u
@Fv

@v

�
or in other words that DF preserves the �rst fundamental form when mapping from p
to q:
This is still a bit of a mouthful, but no further reductions are possible. The nice

result is that any transformation that preserves the �rst fundamental form as just de-
scribed will also preserve geodesics. Thus preserving speeds of curves is enough to
tell us that geodesics are also preserved. Moreover, checking that speeds are preserved
comes down to checking a matrix identity.

Theorem 30 A symmetry maps geodesics to geodesics and preserves Gauss curva-
ture.

Proof. Let c (t) be a geodesic and F a symmetry. The geodesic equation depends only
on the �rst fundamental form. By de�nition symmetries preserve the �rst fundamental
form, thus F (c (t)) must also be a geodesic.
Next assume that F is a symmetry such that F (p) = q: Again F preserves the �rst

fundamental form so the Gauss curvatures must again be the same.
It is possible to construct symmetries that do not preserve the second fundamental

form. The simplest example is to image a �at tarp or blanket, here all points have
vanishing second fundamental form and also there are symmeteris between all points.
Now lift one side of the tarp. Part of it will still be �at on the ground, while the part
that's lifted off the ground is curved. The �rst fundamental form has not changed but
the curved part will now have nonzero entries in the second fundamental form.
In order to actually �nd the set of all symmetries we'd have to somehow solve the

equation above. This is not always possible. But as with geodesics there are some
uniqueness results that will help.

Theorem 31 If F and G satisfy F (p) = G (p) and DF (p) = DG (p) then F = G
in a neighborhood of p:
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Proof. We just saw that symmetries preserve geodesics. So if c (t) is a geodesic with
c (0) = p; then F (c (t)) and G (c (t)) are both geodesics. Moreover they have the
same inital values

F (c (0)) = F (p) ;

G (c (0)) = G (p) ;

d

dt
F (c (t)) jt=0 = DF ( _c (0)) ;

d

dt
G (c (t)) jt=0 = DG ( _c (0)) :

This means that F (c (t)) = G (c (t)) : By varying the initial velocity of _c (0) we can
reach all points in a neighborhood of p:
Often the best method for �nding symmetries is to make educated guesses based on

what the metric looks like. One general guide line for creating symmetries is the obser-
vation that if the �rst fundamental form doesn't depend on a speci�c variable such as
v; then translations in that variable will be symmetries. This is exempli�ed by surfaces
of revolution where the metric doesn't depend on �: Translations in � are the same as
rotations by a �xed angle and we know that such transformations are symmetries. Note
that re�ections in such a parameter where v is mapped to v0�v will also be symmetries
in such a case.
Here is a slightly more surprising relationship between geodesics and symmetries.

Theorem 32 Let F be a nontrivial symmetry and c (t) a unit speed curve such that
F (c (t)) = c (t) for all t; then c (t) is a geodesic.

Proof. Since F is a symmetry and it preserves c we must also have that it preserves
its velocity and tangential acceleration

DF ( _c (t)) = _c (t) ;

DF
�
�cI (t)

�
= �cI (t) :

As c is unit speed we have _c � �cI = 0: If �cI (t) 6= 0; then DF preserves c (t) as well as
the basis _c (t) ; �cI (t) for the tangent space at c (t) : By the uniqueness result above this
shows that F is the identity map as that map is always a symmetry that �xes any point
and basis. But this contradicts that F is nontrivial.
Note that circles in the plane are preserved by rotations, but they are not �xed,

nor are they geodesics. The picture we should have in mind for such symmetries and
geodesics is a mirror symmetry in a line in the plane, or a mirror symmetry in a great
circle on the sphere.
There are some further surprises along these lines.

Theorem 33 If all geodesics are preserved by nontrivial symmetries, then the space
has constant Gauss curvature. Conversely, if the space has constant Gauss curvature,
then all geodesics are �xed by symmetries.

64



Below we shall construct constant Gauss curvature spaces, and show that the sym-
metries and geodesics have these properties. More generally one will have to show that
locally all constant Gauss curvature spaces can be accounted ofr knowing only these
examples.

For now lets us discuss the symmetries of the plane and sphere.....

25 The Upper Half Plane

A particularly interesting case to study is the upper half plane where we don't have
much intuition about what might happen. This section is devoted to calculating the
symmetries, geodesics, and curvature of this space. Recall that this is an assignment of
a �rst fundamental form

I =

�
1
v2 0
0 1

v2

�
to the tangent space at each point p = (u; v) 2 H = f(u; v) : v > 0g :We saw that it
was possible to construct a surface of revolution

x (t; �) =

�
1

t
cos (�) ;

1

t
sin (�) ; h (t)

�
;

_h =

r
1� 1

t2
1

t

whose �rst fundamental form is

I =

�
1
t2 0
0 1

t2

�
:

This might give us a local picture of the upper half plane but it doesn't really help that
much.

Below we shall �nd the symmetries and geodesics by solving the equations we have
for these objects. As we shall see, even in a case where the metric is relatively simple,
this is a very dif�cult task.

25.1 The Symmetries of H

Our �rst observation is that the �rst fundamental form doesn't depend on u; so the
transformations

F : H ! H

F (u; v) = (u+ u0; v)

must be symmetries. Let us check what it means for a general transformationF (u; v) =
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(Fu (u; v) ; F v (u; v)) to be a symmetry. Let p = (u; v) and q = F (u; v)�
1
v2 0
0 1

v2

�
=

�
@Fu

@u
@Fv

@u
@Fu

@v
@Fv

@v

�" 1
(Fv(u;v))2

0

0 1
(Fv(u;v))2

# �
@Fu

@u
@Fu

@v
@Fv

@u
@Fv

@v

�
=

1

(F v (u; v))
2

�
@Fu

@u
@Fv

@u
@Fu

@v
@Fv

@v

� �
@Fu

@u
@Fu

@v
@Fv

@u
@Fv

@v

�
=

1

(F v (u; v))
2

" �
@Fu

@u

�2
+
�
@Fv

@u

�2 @Fu

@v
@Fu

@u + @Fv

@u
@Fv

@v
@Fu

@v
@Fu

@u + @Fv

@u
@Fv

@v

�
@Fu

@v

�2
+
�
@Fv

@v

�2
#

This tells us�
@Fu

@v

�2
+

�
@F v

@v

�2
=

(F v (u; v))
2

v2
=

�
@Fu

@u

�2
+

�
@F v

@u

�2
;

@Fu

@v

@Fu

@u
+
@F v

@u

@F v

@v
= 0

In particular, we see that the translations F (u; v) = (u+ u0; v) really are symmetries.
Could there be symmetries where F only depends on what happens to v?We can check
an even more general situation: F (u; v) = (u; f (u; v)) where the equations reduce to�

@f

@v

�2
=

�
f (u; v)

v

�2
= 1 +

�
@f

@u

�2
;

@f

@u

@f

@v
= 0

So �rst we note that @f@v�0 from the �rst equation, the second then implies that
@f
@u = 0;

which then from the �rst equation gives us that f (u; v) = v is the only possibility. Next
let's try F (u; v) = (g (u) ; f (v)) : This reduces to�

df

dv

�2
=

�
f (v)

v

�2
=

�
dg

du

�2
So all transformations of the form F (u; v) = c (u; v) where c > 0 is constant are
also symmetries. Note that these maps are only similarities in the Euclidean metric,
but have now become genuine symmetries. This might give the idea to check maps
of the form F (u; v) = h (u; v) (u; v) : This is still a bit general so we make the rea-
sonable assumption that h doesn't depend on the direction of (u; v) ; i.e., F (u; v) =
h
�
u2 + v2

�
(u; v) : Then�

@Fu

@u
@Fu

@v
@Fv

@u
@Fv

@v

�
=

�
h+ 2u2h0 2uvh0

2uvh0 h+ 2v2h0

�
and the equations become

(2uvh0)
2
+
�
h+ 2u2h0

�2
= h2 = (2uvh0)

2
+
�
h+ 2v2h0

�2
;�

h+ 2u2h0
�
2uvh0 +

�
h+ 2v2h0

�
2uvh0 = 0:
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Since we just studied the case where h0 = 0; we can assume that h0 6= 0; the last
equation then reduces to

h =
�
u2 + v2

�
h0

showing that
h =

r

u2 + v2

for some constant r > 0: It is then an easy matter to check that the equations in the
�rst line also hold. Note that this map preserves the circle of radius r centered at
(0; 0) and switches points inside the circle with points outside the circle. It is called
an inversion and is a type of mirror symmetry on the upper half plane. Note that the
regular mirror symmetries in vertical lines are also symmetries of H: Note that both
mirror symmetries and inversions are their own inverses:

F � F (u; v) = F

�
ru

u2 + v2
;

rv

u2 + v2

�
=

r�
ru

u2+v2

�2
+
�

rv
u2+v2

�2 � ru

u2 + v2
;

rv

u2 + v2

�

=
1

u2

u2+v2 +
v2

u2+v2

(u; v)

= (u; v) :

Between these three types of symmetries we can �nd all of the symmetries of the
half plane. There are two key observations to be made. First, for any pair p; q 2 H
we have to �nd a symmetry that takes p to q: This can be done using translations and
scalings. Second, for any p 2 H and direction v 2 TpH we have to �nd a symmetry
that �xes p and whose differential is a re�ections in v: This can be done with inversions
or mirror symmetries in vertical lines should v be vertical.

25.2 The Geodesics of H

The fact that the metric is relatively simple allows us to compute the Christoffel sym-
bols without much trouble

�uuu =
1

2
guu

@guu
@u

= 0

�vuu = �1
2
gvv

@guu
@v

=
1

v

�vvv =
1

2
gvv

@gvv
@v

= �1
v

�uvv = �1
2
guu

@gvv
@u

= 0

�uuv =
1

2
guu

@guu
@v

= �1
v

�vuv =
1

2
gvv

@gvv
@u

= 0
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The geodesic equations then become

d2u

dt2
= �

�
du
dt

dv
dt

� � �uuu �uuv
�uvu �uvv

� �
du
dt
dv
dt

�
= �

�
du
dt

dv
dt

� � 0 � 1
v

� 1
v 0

� �
du
dt
dv
dt

�
=

2

v

du

dt

dv

dt

d2v

dt2
= �

�
du
dt

dv
dt

� � �vuu �vuv
�vvu �vvv

� �
du
dt
dv
dt

�
= �

�
du
dt

dv
dt

� � 1
v 0
0 � 1

v

� �
du
dt
dv
dt

�
=

1

v

�
dv

dt

�2
� 1

v

�
du

dt

�2
We'll try to �nd these geodesics as graphs over the u axis. Thus we should �rst

address what geodesics might not be such graphs. This corresponds to having points
where du

dt = 0: In fact if we assume that dudt � 0; then the �rst equation is de�nitely
solved while the second equation becomes

d2v

dt2
=
1

v

�
dv

dt

�2
This shows that vertical lines, if parametrized appropriately will become geodesics.
This also means that no other geodesics can have vertical tangents. In particular, we
should be able to graph them as functions: v (u) : The geodesic equation simpli�es to

dv

du

�
0� 2

v

dv

du

�
=

 
d2v

du2
� 1

v

�
dv

du

�2
+
1

v

!
or

d2v

du2
= �1

v

�
dv

du

�2
� 1

v

= �1
v

 �
dv

du

�2
+ 1

!
As this equation does not depend explicitly on u we are allowed to assume that

dv

du
= h (v)

d2v

du2
=

dh (v)

du
=
dh (v)

dv

dv

du
=
dh (v)

dv
h (v)

Thus
dh

dv
h = �1

v

�
h2 + 1

�
;
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or
h

h2 + 1
dh = �1

v
dv

so
1

2
ln
�
h2 + 1

�
= � ln v + C

so

h2 + 1 =
r2

v2

so �
dv

du

�2
+ 1 =

r2

v2

so

dv

du
= �

r
r2

v2
� 1

= �
p
r2 � v2
v2

Even though this is a separable equation and the integerals involved can be computed
it is still a mess to sort out. The answer however is fairly simple:

v =

q
r2 � (u� u0)2:

In other words the geodesics are either vertical lines or semicircles whose center is on
the u axis. As these are precisely the curves that are �xed by mirror symmetries in
vertical lines or inversions this should not be a big surprise.

25.3 Curvature of H

Having just computed the Christoffel symbols

�uuu =
1

2
guu

@guu
@u

= 0

�vuu = �1
2
gvv

@guu
@v

=
1

v

�vvv =
1

2
gvv

@gvv
@v

= �1
v

�uvv = �1
2
guu

@gvv
@u

= 0

�uuv =
1

2
guu

@guu
@v

= �1
v

�vuv =
1

2
gvv

@gvv
@u

= 0
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it is now also possible to calculate the Riemannian curvature tensor

Ruvvu =
@�uvv
@u

� @�
u
vu

@v
+ �uvv�

u
uu + �

v
vv�

u
uv � (�uvu�uvu + �vvu�uvv)

= 0�
@ � 1

v

@v
+ 0 +

�
�1
v

��
�1
v

�
�
 �

�1
v

�2
+ 0

!

= � 1

v2

and the Gauss curvature

K =
Ruvvu
gvv

= �1

25.4 Conformal Picture

Triangles and angle sum. Parallel lines.

26 Global Stuff

Closed surfaces must have positive curvature somewhere. Convex surfaces. Constant
mean curvature and/or Gauss curvature. Gauss-Bonnet. Hilbert.

27 Riemannian Geometry

As with abstract surfaces we simply de�ne what the dot products of the tangent �elds
should be:

[I] =
�

@x
@u1 � � � @x

@un

�t � @x
@u1 � � � @x

@un

�
=

264 g11 � � � g1n
...

. . .
...

gn1 � � � gnn

375
The notation @x

@ui for the tangent �eld that corrsponds to the velocity of the u
i curves is

borrowed from our view of what happens on a surface.
We have the very general formula for how vectors are expanded

V =
�
E1 � � � En

� ��
E1 � � � En

�t �
E1 � � � En

���1 �
E1 � � � En

�t
V

=
�
E1 � � � En

� 264 E1 � E1 � � � E1 � En
...

. . .
...

En � E1 � � � En � En

375
�1 264 E1 � V

...
En � V

375
provided we know how to compute dot products of the basis vectors and dots products
of V with the basis vectors.
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The key now is to note that we have a way of de�ning Christoffel symbols in rela-
tion to the tangent �elds when we know the dot products of those tangent �elds:

�ijk =
1

2

�
@gki
@uj

+
@gkj
@ui

� @gij
@uk

�
;

@gij
@uk

= �kij + �kji;

So if we wish to de�ne second partials, i.e., partials of the tangent �elds we start by
declaring

@2x

@ui@uj
� @x
@uk

= �ijk

and then use
@2x

@ui@uj
=

�
@x
@u1 � � � @x

@u1

�
[I]
�1 � �ij1 � � � �ijn

�t
=

�
@x
@u1 � � � @x

@u1

� 264 �1ij
...
�nij

375
Note that we still have

@2x

@ui@uj
=

@2x

@uj@ui
since the Christoffel symbols are symmetric in these indices.
This will allow us to de�ne acceleration and hence geodesics. It'll also allow us to

show that curves that minimize are geodesics, as well as showing that short geodesics
must be minimal.
To de�ne curvature we collect the Gauss formulas

@

@ui
�

@x
@u1 � � � @x

@u1

�
=

�
@x
@u1 � � � @x

@u1

� 264 �1i1 � � � �1in
...

. . .
...

�ni1 � � � �nin

375
=

�
@x
@u1 � � � @x

@u1

�
[�i]

and form the expression
@

@ui
[�j ]�

@

@uj
[�i] + [�i] [�j ]� [�j ] [�i]

When we used a frame in R3 we got this to vanish, but that was due to the inclusion of
the second fundamental form terms. Recall that when we restricted attention to terms
that only involved �s then we got something that was related to the Gauss curvature.
This time we don't have a Gauss curvature, but we can de�ne the Riemann curvature
as the k; l entry in this expression:

[Rij ] =
@

@ui
[�j ]�

@

@uj
[�i] + [�i] [�j ]� [�j ] [�i] ;

Rlijk =
@�ljk
@ui

� @�
l
ik

@uj
+
�
�li1 � � � �lin

� 264 �1jk
...
�njk

375� � �lj1 � � � �ljn
� 264 �1ik

...
�nik

375
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This expression shows how certain third order partials might not commute since we
have

@3x

@ui@uj@uk
� @3x

@uj@ui@uk
=
�

@x
@u1 � � � @x

@u1

� 264 R1ijk
...

Rnijk

375
But recall that since second order partials do commute we have

@3x

@ui@uj@uk
=

@3x

@ui@uk@uj

So we see that third order partials commute if and only if the Riemann curvature
vanishes. One can in turn show that

Theorem 34 (Riemann) The Riemann curvature vanishes if and only if there are
Cartesian coordinates around any point.

Proof. The easy direction is to assume that Cartesian coodinates exist. Certainly this
shows that the curvatures vanish when we use Cartesian coordinates, but this does not
guarantee that they also vanish in some arbitrary coordinate system. For that we need
to �gure out how the curvature terms change when we change coordinates. A long
tedious calculation shows that if the new coordinates are called vi and the curvature in
these coordinates ~Rlijk; then

~Rlijk =
@u�

@vi
@u�

@vj
@u

@vk
@vl

@u�
R��� :

Thus we see that if the all curvatures vanish in one coordinate system, then they vanish
in all coordinate systems.
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