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1 Vector-Matrix Preliminaries

Given a basis e, f for a two dimensional vector space we expand vectors using matrix
multiplication

v

S P ‘
v=0ve+v’f [e f][vf}
and the matrix representation [L] for a linear map/transformation L can be found from

[L(e) L(f)] = [e f]IL]
Le LS

- 15 3]

Next we relate matrix multiplication and the dot product in R?. We think of vectors
as being columns or 3 x 1 matrices. Keeping that in mind and using transposition of
matrices we immediately obtain:

XY = X.Y,
X'[X, V2] = [X-X2 XV ]
t [ X, X
[Xl Yl]X_ _yll.X}
t [ XX, X, Y
R R R S L
. XXy XY Xy Zs
([ Xs 1 Z1 ][ Xo Yo Zy ] = Yi-Xo Y'Yy Y2
7 Xo DYa 7y 7

These formulas can be used to calculate the coefficients of a vector with respect to
a general basis. Recall first that if 1, E is an orthonormal basis for R?, then

X = (X -BE)E+ (X E)E
= [E B[ B B |'X

So the coefficients for X are simply the dot products with the basis elements. More
generally we have



Theorem 1 Let U.V be a basis for R?, then

x = [vv]([vv]u V})_l[

(v vi(lv v]|u v})l[

<o S

Proof. First write

X=[U V][?}

The goal is to find a formula for the coefficients X“, X in terms of the dot products
X -U, X - V. To that end we notice

(03] = 1w vrx

Showing directly that

= vite v X

and conseqeuntly

x=[v v](lv v])[v V])_l{gé}

There is a similar formula in R? which is a bit longer. In pratice we shall only need
it in the case where the third basis vector is perpendicular to the first two. Also note
that if U, V' are orthonormal then

(v v][U V]:H (1)]

and we recover the standard formula for the expansion of a vector in an orthonormal
basis.

Finally we mention the triple product formula

det[ X Y Z] = X-(Yx2)
- X'(Y x 2)

2 Vector Calculus



2.1 Chain Rule

- dt

d (V o C) ) ) 14 :| @
dt - ox oy 0z

2.2 Directional Derivatives
If h is a function on R? and X = (P, @, R) then

oh _dh _0h
Dxh = Py +Qg +Ry
= (Vh)-X
t

= [Vh] [X]
dh  8h  Oh
= [ oz oy 02 } [X]
and for a vector field V' we get
DxV=| 3 5 % ]Il

We can also calculate directional derivatives by selecting any curve such that ¢ (0) =
X. Along the curve the chain rule says:

— | 9z 0y 0z

d(VOC)_{av ov av} de - D.V
dt ¢
Thus
D = —
xV 7 (0)

3 Curves

Local theory. arc length. That arclength is a good measure for the length of a curve
requires some justification.

Theorem 2  The straight line is the shortest curve between any two points in Euclid-
ean space.

Proof. We shall give two almost identical proofs. Without loss of generality we
assume that we have a curve ¢ (t) : [a,b] — R where ¢ (a) = 0, and ¢ (b) = p. We
wish to show that L (¢) > |p|. To that end we select a unit vector field X which is
also a gradient field X = V f. Two natural choices are possible: For the first simply
let f (z) = x - &, for the second f (z) = |z|. In the first case the gradient is simply
a parallel field and defined everywhere, in the second case we obtain the radial field
which is not defined at the origin. When using the second field we need to restrict the
domain of the curve to [ag, b] such that ¢ (ag) = 0 but ¢ (¢) # 0 for t > ap. This is
clearly possible as the set of points where ¢ (t) = 0 is a closed subset of [a, b] , s0 ag is
just the maximum value where c¢ vanishes.



This allows us to perform the following calculation using Cauchy-Schwarz, the
chain rule, and the fundamental theorem of calculus. When we are in the second case
the intergrals are possibly improper at ¢ = ag, but clearly turn out to be perfectly well
defined since the integrand has a continuous limit as ¢ approaches ag

b
L(c) = ¢ dt
ag
b
e[V fldt

ao

b
/ 6 Vf| dt
ap

_ /b d(foc)

dt

Pd(foc)
/ag 29 g
= I

(c(d)) = f (c(ao))l
= |f(z) = f(0)]
= |f ()|

= |pl

v

dt

We can even go backwards and check what happens when L (¢) = |p|. It appears
that we must have equality in two places where we had inequality. Thus we have
d(foc)

=i~ = 0 everywhere and ¢ is proportional to V f everywhere. This implies that c is

a possibly singular reparametrization of the straight line from 0 to p. H
Discuss, parametrized curves, implicitly given curves (level sets), integral curves of
a vector field, orthogonal curves, integral curves to second order system.

4 General Frames

We shall now consider the general problem of taking derivatives of a basis U (t) , V' ()
that depends on ¢, and veiwed as a choice of basis at ¢ (¢). Given U (¢), a natural
choice for V' (t) would be the unit vector orthogonal to U (t) . Also we shall usually
use U (t) = ¢(t) or U (t) = T (¢) . The goal is to identify the matrix [D] that appears
in

d
Ylv vi=[4v gvi=[v v]D

We know a complicated formula

pl=([v v]'[v v]) (v v][4v &V]

which simplifies to



Theorem 3 Let U (t),V (t) be an orthonormal frame that depends on a parameter

t, then
alvvi=t1vvi[ 5ol
A= U-%V:—V-%U
or
%U S\
%V = -U

Proof. We use that

(v v]|U V]:H (1)]

and the derivative of this

0 0] = (40 gV Vv vielv VU 4v]
- L @ v v
Showing that
((ZU) U = o=<jtv) 1%
(C‘Ztv>~U = —V.%U

Our formula for [D] then becomes

t
o) = [ V][HU &V ]
_ U-%U U~%V
N V.zUu V.2V
_ 0 A
o -2 0
|
Occasionally we need one more derivative
d? [—V a }
— | U V = u v dt, |,
dtQ[ ] [ ] _% )\
d*U 9 dX
22— )\ 22
dt? v ahfv7
d*v dA 9
— = —U-XWV
dt? dtU v



5 Global stuff

rotation index with tangent/normal circular image. convex curves. ovals. Isoperimetric.

6 Space Curves

Serret-Frenet. Observe that there are no relations between curvature and torsion. Gen-
eralized helices and other curiosities.

7 Surfaces

We define a parametrized surface as a function « (u,v) : U C R? — R? where g—i
and g—j are linearly independent. For parametrized surfaces we generally do not worry
about self inetersections or other topological pathologies. This is just as with curves
and allows us a great deal of flexibility. When we need to worry about these issues, or
rather we wish to avoid them, then we resort to the more restrictive class of surfaces
that comes from the next two general constructions.

A special case is the Monge patch
Implicitly given surfaces as level sets.

A surface M C R? is then a subset which is locally represented as a graph over two
coordinates. Note that a parametrized surface might not be a surface in this sense if it
intersects itself or otherwise gets arbitrarily close to itself.

The tangent space
u’ v

T,M :span{acc Baz},

and normal space
NpyM = (T,M )J_

Proposition 4 Both tangent and normal spaces are subspaces that do not depend on
a choice of parametrization.

Proof. This would seem intuitively clear, just as with curves, where the tangent line
does not depend on parametrizations. For cuves it boils down to the simple fact that
velocities for different parametrizations are proportional and hence define the same
tangent lines. With surfaces something similar happens, but it is a bit more involved.
Suppose we have two different parametrizations of the same surface:

z (s,t) = x (u,v)

This tells us that the parameters are functions of each other



The chain rule then gives us

gz _dzbs 0zt oz Oz
ou  0sdu ' otou " P™\ s ot

similarly

and in the other direction

s’ ot O’ O
This shows that a a fixed point p on a surface the tangent space does not depend on
how the surface is parametrized. The normal space is then also well defined.

or Oz {aw Bm}
€ span

It is often useful to find coordinates suited to a particular situation. Most often this
entails finding parameters so that % and % are proportional to some fixed directions.

Theorem S Assume that we have linearly independent tangent vector fields X,Y
defined on a surface M. Then it is possible to find a parametrization x (u,v) in a
neighborhood of any point such that % is proportional to X and g—f is proportional
Y.

Proof. The vector fields have integral curves forming a net on the surface. Apparently
the goal is to reparametrize the curves in this net in some fashion. The difficulty lies
in ensuring that the levels where u is constant correspond to the v-curves, and vice
versa. We proceed as with a classical construction of Cartesian coordinates. Select a
point p and let the u-axis be the integral curve for X through p, similarily set the v-axis
be the integral curve for Y through p. Both of these curves retain the parametriza-
tions that make them integral curves for X and Y. Thus p will naturally correspond to
(u,v) = (0,0) . We now wish to assign (u, v) coordinates to a point ¢ near p. There are
also unique integral curves for X and Y through ¢. These will be our way of projecting
onto the chosen axes and will in this way yield the desired coordinates. Specifically
u (q) is the parameter where the integral curve for Y through ¢ intersecs the u-axis,
and similarly with v (¢) . In general integral curves can intersect axes in several places
or might not intersect them at all. However, a continuity argument offers some justi-
fication when we consider that the axes themselves are the proper integral curves for
the g¢s that lie on these axes and so ¢ sufficiently close to both axes should have a well
defined set of coordinates. We also note that as the projection happens along integral
curves we have ensured that coordinate curves are simply reparametrizations of inte-
gral curves. To completely justify this construction we need to know quite a bit about
the existence, uniqueness and smoothness of solutions to differential equations and the
inverse function theorem also comes in handy. H

Excercise: A generalized cylinder is determined by a planar regular curve and a
vector not in the same plane. Construct a natural parametrization and show that it gives
a parametrized surface. What if the planar curve is given by an equation and you also
want the surface to be given by an equation?



Excercise: A generalized cone is generated by a planar regular curve and a point
not in that plane. Construct a natural parametrization and determine where it yields a
parametrized surface. What if the planar curve is given by an equation and you also
want the surface to be given by an equation?

Excercise: A ruled surface is given by a parametrization of the form

x (s,1) = a(s) + 5 (s)

It is evidently a surface that is a union of lines (rulers). Give conditions on «, 5 and the
parameter ¢ that guarantee we get a parametrized surface. A special case occures when
« is unit speed and 8 = «'. These are also called tangent developables.

Excercise: A surface of revolution is determined by a planar regular curve and
a line that is never perpendicular to the tangent vectors of the curve. The surface is
generated by rotating the curve around the line. Construct a natural parametrization
and show that it is a parametrized surface. What if the planar curve is given by an
equation and you also want the surface to be given by an equation?

Excercise: Many classical surfaces are of the form

F(z,y,2) =ax? +by* +c2® +de+ey+ fz4+g=0

Give conditions on the coefficients such that it is generates a surface (¢ = 0 takes
special care). Under what conditions does it become a surface of revolution around
the z-axis? Under what conditions does it become a cylinder or cone? Why are these
elliptic when abc > 0 and hyperbolic when abc < 07 When abc # 0 rewritte it in the
form

F(z,y,2)=a(x—x0)+by—yo)’ +c(z—2)°+h=0

8 The Abstract Framework

As with curves, parametrized surfaces can have intersections and other nasty compli-
cations that do not come up with the other three cases. Nevertheless it is usually easier
to develop formulas for parametrized surfaces.

For a parametrized surface x (u,v) we have the velocities of the coordinate vector

fields

oz Oz

du
While these can be normalized to be unit vectors we can’t guarantee that they are
orthogonal. Nor can we find parameters that make the coordinate fields orthonormal.
We shall see that there are geometric obstructions to finding such parametrizations.

Before discussing general surfaces it might be instructive to see what happens if

x (u,v) is simply a reparametrization of the plane. Thus g—ﬁ, % form a basis at each

point x. Taking partial derivatives of these fields give us

9 Ox ox 2z ’x Ox O
0% el = |8 Z]=-1% &b,

ou ov
9 15 s} ¢ 52 il )
=% 2] = [& 2|=1% £]r



or in condensed form

(9710[ ou Ov

0 ) ) 2 2 o ol
BoEl-lds -0 BInde=-uw

The matrices [T',,] tell us how the tangent fields change with respect to themselves. A
good example comes from considering polar coordinates x (r,0) = (r cos 6, r sin )

3j B cos 0 @_ —rsinf

or sin@ |99 | rcosf

Pz Pz [ —sinf | Oz 0 z [ —rcosb
oro8 — 900r | cos® |7 or2 7 9g2 | —rsind

)

9 ox Oz 2x 2z oz Oz 0 0
SlE 8- [ &-1% 510 0]
ﬁ[al ai]_{@ 827.@}_[84: %][0—7‘}
90 L or o0 = 90or 2000 | L or o0 Lo

T, = [
= |

SO O O

The key is that only Cartesian coordinates have the property that its coordinate fields
are constant. When using general coordinates we are naturally forced to find these
quantities. To see why this is consider a curve ¢ () = (7 (¢) cos 0 (t) ,r (t)sin 6 (t)) in
the plane. It velocity is the naturally given by

C—rﬁ—m Ga—m

or 00

If we wish to calculate its acceleration then we must compute the derivatives of the
coordinate fields. This involves the chain rule as well as the formulas just developed

. gT gde  ddw dow
© T "or %0 T arar TVat oo

= "or Vo0 dtor ' dt 06 ) or dt or  dt 00 ) 90
_ 0z oa 28 . 2z .20%

ox 0z 18:1:
87+9%+2 9 39

(o) (o ”)

8
“or
T

90



.2
Note that 7 corresponds to the centrifugal force that you feel when forced to move in
a circle. The term 6 + 2%'9 is related to Kepler’s second law under a central force field.
In this context that simply means that
.21
i+== =0
if the force and hence acceleration is radial. This in turn implies that 720 is constant as
Kepler’s law states.
The general goal will be to develop a similar set of ideas for surfaces and in addition
to find other ways of calculating [T",,] that depend on the geometry of the tangent fields.
Before generalizing we make another rather startling observation. Taking one more
derivative we obtain
0 ox 9 9 oz 9
[ o] = ([ 55 &5 1[Mwl)

a T T T P 81_\w1
- (2% 2)m+15 5[5

C,, }

311)2

(9UJ2 3w1 8711]2

- (& Elrara+ (% %]

- 12 g (rara+ [52])

(9UJ2

Switching the order of the derivatives should not change the outcome,

(% 21-1% &) (rar+ | 52)])

811}1

82

8w1 (9UJ2

but it does look different when we use w; = u and wo = v. Therefore we can conclude
that

[Ty o] + [881;“} =[] [T.] + [581;@]

{861;;] - [aal;u} + [[u] [To] = [To] [Tu] = O.

For polar coordinates this can be verified directly:

(5] - o-[ 5 3)-(3 )
wam-mins - (3 8][2 513 7](2 8]
(23]

This means that the two matrices of functions [I',] , [I',] have some nontrivial rela-
tions between them that are not evident from the definition.

10



For a surface z (u, v) in R? we add to the tangent vectors the normal

ox oz

ou * v

oz o Oz

ou ov

in order to get a basis. While n does depend on the parametrizations we note that as
it is normal to a plane in R? there are in fact only two choices 4, just as with planar
curves.

n (u,v) = .

This means we shall consider frames [ % % n ] and derivatives of such
frames
i[aj oz ]: & 8%z on :I:al oz n][D]
8’LU ou ov Owou Owov ow Jdu Jv w

where w can be either u or v.

The entries of D,, are divided up into parts. The first depends only on tangential in-
formation, the first two rows and columns, and corresponds to the [I",,] that we defined
in the plane using general coordinates. The second depends on normal information, the
third row and column. Since n is a unit vector the 33 entry actually vanishes:

_ ol _

0= on . "

ow ow

showing that % lies in the tangent space and hence does not have a normal component.

As before we have

82 [ oz oz

82
gz Jz n } [ oz oz

%Wn]

oundu = D
In particular,
D+ [222] < 0+ [ 2]
[88%)] - [aariu] +[Du] (D] = [Do] [Du] = 0

As we shall see, other interesting features emerge when we try to restrict attention to
the tangential and normal parts of these matrices.

Elie Cartan developed an approach that uses orthonormal bases, but he clearly had
to give up on the idea of using coordinate vector fields. Thus he chose an orthonormal
frame F;, Es, E3 along part of the surface with the property that 5 = n is normal to
the surface, and consequently E1, F» form an orthonormal basis for the tangent space.
The goal is again to take derivatives. For that purpose we can still use parameters

0

2B B B-[% % %]-[H B &]D

The first observation is that [D,,] is skew-symmetric since we used an orthonormal
basis:

(B B E3|'[Ei BEx E3]=

O O =
o = O
= O O

11
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5 ([E1 E; E3|'[ B By Es])
_ (5[]51 jo E3]>t[E1 By, Es]
+

o
E, E, Eg}t%[a E; Ej |

= ([E1 E» Es|[D)'[E1 E» Es]
+[ E1 B E3}t[E1 By B |[Dy)]
= [Dw]t"‘[Dw]

In particular, there will only be 3 entries to sort out. This is a significant reduction
from what we had to deal with above. What is more, the entries can easily be found by
computing the dot products

OE;
" w
This is also in sharp contrast to what happens in the above situation as we shall see.
Taking one more derivative will again yield a formula

o] [

81111 (9’(1)2

] = (D] (D] — (D] [Du]

where both sides are skew symmetric.

Given the simplicity of using orthonormal frames it is perhaps puzzling why one
would bother developing the more cumbersome approach that uses coordinate fields.
The answer lies, as with curves, in the unfortunate fact that it is often easier to find
coordinate fields than orthonormal bases that are easy to work with. Monge patches are
prime examples. For specific examples and many theoretical developments, however,
Cartan’s approach has some advantages.

9 The First Fundamental Form

Let « (u,v) : U — R? be a parametrized surface. At each point of this surface we get
a basis

oz , Oz
_Ou " v
ox ox
u X du

n(u,v) =

These vectors are again parametrized by u, v. The first two vectors are tangent to the
surface and give us an unnormalized version of the tangent vector for a curve, while the
third is the normal and is naturally normalized just as the normal vector is for a curve.

12



One of the issues that make surface theory more difficult than curve theory is that there
is no canonical parametrization along the lines of the arclength parametrization for
curves.

The first fundamental form is the symmetric positive definite form that comes from
the matrix

_ d oz 1tr1 @8 o)
=15 ][5 5]
Oz Oz Oz Oz
ov  Ou ov  Ov

g'uu gUU
For a curve the analogous term would simply be the square of the speed
dy K dy dy dy
(dt) T a
This form dictates how one computes dot products of vectors tangent to the surface

assuming they are expanded according to the basis %, g—f

_ uaw an_ ox ox X
X = xvP x0T [ m]{Xv]
_ uax vaw_ ox ox Y
v o= vy B e av}[w]
(7) [ }|:gvu g’UU YU
u v ox ox 1t ox ox Y
- (x X g BVIE B
e o2 1| X1\ (o2 oo [ Y"
REEIEAEEIM)
= X%V
XY

In particular, we see that while the metric coefficients g, depend on our parame-
trization. The dot product I (X,Y") of two tangent vectors remains the same if we
change parameters. Note that I stands for the bilinear form I (X,Y") which does not
depend on parametrizations, while [I] is the matrix representation for a fixed parame-
trization.

Our first surprising observation is that the normalization factor g—i X g—ﬂ can be
computed from [I] .

Lemma 6

oz Oz

- o _ 2
% X % = det [I] = Guuvv (guv)

13



Proof. The proof is a bit more general. Fix two vectors m,n € R3. The quantity
|m X n| represents the area of the parallelogram with sides m and n. This area can also
be calculated by the height xbase formula. If m is the base then we have to find h |m] .
The height can be calculated by the Pythagorean theorem if we know the projection
onto m. The projection of n onto m is

(n-m)m

So we have

h? +

jml”
Isolating h? and multiplying my \m\z yields
Imxnl*> = h*|m|?

2

2
= |m[" | |n]" =

2 |(n-m)[* |m|

2, 2
= m["[n]” = |m| 7
m|

= (m-m)(n-n)—(m~n)2

This is what we wanted to prove. H

-1 .
[I]fl _ Guu  Guv — guu guu
g’U’LL g’UU gvu g””
can be used to find the expansion of a tangent vector by computing its dots products

with the basis:

The inverse

Proposition 7 If X € T,,M, then

uu am uv am 87m vU 63 VU aj 8733
(o (v ) v (e ) ) s (o (0 52) oo (0 30)) &

v
ox x - x z 1t
= [ =20 [ £1'X

X

and more generally for any Z € R3

uu aw uv aj aj vu 8j vU aj 8j
(9 (Z'au>“’ (Z av>>au+<g <Z au)“’ (Z a)) g T (Zmn

[22 %2 M '[ % 2]'Z+(Z n)n

Z

Proof. We already suspect that this formula works for X € T}, M as we worked with
it in R2. Clearly a similar formula holds in R? as well. Note that the operation

(5 E=lm[g &)

14



can be applied to any vector in R3. It simply projects the vector to a vector in the
tangent space. For a general vector Z € R? we therefore have to split it up in the
tangential component and normal component

Z = X+4(Z-n)n,
X = Z—-(Z-n)n

and then apply our result to X. H

Defining the gradient of a function is another important use of the first fundamental
form as well as its inverse. Let f (u, v) be viewed as a function on the surface x (u, v) .
Our definition of the gradient should definitly be so that it conforms with the chain rule
foracurve ¢ (t) = @ (u (t),v (¢)) . Thus on one hand we want

d(foc) _ .
a - Vi
du
~ [ v | i }
while the chain rule also dictates

6oy g1[§]

Thus | |
[ep =08 Im?

or
RN
- [& #1008 #107)

(% SI0' [ &)

- Ou ov ou ov
uu g uv 87']0 aj U g v 8—f 8—m
(g ou Y 8'0) ou " <g ou 9 ) Bu

In particular, we see that changing coordinates changes the gradiant in such a way that
itisn’t simply the vector corresponding to the partial derivatives! The other nice feature
is that we now have a concept of the gradient that gives a vector field independently of
parametrizations. The defining equation

d(foc) . .
i =Vf-¢=1(Vf ¢

gives an implicit definition of V f that makes sense without reference to parametriza-
tions of the surface.
Exercise: If we have a parametrization where

[I]:{(l) ggv}

15



then the coordinate function f (u,v) = w has
_ Oz
- ou’
Exercise: Show that it is always possible to find an orthogonal parametrization,
i.e., gy, vanishes.

Vu

Exercise: Show that if

8guu _ a.g'U’U _ _
S _ B gy =0

ov ou

then we can reparametrize u and v separately, i.e., u = u (s) and v = v (¢) , in such a
way that we have Cartesian coordinates:

9ss = Gt = 1,
gst = 0
Exercise: Show that if
0’z B
oudv
then
z (u,v) = F (u) + G (v)
and conclude that we we are in the situation of the previous exercise.

10 The Gauss Formulas

With all of this in mind we are now going to compute the partial derivatives of our basis
in both the v and v directions. Since these derivatives might not be tangential we get a
formula that looks like

(Q)Qw _ oz oz -1 oz oz 11t 821: a?w
811118102 a [ ou v ] [I] [ ou e ] 8w16w2 + (811)18102 TL) "

The goal here and in the next section is to show that the tangential part of this formula

8’z

=(& 2107082 &1 50m

F“’lw? - Ou v ou v
can be computed directly form the first fundamental form and without knowledge of
the second derivatives aqﬁigm. Note that this is similar to what we did for a reparame-
trization of the plane.

To accomplish this we need some more notation:

r Pz Oz
wiwat Ow10ws Ow
0’z
Loyw, = —o .
Witz 6w18w2 "

16



The first line defines the Christoffel symbols of the first kind. The second line the
second fundamental form

" (X,v) = [ X® X“][H"][ij”
=[x x| e L ][V

The superscript n refers to the choice of normal and is usually supressed since there
are only two choices for the normal +n. This also tells us that nII" is independent of
the normal.

To further simplify expressions we also need to do the appropriate multiplication

with ¢g*4"s to find the coefficients also called the Christoffel symbols of the second
kind:

Fglwz = gwurwlwzu + ngrwlwgva

[ | } _ [ g g ] [ | }
s g’ g Ty wov
R I s

ou ov awlan

This now gives us the tangential component as

2
Twjw, = [iLw 67‘0][:[]*1[3:6 oz ]t oz

ou ov ou Jv aw18w2
. Oz ., Oz
w1 wo % + le wo %

The second derivatives of « (u, v) can now be expressed as follows in terms of the
Christoffel symbols of the second kind and the second fundamental form. These are
often called the Gauss formulas:

0z ox ox
— = I — 4+ TV — + Ly
ou? “Y O thuu ov + n
Oz ox ox 0’z
_— = I — 4+ T? — + Lyyn = ———
Oudv “You tlu ov + n Ovou
0’z oz oz
SN VR C R
ov? Y Ou o ov + n
or )
o0z ox ox
_ =T —— 4+ TY — 4+ Luyw
Ow10ws w12 Ay, +ww, Ov + Luwrwa
or
0 [ ox ox ] [ ox ox n] E’gm ?gju
a9, L 9u  Bu = Du v wu wv
w Luw Lo

This means that we have introduced notation for the first two columns in [D,,]. We
shall wait a bit to deal with the last column.

17



As we shall see, and indeed already saw when considering polar coordinates in
the plane, these formulas are important for defining accelerations of curves. They
are however also important for giving a proper definition of the Hessian or second
derivative matrix of a function on a surface. This will be explored in an exercise later.

11 Calculating Christoffel Symbols

Next we seek formulas for the Christoffel symbols that involve only the first funda-
mental form. This shows that they can be computed knowing only the first derivatives
of  (u, v) despite the fact that they are defined using the second derivatives!

Proposition 8

1 Oguu
Fuuu = 35
2 Ou
1 0guu
Fuvu = 3 = Fvuu
2 Ov
1 9gvo
I-_‘v'uv = 3
2 v
1 9gvo
Fuyv = = = Fvuv
2 Ou
1
| 897.“1 1t 8guu
ou 2 Ov
1
| 897.“1 1t 8gvv
ov 2 Ou

Proof. We select to prove only two of these as the proofs are all similar. We use
the product rule just as we did when computing derivatives of dot products for the
Frenet-Serret formulas. Note that we use the first calculation to finish off the second
calculation.

P oe (0 (00\) de_10 (9 92\ _1og,
YT gudu Ou - \ Qv \ du u 200 \du Ou) 2 dv

Lo % s (0 (02)) 0o
T udu dv - \Ou \ du ov

_ 0 (0 0z (02 00n
 OJu \Ou v Oou Ou Ov

aguv ox 3228

ou  Ou Oudv
T du 2 Ov
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There is a unified formula for all of these equations. While it unifies it also compli-
cates and is less useful for actual calculations:

Tuww = % (angw 1 Y ag“““”)

ow, Owq ow
The product rule for derivatives also tells us that

9g

wqw

12 = Fwwgwl + F’lU’U}1’lU2
ow

Note that this formula is now also a direct consequence of our new formulas for the
Christoffel symbols in terms of the derivatives of the metric coeffients.

The proposition can also be used to find the Christoffel symbols of the second kind.
For example

Iy, = guuruvu + guvruvv

— 1 uuagun + uvagm}
A v g ou

While this can’t be made simpler as such, it is possible to be a bit more efficient when
calculations are done. Specifically we often do calculations in orthogonal coordinates,
i.e., guy = 0. In such coordinates

= 0
"= ()
= (gen)

109
109

Tupu = 28;@ — Ty
10,
10,

Tuw = 3 gg — Ty
109
1094,

= 4
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and
1 yu09un 10Ingy,
Zg P

e = =
uu 2 ou 2 Ou
1 0 O9uu
TV — T uvJun
uu 2 ov
1—vu . 1 VU agv'u _ lalngvv
v 29 v 2 v
1 0 99vu
T —  __auu
vy 2 ou
e _ 1 0w 09uu _ 10Ingyy
w9 v 2 v
. 1 009 1 01n gy,
Fuv = =59 =35

2 ou 2 Ou
We often have more specific information. This could be that the metric coefficients
only depend on one of the parameters, or that g,,, = 1. In such circumstances it is quite
managable to calculate the Christoffel symbols. What is more, it is always possible to
find parametrizations where g,,, = 1 and g,, = 0 as we shall see.

12 Generalized and Abstract Surfaces

It is possible to work with generalized surfaces into Euclidean spaces of arbitrary di-
mension: x (u,v) : U — R¥ for any k& > 2. What changes is that we no longer have a
normal vector n. In fact for k = 2 we could just let n be (0, 0, 1) after letting R? be the
(z,y) coordinates in space. While for k > 4 we get a whole family of normal vectors,
not unlike what happened for space curves. What all of these surfaces do have in com-
mon is that we can define the first fundamental form and with it also the Christoffel
symbols of the first and second kind using the formulas in terms of derivatives of g.
This leads us to the possibility of an abstract definition of a surface that is independent
of a particular map into some coordinate space R¥.

One of the simplest examples of a generalized surface is the flat torus in R*. It is
parametriezed by

x (u,v) = (cos u,sinu, cos v, sinv)
and its first fundamental form is
10
=[5 1]

just as we have for Cartesian coordinates in the plane. This is why it is called the flat
torus. It is in fact not possible to have a flat torus in R3.
An abstract parametrized surface consists of a domain U C R? and a first funda-
mental form
guv gU’U
that defines inner products of vectors X, Y with the same base point p € U

= e[| [
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where

X=X"X"),Y=(Y"Y"
are the representations of the vectors using the standard (u, v) coordinates on U. Note
the first fundamental form consists of three functions and so gives an inner products
that varies from point to point. For this to give us an inner product we also have to
make sure that it is positive definite:

0 < I(X,X)

[ X X“}[g“u guuqu}

Juv  Gow XY
XuXuguu + 2Xunguu + XUXUQ'UU

Proposition 9 1 is positive definite if and only if g, + Gov, and guuGve — (guv)2 are
positive.

Proof. If1 is positive definite, then we see that g,, and g, are positive by letting
X =(1,0) and (0, 1) resp. Next let X = (\/Guv, =1/Guu) to get

0 < I(X,X) = 20uuGvv £ 2v/Guur/GooJun
Thus we have

iguv < V guu V g’U’U

2
GuuGvv > (guv) .
To check that I is positive definite we have to use that it is symmetric. The charac-
teristic polynomial is

showing that

2
A2 - (guu + gvv) A + guugvv - (guv)
The minimum of this upward pointing parabola is obtained at

1
)‘ = 5 (guu + gvv)

and has the value

2 1 2 1 2 2
guugvv - (guv) - Z (guu + gvv) = _1 (guu - gvv) - (guv) < O

Thus there are two real roots. The spectral theorem for symmetric matrices could also
have been invoked at this point to establish that the eigenvalues are both real. It is now
easy to see that [I] is positive definite if its eigenvalues are positive. Two real numbers
have to be positive if their sum and product are both positive. In this case the sum of the
eigenvalues is the trace gy, + g»» While the product is the determinant g, gy — ( guv)2
so our assumptions guarantee that the eigenvalues are positive. Hl

There is an interesting example of an abstract surface on the upper half plane de-
fined by H = {(u,v) : v > 0} , where the metric coefficients are

1 = Juu  Guv | _ i 10
Gou  Gov ’U2 0 1
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One can show that for each point p € H, there is a small neighborhood U containing p
and z (u,v) : U — R? such that

oz Oz Oz Oz 1 1 0
ou  Ov ou  Ov - gx oz Oz Oz T2 0 1
ov  Ou ov  Ov
In other words we can locally represent the abstract surface as a surface in space. How-
ever, a very difficult theorem of Hilbert shows that one cannot represent the entire sur-
face in space, i.e., there is no function  (u,v) : H — R? defined on the entire domain
such that
oz oz Oz 9
(o2 o )'[ o= o= ]_| gu'gu gu g = > |10
ou v ou ov - gx  ox oz Oz - v2 0 1
ov  Ou Jv  Ov
Janet-Burstin-Cartan showed that if the metric coefficients of an abstract surface are
analytic, then one can always locally represent the abstract surface in R3. Nash showed
that any abstract surface can be represented by a map « (u, v) : U — RF on the entire
domain, but only at the expense of making k very large. Based in part on Nash’s work

Greene and Gromov independently showed that one can always locally represent an
abstract surface in R.

13 Acceleration and Geodesics

We’ll now consider curves on a parametrized surface « (u,v) : U — R3. The curve is
parametrized in U as (u (t), v (¢)) and becomes a space curve ¢ (t) = x (u (t),v (t))
that lies on our parametrized surface.

The velocity is

_dc_dw_@wdu_i_amdv_[ 00 0z | g—?
dt dt  Oudt Ovdt ‘o O &

Next we calculate the acceleration as if it were a space curve, but using the velocity
representation we just gave. Recall that we can decompose any vector into normal and
tangential components. For the acceleration this is

i=[5 Slml % & ler@nn

The goal is to calculate each of these components in terms of %, % and ‘3277;, le%’. This
will lead us to another surprising result.

Theorem 10 The acceleration can be calculated as

 foe e | EE
¢ = [ g @ nl| T2irv(e)
II(¢,¢)
d*u ox d*v oz
(P )0 (P )0
(G +ea) 55+ (G5 + 1 o) G +anceo,



where

. dwy dwy du dv re re du
Mo = 3, Thw—g oo =l% &1 || &

w1 W=,V VU vV dt

Proof. We start from the formula for the velocity and take derivatives. This clearly
requires us to be able to calculate derivatives of the tangent fields %, %. Fortunately
the Gauss formulas tell us how that is done. This leads us to the acceleration as follows

. i([‘gfﬁ i%”[%b

_ foe oe| Aoz o T
= | I & [+ (51 ]

ou ov d“v dt ou ov av

dt? dt

which after the chain rule

d_dud  dvo
dt — dt Ou = dt Ov
becomes
. K] F) di;
¢ =[5 &1 &
du 0 ox ox ditt
R <@u[ du 9w ]) [ d

dv 9 ox ox &
al e #)[ L]

The Gauss formulas help us with the last two terms

<a[aw am])[d?]_[amawn] Lo e [d?}
ow ou ov dflt] ou ov Li:’)z LZ))Z (Til
oz du }
ox du
o | ] [ a ]
du
w1l Lo Lo | |
dt
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which after further rearranging allows us to conclude

du
TR 4
dt?
ut @ a2
v v ] du
olg %) ]|
ov t t F'uu Fvv dt
Luw Luw || %
dt dt L’UU L’U’U E
Lo 4T (e, 0)
_ oxr Oz v V[ s
= [ 3 & n]| 224rv(ee)
II(¢,¢)
Alternately the whole calculation could have been done using summations
I
dt?

oo dtu s
Ou dt?2 = Ov dt?
(623: du Oz dv) du ( 0z du 0’z dv) dv

ouzdt T oudvdr) dt T \ouovdt T ovr dt ) dt
Jodu, dzdy g~ Pz dvde
Ou dt?2  Ov dt? . Ow1 0wy dt dt

w1, w2=1u,

oz [ d?u dwy dwy
-~z e 1T
ou (dt2 X Dheg g

w1, W2=u,v

Ov \ dit? w12 de o dt

w1, Wa =1,V
dw1 d’w2
*”( 2. Lwdtdt>

w1, W =U,V
oz [ d*u oz [ d*v

ANy Oz (d°v | ro (., (6
(dt2 + I (¢, C)) + v (dtQ +I (¢, C)> +nll(¢é¢)

ou

Note that we have shown

Theorem 11 (Meusnier) The normal component of the acceleration satisfies

(@ -n)n =l =nll(¢¢)

In particular two curves with the same velocity at a point have the same normal accel-
eration components.
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The tangential component is more complicated

oz Oz o  dx (1t _ ol _ oz (d*u U Oz (d*v V(6
[8771 W}[I][m (%]C—C—au(dtz‘f'r (C,C>>+8U W—&—F (C,C)

But it seems to be a more genuine acceleration as it inlcudes second derivatives. It
actually tells us what acceleration we feel on the surface. Note that the tangential
acceleration only depends on the first fundamental form.

We say that c is a geodesic on the surface if the tangential part of the acceleration
vanishes ¢' = 0, or specifically

d2

dTZ+Fu(C"é) = 0,
d? v
dT;]+FU(C,C) = 0.

This is equivalent to saying that ¢ is normal to the surface or that ¢ = nIl (¢, ¢).

Proposition 12 A geodesic has constant speed.

Proof. Let ¢ (t) be a geodesic. We compute the derivative of the square of the speed:

d d
Ao d
(66) = =

since n and ¢ are perpendicular. Thus ¢ has constant speed. H

(¢-é)=2¢-é=201(¢¢)n-¢=0

Note that we used the second fundamental form to give a simple proof of this result.
It is desirable and indeed possible to give a proof that only refers to the first fundamental
form. The key lies in showing that we have a product rule for I (¢, ¢) that works just
inside the surface. Since
I ¢)=¢é¢
this is fairly obvious. The goal would be to do the calculation using only the first
fundamental form and that takes quite a bit more work.

Next we address existence of geodesics.

Theorem 13  Given a point p = x (ug,vo) and a tangent vector V = V“g—z (uo, vo)+
V”‘g—‘;)c (ug,vo) € TpM there is a unique geodesic c¢(t) = x (u(t),v (1)) defined on
some small interval t € (—¢, &) with the inital values

c(0) = p,
e(0) = V.

Proof. The existence and uniqueness part is a very general statement about solutions
to differential equations. In this case we note that in the (u,v) parameters we must
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solve a system of second order equations

d2u:_[dudv][FZf;u FWHC“;}
dtQ dt dt I‘gu ng ?g
dz‘v:_[dudu][Fﬁu rgdeq
dt? dt  dt re, Iy, o

with the initial values

(u(0),v(0)) = (uo,v0),
(’1'1,(0)7’[)(0)) = (Vu7vv)‘

As long as T' is sufficiently smooth there is a unique solution to such a system of
equations given the initial values. The domain (—¢, £) on which such a solution exists
is quite hard to determine. It’ll depend on the domain of parameters U, the initial
values, and finally on I". l

This theorem allows us to find all geodesics on spheres and in the plane without
calculation.

In the plane straight lines ¢ (¢) = p + vt are clearly geodesics. And since these
solve all possible intial problems there are no other geodesics.

On S? we claim that the great circles

v o,
c(t) = pcos(|v|t)—|—ms1n(|v|t)
p € S,
p-v = 0

are geodesics. Note that this is a curve on S?, and that ¢ (0) = p, ¢ (0) = v. Next we
see that the acceleration

" 2 . 2
¢(t) = —plo|”cos (Jv|t) — v |v]sin (|v[t) = —[v|" c(t)

computed in R? is normal to the sphere. Thus ¢' = 0. This means that we have also
solved all initial value problems on the sphere.

Exercise: Let ¢ (s) be a unit speed curve on a surface with normal n. Show that it
is a geodesic if and only if

[, ¢",n] =0

Exercise: Let ¢ (s) be a unit speed curve on a surface with normal n. Define T as

the usual tangent to the curve and

S=nxT

as the normal to the curve in the surface. Show that

d 0 —kKg —Rp
s [ T S n ] = [ T S n ] Kg 0 —Tg
Kn Tg 0
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for functions kg, k,, T4. They are called geodesic curvature, normal curvature, and
geodesic torsion respectively. Further show that S and ¢ are proportional and that

dr
Ky = 1S =50
dT
n = II .7. = T
K (¢,¢)=n 7
ds
Tg = 11(570):71%

Exercise: Show that the geodesic curvature can be computed as

e (T 52) =55 (T 5%)
det [T]

Exercise: Define the Hessian of a function on a surface abstractly by

Hessf (X,Y) =1(DxV/f,Y)

Show that the entries in the matrix [Hess f] defined by
YU
Hessf (X,Y)=[ X* X" | [Hessf] [ yo ]
are given as
2
o°f + [ of  of ] F?U1w2
3w1 87112 Ou 9v Z,le
Further relate these entries to the dot products
ovVf Ox

811)1 awg

14 Unparametrized Geodesics

It is often simpler to find the unparametrized form of the geodesics, i.e., in a given
parametrization they are easier to find as functions w (v) or v (u). We start with a
tricky characterization showing that one can characterize geodesics without referring
to the arclength parameter. The idea is that a regular curve can be reparametrized to be
a geodesic if and only if its tangential acceleration ¢! is tangent to the curve.

Lemma 14 4 regular curve ¢ (t) = x (u (t) ,v (t)) can be reparametrized as a geo-
desic if and only if



Proof. Let s correspond to a reparametrization of the curve. When switching from ¢
to s we note that the left hand side becomes

dv (d*u dv (d*u dc dc
dt (dt2 (e )> dt (dt2 + (dt’ dt)>
_ dsdv (@sdu  (ds\*du [, (dsde dsde
© dtds \ dt? ds dt ) ds? dt ds’ dt ds
_ dsdv (@sdu  (ds\PdPu | (ds\®, (de de
© dtds \ dt? ds dt ) ds? dt ds’ ds
ds d*s dv du ds\* dv [ d*u u [(dc dc
= ——————+ (=) = |55+,
dt dt? ds ds dt ) ds \ ds? ds’ ds
with a similar formula for the right hand side. Here the first term
ds s dv du
dt di? ds ds
is the same on both sides, so we have shown that the equation is actually independent

of parametrizations. In other words if it holds for one parametrization it holds for all
reparametrizations.

If ¢ is a geodesic then the formula clearly holds for the arclength parameter.

Conversely if the equation holds for some parameter then it also holds for the ar-
clength parameter. Being parametrized by arclength gives us the equation
I du d Guu 9 S N (X
I C.’ é — au av uu uv dé ) — 0
o=l @] [ Gou Yo ] o Al (N

Thus we have two equations
dv [ dPu du [ d*v
v (A7 p e oy ) - ATV e s _
dt <dt2 I )) dt <dt2 * (c’c)) 0

W IV (E rv ) + (g0 0 ) (20 1o )
guud g’Uu dt dt2 gu’ud g’U’U dt dt2 )

Since

Il
o

|: ; :|
dt

du dv

guu dt + guv dt gqu + gvvﬁ

_ v —I- dv +du du+ dﬁ
- d gvv dt Guu dt Guv dt

the only possible solution is

d*u d*v
o T (6 =0=—5+T"(¢0),
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showing that c is a geodesic.

Depending on our parametrization (u,v) geodesics can be pictured in many ways.
We’ll study a few cases where geodesics take on some familiar shapes.
Consider the sphere where great circles are described by

ar+by+cz = 0,
2?42 = 1
. . 1 . ]
If we use the parametrization i (s,t,1), orin other words £ = s, £ = ¢ then

these equations simply become straight lines in (s, t) coordinates:
as+bt+c=0
Or we could use (u,v, v/1 — u? — v?) and note that the equations become
(a2 + 02) u? + 2abuv + (b2 + 02) vi=¢2

which are the equations of ellipses whose axes go through the origin and are inscribed
as well as tangent to the unit circle. This is how you draw great circles on the sphere!
The first fundamental form is given by

2
U uv
== ]

uv v
e e S o e

1 =

Here is an intrinsic metric on the (u, v) plane where we have simply switched signs
from above

1— u? _ uv
[I] — 1+u?+v? 14+u?+v?
lw v
1+u24v2 1+u24v2
Using the parameter independent approach to geodesics one can show that they turn
out to be hyperbolas whose axes go through the origin

(a2 — 02) u? + 2abuv + (b2 — 02) v? =2

This metric can also be reparametrized to have its geodesics be straight lines. The later
reparametrization is:

u
S = —_—
V1+u?+ov?

;= v

and the geodesics given by

as+bt+c=0.
We shall later explicitly find the geodesics on the upper half plane using the equations
developed here.

Exercise: Show that geodesics satisfy a second order equation of the type

d?v dv\® dv\’? dv
— =A(— B(— —+D
du? (du) * <du> JrCdu *

and identify the functions A, B, C, D with the appropriate Christoffel symbols.
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15 Shortest Curves

The goal is to show that the shortest curves are geodesics, and conversely that suffi-
ciently short geodesics are minimal in length. For the latter using geodesic coordinates
makes an argument that is similar to the Euclidean version using a unit gradient field.

16 Invariance Issues

We offer a geometric approach to show that the second fundamental form is, like the
first fundamental form, defined in such a way that selecting a different parametrization
will not affect it.

The key observation is that if we have a surface M and a point p € M, then the
tangent space T}, M is defined independently of our parametrizations. Correspondingly
the normal space NyM = (T, M )l of vectors in R? perpendicular to the tangent space
are also defined independently of parametrizations. Therefore, if we have a vector Z in
Euclidean space then its projection onto both the tangent space and the normal space
are also independently defined.

Consider a curve ¢ (t) on the surface. We know that the velocity ¢ and acceleration
¢ can be calculated without reference to parametrizations. This means that the projec-
tions of ¢ onto the tanget space, ¢!, and onto the normal space, nII” (¢, ¢) , can also be
computed without reference to parametrizations. This shows that tangential and normal
accelerations are well defined.

This also takes care of nII" (X, Y) if we use two important observations. The first
is called polarization, the idea is that symmetric bilinear forms have the property:

n , =—-(n + VY, X + —-n , —-n ,
" (XY ; mX+Y,X+Y " (X, X " v,y

Thus it suffices to show that nII" (Z, Z) is well defined. But this follows from knowing
that nII" (¢, ¢) is invariant and that any tangent vector is the velocity of some curve.

17 The Weingarten Map and Equations

There is a similar set of equations for the entries in the second fundamental form that
also lead us to the partial derivatives of n (u, v) . Together these are also known as the
Weingarten equations. But first we need to introduce the Weingarten map. It is related
to the second fundamental form in the same way the Christoffel symbols of the second
kind are related to the symbols of the first kind. Its matrix or the entries of its matrix
are

LZ);? = nguLuwl + ngvawU
1
(L] = [ [,
L, Ly _ g " Lyw Ly
Ly Ly 9" ¢"" || Lou Luw
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When using matrix language we must be careful in our definitions as [I] " [II] and

[11] [~ are generally not the same. The abstract Weingarten map L will be a self-
adjoint map with respect to the first fundamental form

I(L(X),Y) =1(X, L(Y))
but this does not guarantee that its matrix representation [L] is symmetric. This will

only be the case if we are lucky enough to have used an orthonormal basis.

Proposition 15
I(L(X),Y)=I(X.Y)

In particular L is self-adjoint as 11 is symmetric.

Proof. We have

M(X,vy) = [x* Xx° ][ [ - ]
M) = (X x| ]
and by definition
L) =07 1
SO

L) = [
as [I] and [II] are symmetric. This shows that I (L (X),Y) =1I(X,Y). ®

Next we find a new formula for L.

Proposition 16 (Weingarten Equations)

Jdr On

Lw1w2 = _8711)2871017
m o= -5 £ &]
= -2 2% %]
on L0z oz [0z
u = legy gy = ll(au)
on oz e
m—‘%m‘%%—l(v)
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Proof. The strategy is just as with Christoffel symbols, but works out a bit more easily

8%z

81018'[02 o

= (am (o))

0 (858) oxr On

Lw1w2

owy \owy ) Owy dwy
_ 0z On
N 8w2 8’11}1

were we used that n is perpendicular to aa—w.
wa

For the second set of equations we note

[L(%2) L&) = [& &
= [ & m g

ox x - x x 1t 3
= -[5 &2l [& &6 5]

But n is a unit vector field so

L. 0n _ 19 In> =0
ow 20w N
showing that g—g is a tanget vector. In particular

) ) _ on 8
[Z(5) L&) I=-15 &)
|
The Weingarten equations can also be combined into one equation

5 =

on » 0T L 0T Oz
Liyse —Ly% =L (aw) .

The Gauss formulas and Weingarten equations together tell us how the derivatives

of our basis g—ﬁ, g—f, n relate back to the basis. They can be collected as follows:

Corollary 17 (Gauss and Weingarten Formulas)

9 oz oz

— ol fo)
Gulow o nl =[5 5 nlD
F%u F%v _L%
= [g% % n] F:juu FZ}U _LZJ

qu L’UJ’U O
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18 The Gauss Curvature and Map

One of the interesting features of the Weingarten map is that its trace 2H = LY + L}
and determinant K = L L? —L? L yield functions on the surface that are independent
of the chosen parametrization. Clearly the entries themselves do depend on parame-
trizations. This means that if we have two parametrizations around a point p € M, then
the calculation of H and K at p will not depend on what parametrization we use! H is
called the mean curvature and K the Gauss curvature. We saw that for a fixed choice
of normal the second fundamental form is defined independently of the parameters.
This will clearly also be true of the Weingarten map. The next theorem is therefore
obvious. Nevertheless it is instructive to offer a less inspired proof.

Theorem 18 The mean and Gauss curvatures do not depend on the parametrizations.

Proof. The key to proving this is to first realize that we know that the trace and
determinant of a matrix do not depend on the basis that is used to represent the matrix,
second we need to see that the Weingarten map changes according to the change of
basis rules when we change parametrizations. In these calculations we assume that the
normal vector field is fixed rather than given as a formula that depnds on the tangent
fields. There are only two choices for the normal field +n, and II as well as L will also
change sign if we change sign for n. Note that this sign change does affect H, but not
K!

The Weingarten map is calculated by

ou ov ou ov LY

u v

[on on)_ [ oe aw][% Lﬁ]
and similarly in (s, ¢) coordinates

(% 21--1% %) 0
L s L t
Changing parametrizations is done using the chain rule which in matrix form looks
like

[as 875] [au 81}] &J
s ot
on o] _ [on om 1] % F
[85 Bt] [au Bv] &&
s ot
Thus
(& e[ E £] - 1% %)
ou ov ov  Ju 0s ot
0s ot

- [ aw]{Li Lf]
Os ot It Li



showing that

Ou  Ou L5 LS ou  du 71
on  9On ] _ _[ Oz Oz B t s t Js t
u Ov 1 du v & & Lt Lt & v

ds ot s t Js ot

or 1
Ly LY du || Lt oLh || o

This in turn gives us

SN

LY Lu Ou  Ou L5 LS du  du 171
el i ] - e[ B £ G E 2]
Ly L (a Lot || 9 o
ou ou ou ou 71
du  Bu Ls LS du  Bu
= det{gg gg}det[ : t}det{g f,]
5 ot Ly Ly 5 ot
_ L Ly
= det{Lg ths]
and
u  fu u du s s u  ou 77!
t[ﬁ ﬁ]zt[s fHﬁ ﬁtHg f}
u v Os ot s t Os ot
ou ou 711 ou ou s s
-k #] (8 B[ H]
J9s ot 9s Ot s t
_ L Ly
= tr[Lg L%}
|

Note that we have in fact shown that the linear map L : T,M — T,M does not
depend on the parametrizations we use.
We can further find a very interesting formula for the Gauss curvature

Proposition 19 (Gauss)
on on
K — (52 x ) m
T |2z o Oz
ou ov

Proof. Simply use the Weingarten equations to calculate

gi; « %Z _ <_ng3 _ngf> « <_L;;‘32’ _ngf>
— Z%xg—f+LﬁL}jg—jxg—z
=iy Lo 92 < 02
= K g—zxg—f n
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Note that the denominator is already computed in terms of the first fundamental

form
2

dxr Oz 9
= guug'uv - (guv)

ou % v
The numerator is actually very similar in nature as it is simply the corresponding ex-
pression for the so called Gauss map n (u,v) : U — S%(1) C R? for the surface,
i.e., computed from the first fundamental form of n (u,v). This map is our analog of
the tangent spherical image. Note that for the unit sphere the unit normal at n is +n

depending on parametrizations. Thus (8—" X 8—") - n represents the oriented area or
5 aau ov
n mn

the parallelogram whose sides are 57, 5. Recall from curve theory that the tangent
spherical image was also related to curvature in a similar way. Here the formulas are a
bit more complicated as we use arbitrary parameters.

One classically defines the third fundamental form 111 as the first fundamental form
forn

mo= (% RIIE R

9n  On  On  On
ov  Ou ov  Ov

This certainly makes sense, but n might not be a genuine parametrization if the Gauss
curvature vanishes. Note however that n is not just the normal to the surface, but also
to the unit sphere at n
on On on On
8u><8v7 8uX6v "
This is part of what we just established.

The three fundamental forms and two curvatures are related by a very interesting
formula which also shows that the third fundamental form is almost redundant.

Theorem 20
III - 2HIT+ KI =0

Proof. We first reduce this statement to the Cayley-Hamilton theorem for the linear
map L. This relies on showing

I(L(X),Y) = I(X,Y),
I(L*(X),Y) = II(X,Y)

and then proving that any 2 x 2 matrix satisfies:
L? — (tr (L)) L +det (L) I =0

where [ is the identity matrix. The last step can be done by a straightforward calcula-
tion.
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We already saw that I (L (X),Y) = II(X,Y) as that followed directly from [II] =
[I] [L]. We similarly have

o = [L(3) (%) ][ L(g) (%))
= [L[e =211 &1L
— ('L
1) (]
— [[Z][L]
(L)

showing that I (L2 (X), Y) =1I(X,Y). &

In a related vein we mention Gauss’ amazing discovery that the Gauss curvature
can be computed knowing only the first fundamental form. Given the definition of K
this is certainly a big surprise. A different proof that uses our abstract framework will
be given in a later section. Here we use a more direct approach.

Theorem 21 (Theorema Egregium) The Gauss curvature can be computed know-
ing only the first fundamental form.

Proof. We start with the observation that

K
det [T]

det L = det [I] " det [11]
2
JuuGvv — (guv)

So we concentrate on

det[l]] = det {

o~

uuw L’U.’U
vu L’U’U

2 9’
= det| 9% " Ou0 "
ot 2 n x| n

Ovdu Ov?

Q
8

1

= ———— _—det| 2%
2 o)
GuuGow — (Guv [ ngu ’

ou X 9v)  Fuge \ou X o
(@ fLw) o’z 6
ou ov

iz (Bm 8m) x (jm d{)m) ]
x 5t - (58 < 30

Which then reduces us to consider

2 2
b (X3 GE(ExR)

ou v

Here each entry in the matrix is a tripel product and hence a determinant of a 3 x 3

matrix
2
det{ 0z e @}:aim. Oz Oz
Owy Owa ou ov a’wla"UJQ Ju ov
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With that observation and recalling that a matrix and its transpose have the same deter-
minant we can calculate the products that appear in our 2 x 2 determinant

0z [Ox y Oz %z [Ox y Ox
ou? Oou  Ov ov? ou  Ov
_ 9 o) d % d o)
= det| £z %2 o2 fdet| 22 g2 o= |
t
_ 9 o d 9?2 o) d
= det| £z %2 2o |det| 2z g2 o2 |
= det 9z ox ox k 3z ox ox
= de [ a2 du  ov } { 2 du  Ov ]
[ 8%z 8’z 9z O’z 9z O’z
61&2 ov2 Ou  Ov? ov  Ov?
= det ‘. Oz ox Oz oxr Oz
8&;2 ou ou Ou ov  Ov
%z Oz oz Oz oz Oz
L Ou? Ov ou  Ov ov  Ov
r 2 2
guig : ng Fvvu Fvvv
L FU/U/U gvu gUU
82$ 02$ 0 Fvvu me
= _ det [I] + det Fuuu Guu Juv
ou?  Ov?
u v F’LL’U/U g’UU g’U’U
and similarly
0%z ox y Oz 0%z oz y Oz
oudv ou Ov Jvou ou Ov
[ 8%z 8%z 9z 8%z Iz =z
Bu%v Oudv ou  Oudv Ov  Oudv
— det| 2= .02 oz o= bz om
81&31} ou Ou  Ou ov  Ov
o’z Oz Oz dz Oz Oz
L Oudv Ov ou  Ov ov  Ov
r 2 2
Baug:v : Bauawv Fuvu Fuvv
= det FU’UU guu guv
L I‘U’U'U gvu g'l)’U
82113 82113 0 1—‘uvu Fuvv
= m : Judv det [I] + det | P Guu Guwv
FU/U’U g’U'lL g'U’L)
Since we need to subtract these quantities we are finally reduced to check the difference
Pz 0%z O’z Oz
ou? 0Ov?2  Oudv Oudv
0 (9P Oz Bz Oz
T v \du? v ovou? Ov
0 ([ 0%’z Oz N OBz Oz
Ou \ Oudv v 0%2udv v
0 0
= 7Fuuv - 7Fuvv
ov ou
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Thus

Dz (ai gl) o’z .(8m % {n)
v

.2 3, 300 9, f ..
det | oY, (dai 2z) iy (ﬁzu ﬁj)
K = Ovdu ou v ov? ou v
(det 1))
o (%Fuu’u - %Fum;)
det [T]
0 Tovu Tovw 0 Puve  Tuvw
det | Tvuu  Guu Guw —det | Twvu  Guu Guw
i Fiwo  Gou Gov Cuwve  Gou Gov
(det [1])?

Exercise: Compute the mean and Gauss curvatures of the generalized cones, cylin-
ders, and tangent developables. It turns out that these are essentially the only surfaces
in space with vanishing Gauss curvature.

19 Principal Curvatures

The principal curvatures at a point p on a surface are the eigenvalues of the Wein-
graten map associated to that point, and the principal directions are the corresponding
eigenvectors. The fact that L is self-adjoint with respect to the first fundamental form
guarantees that we can always find an orthonormal set of principal directions, and that
the principal curvatures are real. This is a nice and general theorem from linear algebra,
variously called diagonalization of symmetric matrices or the spectral theorem. Since
the Weingraten map is a linear map on a two dimensional vector space we can give a
direct proof.

Theorem 22  For a fixed point p € M, we can find orthonormal principal directions
El, ks € TpM

L(E)) = rikEy,
L(EQ) = H‘,QEQ.

Moreover k1, ko are both real.

Proof. The characteristic polynomial for L looks like

AN —2HAN+ K =0.

The roots of this polynomial are real if and only if the discriminant is nonnegative:

4H? — 4K
H2

0, or
K.

(A\VARLYS
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If we select an orthonormal basis for T), M (it doesn’t have to be related to a parame-
trization), the the matrix representation for L is symmetric

a b
m=|5 4]
and so
o a-+d
= 5
K = ad-V.

This means we need to show that
2
ad —b? < <a+d> , or

—p? <

So the principal curvatures really are real. If they are also equal, then all vectors are
eigenvectors and so we can certainly find an orthonormal basis that diagonalizes L. If
the principal curvatures are not eual, then the corresponding principal directions are
forced to be orthogonal:

Kjll (El,EQ) = I(L (El) 7E2) :I(El,L(EQ)) = KJQI (EhEg), or
(/431 — HQ)I(El,EQ) = 0

This also makes it possible to calculate the second fundamental form in general
directions.

Theorem 23 (Euler) [f X € T,M , and the principal curvatures are K1, K2, then

II (X, X) = (k1 cos? 0 + ko sin® 9) X

where 0 is the angle between X and the principal direction corresponding to K.

Proof. Simply selct an orthonormal basis F, E5 or principal directions and use that

X = |X|(cosOE; +sinbE,),
II(E, E1) = &1,
II(Ey, Es) = ko,
II(Ey,E2) = 0=II(Ey Ey).

|
As an important corollary we get a nice characterization of the principal curvatures.
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Corollary 24 Assume that the principal curvatures are ordered k1 > ko, then

max II(X,X) = ki,
IX|=1
min IT(X,X) = ka.
IX|=1

Surfaces with constant L are parts of planes or spheres.

The height function that measures the distance from a point on the surface to the
tangent space 1), M is given by

f(z)=(z—p) n(p)

its partial derivatives in some parametrization are

af oz
w  ow " (p)
rf_ _ e )
811}18102 o 8w18w2 p

So f has a critical point at p, and the second derivatives matrix there is simply [II] .
The second derivative test then tells us something about how the surface is placed in
relation to T, M. Specifically we see that if both principal curvatures have the same
sign, or K > 0, then the surface must locally be on one side of the tangent plane, while
if the principal curvatures have opposite signs, or K < 0, then the surface lies on both
sides.

Theorem 25 A parametrized surface all of whose principal curvatures are > ¢ > 0
is convex on regions of a fixed size depending on ¢ and the domain.

Proof. The important observation is that critical points for the height function are
isolated, and, unlike the curve situation, the complement is connected! Also critical
points are max or min by second derivative test. Probably need a domain B (0, R) C
R? where the metric in polar coordinates has the form

= { 0 ,02((2“,9) }

and then restrict to B (0,¢R). B

Exercise: Show that the principal curvatures are constant if and only if the Gauss
and mean curvatures are constant.

Exercise: A surface is called a ruled surface if it is a union of lines. Specifically
given curves o (u) and 3 (u)

x (u,v) = a(u) +v8 (u)

Show that 2% + y? — 22 = 1 is a surface of revolution that is also a ruled surface.
Compute its Gauss and mean curvatures.
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Exercise: Show that if a surface has the property that it has a straight line passing
through every point, then it has K < 0.

Exercise: Show that a surface where k1 > ko = 0 everywhere, must be a ruled
surface. Hint: Construct an orthogonal parametrization where L (92) = 0, | 2Z| = 1.
v v
Then show that
x (u,v) = a(u) +v8 (u)
Exercise: Show that ruled surfaces with vanishing Gauss curvature are, cones, cylin-
ders, or have /3 (u) proportional to 42

20 Special Coordinates

The simplest types of coordinates one can expect to obtain on a general surface have
first fundamental forms where only one entry is a general function. We’ll mention
some examples at the end of the section. We start by giving some special examples.

20.1 Cartesian and Oblique Coordinates

Cartesian coordinates on a surface is a parametrization where

10
[I] - I 0 1 ]
Oblique coordinates more generally come from a parametrization where
Ca b
m=14 a

for constants a, b, ¢ with a, ¢ > 0 and ad — b*> > 0.

Note that the Christoffel symbols all vanish if we have a parametrization where the
metric coefficients are constant. In particular, the rather nasty formula we developed
in the proof of Theorema Egregium shows that the Gauss curvature vanishes. This
immediately tells us that Cartesian or oblique coordinates cannot exist if the Gauss
curvature doesn’t vanish. When we have defined geodesic coordinates below we’ll also
be able to show that surfaces with zero Gauss curvature admit Cartesian coordinates.

20.2 Surfaces of Revolution

Many features of surfaces show themselves for surfaces of revolution. While this is
certainly a special class of surfaces it is broad enough to give a rich family examples.

We consider
x(t,0) = (r(t)cosb,r(t)sind, z (1)) .
It is often convenient to select or reparametrized (r, z) so that it is a unit speed curve.
In this case we use the parametrization

z(s,0) = (r(s)cosf,r(s)sind, h(s)),
(") +w) =1

41



We get the unit sphere by using r = sin s and h = cos s.

We get a cone, cylinder or plane, by considering r = (at + ) and h = ~t. When
~ = 0 this is simply polar coordinates in the x, y plane. When o = 0 we get a cylinder,
while if both « and v are nontrivial we get a cone. When o? + 72 = 1 we have a
parametrization by arclength.

The basis is given by
oz . . ;
2% = (rcos&,rsm@,h) ,
oz .
% = (—rsinf,rcosh,0),
(—h cosf, —hsin 0, 7'“)
n =

VA2 72

and first fundamental form by

g = h*+7%
goo = r?
g = 0

Note that the cylinder has the same first fundamental form as the plane if we use
Cartesian coordinates in the plane. The cone also allows for Cartesian coordinates, but
they are less easy to construct directly. This is not so surprising as we just saw that
it took different types of coordinates for the cylinder and the plane to recognize that
they admitted Cartesian coordinates. Pictorially one can put Cartesian coordinates on
the cone by slicing it open along a meridian and the unfolding it to be flat. Think of
unfolding a lamp shade.

Taking a surface of revolution using the arclength parameter s, we see that

Z—Z = % (—h cos@,—h'sinf,r")
= (=h"cos,—h"sinf,r")
?TZ = % (—h'cos@,—h'sin6,r")

= (h'sinf,—h'cosb,0)

The Weingarten map is now found by expanding these two vectors. For the last equa-
tion this is simply

% = (h'sin@, —h' cosh,0)
!/
= —— (—rsinf,rcosb,0)
,
_ _Mo=
B r 00
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Thus we have

Ly = L!=o,

h/

Ly = —

0 r

This leaves us with finding L3. Since % is a unit vector this is simply

on Oz
L2 = —=.Z=
# ds Os

(h" cos@,h" sin@, —r"") - (r' cos@,r"sinf, h')

B — R

Thus

/

h
K = (W —r"n)—
r
I
h// / //h/
I . Y

In the case of cylinder, plane, and cone we note that K vanishes, but H only vanishes
when it is a plane. This means that we have a selection of surfaces all with Cartesian
coordinates with different H.

We can in general simplify the Gauss curvature by noting that
(')’ + (W)

!
0 = ((r’)2 + (h’)Q) = 2r'r" 4+ 2h'R"

' }1
r

0= w)?)

1

Thus yielding

s
(o

7,,//

r

&= (Vi)
Grr

This makes it particularly easy to calculate the Gauss curvature and also to construct
examples with a given curvature function. It also shows that the Gauss curvature can be
computed directly from the first fundamental form! For instance if we want K = —1,
then we can just use 7 (s) = exp (—s) for s > 0 and then adjust & (s) for s € (0, 00)
such that

L= ()" + (W)
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If we introduce a new parameter ¢ = exp (s) > 1, then we obtain a new parametrization
of the same surface

z (t,0) z(In(¢),0)

= (exp(—1Int)cos@,exp(—1Int)sind, h(Int))

= <1 cos 0, % sin@, h (lnt))

To find the first fundamental form of this surface we have to calculate

d dh 1
1
— \/1— (3=
)

Vi- e (92
v1—exp (—21nt)%

Thus
1 1 1 1
I:|:t4+(1_t?)tz (1):|:|:152 ?}
t2

This is exactly what the first fundamental form for the upper half plane looked like.
But the domians for the two are quite different. What we have achieved is a local
representation of part of the upper half plane.

Exercise: Show that geodesics on a surface of revolution satisfy Clairaut’s condi-
tion: 7 sin w is constant, where w is the angle the geodesic forms with the meridians.

20.3 Monge Patches

This is more complicated than the previous case, but that is only to be expected as all
surfaces admit Monge patches. We consider x (u,v) = (u, v, f (u,v)) . Thus

ox of
% - (1,078u>7
ox af
& - (0,1,(%>




_ AN

_ AN
Gov = 1+(av> )

_ o9rof
guv - auav7
ar\? of of
m - 1+(a%) Budv
of o P
% (%
2 2
i e ()4 (2)

Pz 0.0 0% f
81111811)2 o ’ ’81018’102

o*f of

So we immediately get

F = —
rw2ts 8’(1)1 8’LU2 811}3
9% f
Owy Ow
Lwlwz _ 10wz

e (3) + (5)

The Gauss curvature is then the determinant of

| Lu Ly || 9" ¢ || Luu
Ly Ly 9" 9" || Lou

1 Lyuw L
K — d t uu uv
det [H ¢ |: Lvu Lm;
02 %f ( ) )2
u2 Ov2 Oudv
B det [1]°
We note that
2
- 1 1+ (%) _87
det [I] _ g% %ﬁ 1+ (
1 2f  9°f
i = gy ooy
f o f
det m Oudv v?




and the Weingarten map

—1
(L) = [ [
r 2
of of of 2 2
_ o () S |
C (det T2 of of of)> of  0°f
(et[]) ~9u v 1+ Ju Oudv Ov2
r 2 2
of\*\ 8¢ _ ofof 0°f of 0*f _ 0f 0f 9*f
1 1+(7) Bu? ~ Bu 9y Budv 1+(%) Budu — Ou By Ov7
= 3 2 2 2 2 2
2 of 0°f _ Of of &*f or\*\ o%s _ of of 9*f
(det 1)) 1+(%) Dudv — u O OuZ 1+(%) 9% ~ 9 0v Budu

This gives us a general example where the Weingarten map might not be a symmetric
matrix.

20.4 Surfaces Given by an Equation

This is again very general. Note that any Monge patch (u, v, f (u,v)) also yields a
function F (z,y, z) = z — f (z, y) such that the zero level of F is precisely the Monge
patch. This case is also complicated by the fact that while the normal is easy to find, it
is proportional to the gradient of F', we don’t have a basis for the tangent space without
resorting to a Monge patch. This is troublesome, but not insurmountable as we can
solve for the derivatives of F. Assume that near some point p we know %—f # 0, then
we can use x, y as coordinates. Our coordinates vector fields look like

ox af
— = 1,0,
ou ( 8u>
ox af
— = 10,1
v ( ’ ’81))
where oF
of _ _5a
ow or
Thus we actually get some explicit formulas :
aF
gj = (17 07 - g;) )
u Ea
OF
9z _ (g _ov
ow o\ e )

We can however describe the second fundamental form without resorting to coor-
dinates. We consider a surface given by an equation

F(z,y,2,)=C
The normal can be calculated directly as
_VF
|VF
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This shows first of all that we have a simple equation defining the tangent space at each
point p
T,M={Y eR*:Y -VF (p) =0}
Next we make the claim that
1
IVE|
1
= ———=Y -DxVF
VE[ T
where D is the directional derivative. We can only evaluate I on tangent vectors, but
Y - DxVF clearly makes sense for all vectors. This has the advantage that we can
even use Cartesian coordinates in R? for our tangent vectors. First we show that

I1(X,Y) 1(DxVF,Y)

L(X)=—Dxn

Select a parametrization « (u, v) such that

on X gy _ VF
|92 x Jz |VF|

The Weingarten equations then tell us that

Oz on

We can now return to the second fundamental form. Let Y be another tangent
vector then, Y - VF = 0 so

H(X,Y) = —1(L(X),Y)
= YDXTL
_ Y~<Dx1>VF+Y~1DXVF
N i
1
= V. o DxVF

Note that even when X is tangent it does not necessarily follow that Dx V F' is also
tangent to the surface.

To perform a calculation it is useful to know that

’F  9°F  O°F
Ox? Oxdy  Oxdz

OVF 9VF 9vVF | _ 8%°F 9*F 8*F
ox Oy 0z - Oydx 627;2 Oydz
9*F 9*F 8°F

0z0x 920y 022
is the second derivative matrix of f.

Exercise: If c is a curve, then it is a curve on F' = C' if ¢ (0) lies on the surface and
¢ - VF vanishes. If ¢ is regular and a curve on ' = C)| then it can be reparametrized to
be a geodesic if and only if the tripel product [V F, ¢, ¢] vanishes.
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20.5 Geodesic Coordinates

This is a parametrization having a first fundamental form that looks like:

1 0
=10 )

This is as with surfaces of revolution, but now r can depend on both v and v. Using a
central v curve, we let the w curves be unit speed geodesics orthogonal to the fixed v
curve. They are also often call Fermi coordinates after the famous physicist and seem
to have been used in his thesis on general relativity. They were however also used by
Gauss. These coordinates will be used time and again to simplify calculations in the
proofs of several theorems. The v-curves are well defined as the curves that appear
when v is constant. At w = 0 the » and v curves are perpendicular by constaruction, so
by continuity they can’t be tangent as long as w is sufficiently small. This shows that
we can always find such parametrizations.

Exercies: Show that

Fyuwuw = 0
I‘uvu = 0= Fvuu
or
Fvvv =
v
or
Fuvv = = Fvuv
" Bu
Puuv = 0
or
Fvvu = T
rau
Fﬁf)lwz = Fw1w2u
» 1
F’LU]’LUQ = ﬁF’UJliuQv
and
8%r
K = —9u?
T

20.6 Chebyshev Nets

These correspond to a parametrization where the first fundamental form looks like:
1 ¢
et
_ 1 cosf
o cosf 1 ’
6 € (0,m)

These coordinates can be shown to exist even after describing the parameter curves
through a fixed point p. Real life interpretations that are generally brought up are fishnet
stockings or nonstretchable cloth tailored to the contours of the body. The idea is to
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have a material where the fibers are not changed in length or stretched, but are allowed
to change their mutual angles.

Exercise: Chebyshev notes have the property that

0’z _
Oudv
Puvw = Tuwwu =Towe =0,
Tiww = -— % sin 6
Toou = — % sin 6
8(12;1) = —Ksinf

Exercise: Show that the geodesic curvatures «,, and «, of the coordinates curves
in a Chebyshev net satisfy

o
Fu = By’

_ o
o = 5o

Exercise: (Hazzidakis) Show that y/det [I] = sin6, and integrating the Gauss
curvature over a coordinate rectangle yields:

—/ K sinOdudv = 2w — a1 — ag — vz — iy
[a,b] X [c,d]

where the angles «; are the interior angles.

20.7 Isothermal Coordinates

These are also more generally known as conformally flat coordinates and have a first
fundamental form that looks like:
(]
=[]

The proof that these always exist is called the local uniformization theorem. 1t is not
a simple result, but the importance of these types of coordinates in the development of
both classical and modern surface theory cannot be understated. There is also a global
result which we will mention at a later point. Gauss was the first to work with such
coordinates, and Riemann also heavily depended on their use. They have the properties
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that

Jdln A
n
Lyw = a?v/\zfvuu
n
n
Luww = aaul :Fvuv
n
n
Lopu = - I
Mifw, = 3luswsn
L (B o)
A2\ ou? Ov?

Exercise: A particularly nice special case occurs when
2N (u,v) = U? (u) + V2 (v)

These types of metrics are called Liouville metrics. Compute their Christoffel symbols,
Gauss curvature, and show that when geodesics are written as v (u) or u (v) they they
solve a separable differential equation. Show also that the geodesic have the property
that

U?sin?w — V2 cos® w
is constant, where w is the angle the geodesic forms with the w curves.

21 Constant Gauss Curvature

The goal will be to give a canonical local structure for surfaces with constant Gauss
curvature. Given the plethora of surfaces with constant Gauss curvature we seek for
the moment only canonical coordinates. Minding was the first person to give the clas-
sification of the first fundamental form we obtain below. Riemann extended this result
to higher dimensions. We start by studying the case of vanishing Gauss curvature.

Theorem 26 If a surface has zero Gauss curvature, then it admits Cartesian coordi-
nates.

Proof. We shall assume that we have geodesic coordinates along a unit speed geodesic.
Thus the v-curve described by u = 0 is a geodesic, and by definition of geodesic
coordinates all of the u-curves are unit speed geodesics.

Assuming K = 0, we immediately obtain

r(u,v) =7r(0,v) + u% (0,v)
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But
r(0,v) = %

since the v-curve with v = 0 is unit speed. Next use that this curve is also a geodesic.
The explicit form in u, v parameters for the curve is simply ¢ (v) = (0, v) so all second
derivatives vanish and the velocity is pointing in the v direction. Thus the geodesic
equations in particular tell us

0 = 0+[0 1]{F3u FTJUH?]

=1

Fgu ng
= Iy, (07 ’U)
= Fvvu (Oa U)
or
- 0
8’1,6 ( ,'U)

This shows that » = 1, and hence that we have Cartesian coordinates in a neighborhood
of a geodesic. H

There are similar characterizations for spaces with constant positive or negative
curvature. These spaces don’t have Cartesian coordinates, but geodesic coordinates
near a geodesic are obviously completely determined by the curvature regardless of
how the metric might otherwise be viewed.

To be more specific

7“(0,’0) = g% =4
or
9 0,v) = 0

as we just saw. Given these inital conditions the equation

dictates how r changes as a function of u

r(uv):{cos(\/fu) K>0
’ cosh(\/ju) K <0

22 The Gauss and Codazzi Equations
Recall the Gauss formulas and Weingarten equations in combined form:

9 x x x ox
Gu; Lo & onl=[8 & nlDuwl
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Taking one more derivative on both sides yields
82 ox ox 0 ox ox
_— —_— —— = _— —_— —_— Dw
awlan [ ou v } 81111 [ ou v N ] [ 2]

+[ 3% & ”][awlDwz]

Now using that

82 [ ox oz

0 oz Oz
Ow,0ws o o ] [

= | 5= H N
3w25w1 ou ov ]

we obtain after writing out the entries in the matrices

[ ory ary oLY ]
Qu wov Yl - “ v 7T Tu u u
Jows 0w Owy F’1111’11‘ le’U 7Lw1 F’wgu ng’u 7Lw2
drwzu ngu dL“’Z _|_ ]_"’U 1"1) _L'U ]_'Vu ]_'w _L'U
Jwy Owy T ow, w1 wiv w1 wau wWav wa
OLywou  OLuygw 0 Lwlu Lwlv 0 ngu ngv 0
L Ow: Ow1 | - - L _
[ o . Ty . oLy, - . _
—_ U u u U u u
w2 Ows Ows szu Fww *sz leu lev 7Lw1
_ ory, . 0Ty, oLy, + g I _Iv TV v .y
Qwz Owa T Ows w2 w2V w2 w1 wyv w1
OLwiu  OLuwjv 0 | Lwsu Loy 0 ] | Lwiu Luww 0 |
Owa Ows ]

If we restrict attention to the the general terms of the entries in the first two columns
and rows using ws, wy as indices instead of u, v we end up with

U u
orit,, Limws | orw, L
2W3 wq Wy _ T wa v _ 1wW3 Wy wq _ Jwa v
a + [ leu le'u Lw1 ] ngwg - 8 + [ FU)Q'LL FU}Q’U LU}Q } le w3
w1 w2
w2w3 wi1ws
which can further be rearranged by isolating I's on one side:
Wq Wy u u
arw2w3 _ aF10111)3 +[ Twa w4 } szwg _ [ w4 w4 ] lew3 — LW, _ w4,
w1 u wiv v wou wov v w1 w2ws3 wo wiws»
0 0 B
w1 w2 waws wiws

These are called the Gauss Equations.
The Riemann curvature tensor is defined as the left hand side of the Gauss equations

81’*11)4 81"11)4 U u
R$§w2w3 — WawW3 wi1ws3 +[ Fﬁi;‘u ngv ] |: FvawB ]_[ lef;;lu Fzgv } |: F$1UJ3 :|
(9101 8102 ngwg le’ws

It is clearly an object that can be calculated directly from the first fundamental form,
although it is certainly not always easy to do so. But there are some symmetries among
the indices that show that there is essentially only one nontrivial curvarure on a surface.
On the face of it each index has two possibilies so there are potentially 16 different
quantities! Here are some fairly obvious symmetries

R = —R?

w1 waws3 W2wiws3?
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In particular there are at least 8 curvatures that vanish

Ryt L. =0

wWWwws

and up to a sign only 4 left to calculate

U _ U
Ruvu - _Rvuu7

v _ v
Ruvu - R'Uuu ’

U _ U
Ruvv - _Rvuvv
R —RY

uvv vVUv

A slightly less obvious formula is the Bianchi identity
Riptwsws T Rugwiws + Ruggwguwy =0
It too follows from the above definition, but with more calculations. Unfortunately it
doesn’t reduce our job of computing curvatures. The final reduction comes about by
constructing
R’wlw2w3w4 = R’Z;lwgwgg’u’w4 + valwr_;wgg’vum
and showing that

Rw1 wowawg — _Rw1 WawW4W3 "
This means that the only possibilities for nontrivial curvatures are

Ruvvu = Rvuuv = _Ru'uuv = _Rvuvu~

All of the curvatures of both types turn out to be related to an old friend

Theorem 27 (Theorema Egregium) The Gauss curvature can be computed know-
ing only the first fundamental form

R Ry

K — uvv — vuYU

Gov Guu
RY Ry

UvY VU

g'uu g’U’U.

Proof. We know that

and

Ly Ly I I e e Lyy Ly
Ly Ly | | g™ g™ Lyy Ly

L] = [0 [y

Now let u = w1 = wy and v = wo = w3 in the Gauss equation. We take the strange
route of calculating so that we end up with second fundamental form terms. This is
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because [II] is always symmetric, while [L] might not be symmetric. Thus several
steps are somewhat simplified.

u
RU'U’L)

LyLvy — Ly Ly
= (9" Luu + 9" Lou) Loo — (9" Luv + 9" Lvy) Luv
9" (LuuLvw — LuvLuv)
g™ det [I1]
g"“det [I]det L
= gypdetL
= guk

The second equality follows by a similar calculation. For the third (and in a similar
way fourth) the Gauss equations can again be used to calculate

R'Zvv = LZLU’U - LgLuv
(gvuLuu + gvavu) va - (gvuLuv + gvavv) Luv
gvu (Luuva - LuvLuv)

= _gvuK
Finally note that
Ryvou = RZ’uvguu + szw’ug’l/u
= ngvguu + Rzm;g'uu
= K (gvvguu - guvg'uu)
— Kdet[]]
|

The other entries in the matrices above reduce to the Codazzi Equations

re T

O Ly w 2w 0Ly, w wiws
8w21 3+[ Lyyu Lo O ] szws - 81012 3+[ Luwgu  Luge 0 ] F’w1w3
w2w3 w1 w3

or rearranged

aLU}Q w3 o 8L1U1 w3
8w1 8w2

ry ry
— [ Lyyu Ly ] { Pglws» ] 7[ Ly,u  Luwov } |: F:}“Q’UJ3 }

wiws w2w3

Exercise: Show that all of the possibilities for the Gauss-Codazzi equations can be
reduced to the equations that result from:

82 ox ox 82 ox ox
Bugu L 9 9 R

ou o T } = dvdu

du v
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Seven of these nine equations definitely have the potential to be different. Show further
that these equations follow from the three equations:

argu argu u u qu u u [ Fgu ] — u u
R LS | B B AR B R AT
aFgu ar'ﬁu v v Fgu v v [ Fquu ] 1

8u - a'U + [ Fuu Fuv ] |: F;lju :| - [ Fvu F'U’U ] FZU = LZLq)u - LgLuu
OLyy 0Ly I, [Th ]

au - 81} + [ Luu Luv ] |: Iw;;)u :| - [ Lvu va ] qu ] =0

Exercise: Use the Codazzi equations to show that if the principal curvatures x; =
Ko are equal on some connected domain, then they are constant.

Exercise: If the principal curvatures x; and ko are not equal on some part of the
surface then we can construct an orthogonal parametrization where the tangent fields
are principal directions or said differently the coordinate curves are lines of curvature:

oz oz
L (au) = K/l%7
oz oz
L (81;) = KQ%.

Show that the Codazzi Equations can be written as

0K 1 alnguu
0 3 (Ko — K1) EE
Ory _ 1 (K1 — K2) O1n guy
ou VTR TR T

Exercise: (Hilbert) The goal is to show that if there is a point p on a surface with
positive Gauss curvature, where 11 has a maximum and 2 a minimum, then the surface
has constant principal curvatures. We assume otherwise, in particular x; (p) > k2 (p),
and construct a coordinate system where the coordinate curves are lines of curvature.
At p we have

OK1 Ok %Ky
— = — =0,—5 <0
ou v T ov2 T
2
Ory Ok Ok
ou ov ou? —
Using the Codazzi equations from the previous exercise show that at p
alnguu — 0= 31H9vv
o Ou
and after differentiation also at p that
0%1n guu 0%1n g,
> >0
ov? Toouz T
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Next show that at p

2

]‘ 1 2 1 uu 2 vU
1 9%Ing n 1 0%Ing <0

Exercise: Using the developments in the previous exercise show that a surface with
constant principal curvatures must be part of a plane, sphere, or right circular cylinder.
Note that the two former cases happen when the principal curvatures are equal.

Exercise: Show that if we have a parametrization « (u,v) where all geodesics are
straight lines

au+bv+c=0

then
I = T4y =0,
Diw = 2,
ry, = ory,
Use the Gauss equations
gUUK = RZ’U’U
gvuK = 7R31m
gUuK = _Rguu
together with the definitions of Ry#,,. . to show that

0:[ 0K _ 0K } Guu  Guv
81} au g'Uu g’UU

and conclude that the Gauss curvature is constant.

23 Local Gauss-Bonnet

Inspired by the idea that the integral of the curvature of a planar curve is related to how
the tangent moves we try to prove a similar result on surfaces. First we point out that
we cannot expect the same theorem to hold. Consider the equator on a sphere. This
curve is a geodesic and so has no geodesic curvature, on the other hand the tangent
field clearly turns around 360 degrees. Another similar example comes from a right
circular cylinder where meridians are all geodesics and also have tangents that turn
360 degress.

Throughout this section we assume that a parametrized surface is given:

z (U, ) : (ay,by) X (ay,b,) — R?

where the domain is a rectangle. The key is that the domain should not have any holes
in it. We further assume that we have a smaller domain

R C (ay,by) X (ay,by)
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that is bounded by a piecewise smooth curve

(u(s),v(s)) : [0, L] = (au,bu) % (av,by)

running counter clockwise in the plane and such that ¢ (s) == x (u (s), v (s)) is a unit
speed.

Integration of functions on the surface is done by defining a suitable integral using
the parametrization. To make this invariant under parametrizations we define

/w(RfdA /fuvmdudv—/fuv

This ensures that if we use a different parametrization (s,t) where z (Q) = = (R),

then
/fuv dudv—/fst

We start by calculating the geodes1c curvature of ¢ assming further that the parame-
trization gives a geodesic coodinate system

10
=10 ]

Lemma 28 Let 0 be the angle between c and the u curves, then

. d9+8r1,n9
97 ds  Bur '

&c ox
Xi

e dudv

Bm
Xi

8w

X — | dsdt.

Proof. We start by pointing out that the velocity is

de _ duda  dvoe

ds ~ dsdu ds v
= cos@a—m—i—lsinHa—w
h ou r ov

The natural unit normal field to ¢ in the surface is then given by

. Oz 1 ox
S = —st% + ;0059%

Our geodesic curvature

kg = 1 (S, éI)

_ g. du dc dc &B dc dc
- d52 8u
. d*u de dc 9 2y de dc
= —sm@(ds ( )) +7r *COSH d——i—F (ds ds>>
2
= —sin@(du + I (dc dc>)+r0059( U—&—F’(dc,dc>>
ds’ ds

ds?
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We further have

dPu
ds?
d?v
ds?

dcosf . 9d0
= —sin

ds SYs
d%sin@

ds

—-1d
—Qd—:smﬂ—i—fcosOd—
-1 ardqu@rdv '9+1co edﬁ
— [ =—— + —— ] sin ~cosf—
r2 \Ouds Ovds r ds
- -1 1 do
?£c0s9sin0+r—3%sin29+;0050£

And the Christoffel symbols are not hard to compute

Thus

kg = sin0<

de

de

£+

£+

o

10r

r Ou
or1l

our

de

» [ de dc w [V 2
(&) - (%)

dc du dv dv\?
ge @)~ ogpy CUEY L po (U
ds’ds) wisds T (ds)

20rdudv 10r (dv>2

roudsds row\ds

2 1
= r—z%singcosg—l— T—S%Sinzﬁ

*Sineﬁflgsmgﬁ +rcosf ECOSOd—@+i@
r ds 120u

ds rou

10
sin® 6 + f—rsinﬂcosze
T

ou

sin 0

sin 6 cos 0)

We can now prove the local Gauss-Bonnet theorem. It is stated in the way that
Gauss and Bonnet proved it. Gauss considered regions bounded by geodesics thus
eliminating the geodesic curvature, while Bonnet presented the version given below.

Theorem 29 (Gauss-Bonnet) Assume as in the above Lemma that the parametriza-
tion gives a geodesic coordinate system. Let 0; be the exterior angles at the points
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where c has vertices, then

L
KdA+/ Kods = 2m — 0;
/m(R) o Z
Proof.

/ KdA = /K\/det[I]dudv
x(R) R

93r
2
= - 94 1 dudu
R T

0%r

The last integral can be turned into a line integral if we use Green’s theorem

0*r or
/Rwdud’l} = /{;R ad’l)

This line integral can now be recognized as one of the terms in the formula for the
geodesic curvature

L
ﬁah) = &@ds
or Ou o Ouds

ds
L L
do
= / Kgds — / —ds
0 0 dS
Thus we obtain

L 2 L
/ KdA+/ Kgds = —/ a—Zdudv—k ﬁdv +/ ﬁds
z(R) 0 r Ou or Ou o ds

L
= / d—eds
o ds
27‘(—292‘
|

Clearly there are subtle things about the regions R we are allowed to use. Aside
from the topological restriction on R there is also an orientation choice (counter clock-
wise) for OR in Green’s theorem. If we reverse that orientation there is a sign change,
and the geodesic curvature also changes sign when we run backwards.

We used rather special coordinates as well, but it is possible to extend the proof to
work for all coordinate systems. The same strategy even works, but is complicated by
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the nasty formula we have for the Gauss curvature in general coordinates. Using Car-
tan’s approach with selecting orthonormal frames rather than special coordinates makes
for a fairly simple proof that works within all coordinate systems. This is exploited in
an exercise below, but to keep things in line with what we have already covered we still
retsrict attention to how this works in relation to a parametrization.

Let us now return to our examples from above. Without geodesic curvature and
exterior angles we expect to end up with the formula

/ KdA =27
z(R)

But there has to be a region R bounding the closed geodesic. On the sphere we can
clearly use the upper hemisphere. As K = 1 we end up with the well known fact that
the upper hemisphere has area 27. On the cylinder, however, there is no reasonable
region bounding the meridian despite the fact that we have a valid geodesic coordinate
system. The issue is that the bounding curve cannot be set up to be a closed curve in a
parametrization where there is a rectangle containing the curve.

It is possible to modify the Gauss-Bonnet formula so that more general regions can
be used in the statement, but it requires topological information about the region R.
This will be studied in detail later and also in some interesting cases in the exercises
below.

Another very important observation about our proof is that it only referred to quan-
tities related to the first fundamental form. In fact, the result holds without further
ado for generalized surfaces and abstract surfaces as well, again with the proviso of
working within coordinates and regions without holes.

It is, however, possible to also get the second fundamental form into the picture if
we recall that

Jdr Oz on On on On
K‘aux <8UX6U>TL—iX

v ou Ov

then we see that || r l{dA also measures the signed area of the spherical image traced
by the normal vector, or the image of the Gauss map.

Exercise: Consider a surface of revolution and two meridians ¢; and ¢y on it. These
meridians bound a band or annular region  (R) . By subdividing the region and using
proper orientations and parametrizations on the curves show that

/ KdA:/ ngdslf/ HgdSQ.
x(R) c1 c2

Exercise: Generalize the previous exercise to regions that are bounded both on the
inside and outside by smooth (or even piecewise smooth) curves.

Exercise: Assume now that the parametrization is not geodesic. Create tangent
vector fields F; and F5 forming an orthonormal basis for the tanget space everywhere
with the further property that F; is proportional to the first tangent field % and

oz o Oz

— oy — _Ou ” Ov_
E1XE2—’I’L— @X‘?j
ou ov
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First show that

8% [ E1 E2 n ] = [ E1 E2 n ] [Dw],
0 _¢w _¢w1
[Dw] = ¢w 0 7¢w2 )
¢w1 ¢w2 0

and identify the entries with dots products X - % where X, Y are elements of the
frame. Next, show that

0 0
— [Dy] — =— [Dy Dy [Dy] — [Dy] [Du] =0,
(D) = 5 (D] + (D) [D] = (D) (D]
Separating out the middle entry in the first row of that equation we get
99, _ 99,
u - v = ¢u2¢v1 - ¢v2¢u1

Using the Weingarten equations and letting [L] be the matrix of the Weingarten map
with respect to F1, F» show that

L[ B B ][ &= ]::{ Pur ¢U1]

ou  Ov ¢u2 ¢v2
and
K\/m = ¢u1¢1;2 - ¢u2¢vl
Thus
/ KdA - 7/ (3¢v5¢u>dudv
=(R) r \ Ou ov
- - /d)udu + ¢Udv

Finally prove the Gauss-Bonnet theorem by establishing

/c¢udu + ¢ dv = / (kg - 32) ds

where 6 is the angle with F; or g—i. To aid the last calculation show that

d
€ cos 0FE; + sinEs,
ds
S = —sinfF; + cosbFEs,,
d? do
disg = S% —sin 6 (cos 0¢,, + sinb¢,) F1

+cos 0 (cos ¢, + sinb¢p,) Ea + ()n

where the coefficient in front of n is irrelevant for computing the inner product with .S
and hnce the geodesic curvature.
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24 Symmetries

So far we’ve discussed how quatities remain invariant if we change parameters at a
given point. A symmetry is a transformation of a surface that shows that our geo-
metrically defined quantities are the same at different points p and ¢ if the symmetry
moves p to g. Basic examples of symmetries are rotations around the z axis for sur-
faces of revolution around the z axis, or mirror symmetries in meridians on a surface
of revolution. The sphere has an even larger number of symmetries as it is a surface of
revolution around any line through the origin. The plane also has rotational and mirror
symmetries, but in addition translations.

Some other examples we have seen that are less obvious came from geodesic co-
ordinates. There we saw that if we select geodesic coodinates around a geodesic in a
space of constant Gauss curvature K, then we always get the same answer. This means
that locally any space of constant Gauss curvature must look the same everywhere, and
even that any two spaces of the same constant Gauss curvature are locally the same.

Symmetries are usually called isometries as they are defined as those maps that
preserve metric quatities, i.e., the first fundamental form. An alternate definition more
in spirit with the definition of a linear map is to see what it should do to a geodesic.
Linear maps preserve lines but not necessarily speed. Symmetries preserve geodesics
as well as their speeds. In other words if F' : M — M isamapandc(t) : I — M
is a geodesic, then (Foc)(t) : I — M should also be a geodesic with the same
speed as c. This condition is clearly not desirable as we could never check whether a
transformation is an isometry without first finding the geodesics. Let us check what it
means for F' to preserve the speed:

de
dt

_ |d(Foc)
dt

dc
- \DF (dt)\

The second line is the chain rule for derivatives. The first reduction we can make is to
substitute ¢ = V" with any tangent vector V. After squaring the norms we must check
that for all tangent vectors:

1(V,V)=1(DF (V),DF (V).

To be specific we have to pass to a parametrization « (u, v) and then figure out how F'
maps the parameters F' (u,v) = (F" (u,v), F" (u,v)). DF is then the matrix of first
derivatives

IDF] = [ i a%}
ou ov
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and we have to check thatif V' = V" gfj Vv g?}’ and F' (p) = g, then

e[ e V]

'] H:::Ep% e v ]

u u t v “
(% E][%) 10 =0 E B
81; 8F Vv g'U’u (Q) gU’U (Q) adLu 80% Vv
oF"  OFv oF“  9F* u
= [V v ] [ iu 68;“ } |:guu (@) guv (@) } [ a{g‘v aé;“ } [ V’
e 50 Gou (Q) Gov (q) ou ov Ve

— I(DF(V),DF(V)).

This comes down to checking that

I:guu (P) Guv (p) } _ [ e o ] [ Guu (@) Guw (q) } [ o & }

o, 3 v v
gou (D) Guv (p) o o Gou (@) gov (9) 5

or in other words that D F" preserves the first fundamental form when mapping from p
to q.

1(V,V)

<

< <

Q,

This is still a bit of a mouthful, but no further reductions are possible. The nice
result is that any transformation that preserves the first fundamental form as just de-
scribed will also preserve geodesics. Thus preserving speeds of curves is enough to
tell us that geodesics are also preserved. Moreover, checking that speeds are preserved
comes down to checking a matrix identity.

Theorem 30 A symmetry maps geodesics to geodesics and preserves Gauss curva-
ture.

Proof. Let ¢ (t) be a geodesic and F' a symmetry. The geodesic equation depends only
on the first fundamental form. By definition symmetries preserve the first fundamental
form, thus F' (¢ (t)) must also be a geodesic.

Next assume that F' is a symmetry such that F' (p) = ¢. Again F preserves the first
fundamental form so the Gauss curvatures must again be the same. H

It is possible to construct symmetries that do not preserve the second fundamental
form. The simplest example is to image a flat tarp or blanket, here all points have
vanishing second fundamental form and also there are symmeteris between all points.
Now lift one side of the tarp. Part of it will still be flat on the ground, while the part
that’s lifted off the ground is curved. The first fundamental form has not changed but
the curved part will now have nonzero entries in the second fundamental form.

In order to actually find the set of all symmetries we’d have to somehow solve the
equation above. This is not always possible. But as with geodesics there are some
uniqueness results that will help.

Theorem 31 [f F and G satisfy F (p) = G (p) and DF (p) = DG (p) then F = G
in a neighborhood of p.
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Proof. We just saw that symmetries preserve geodesics. So if ¢ (¢) is a geodesic with
¢(0) = p, then F'(c(t)) and G (c(t)) are both geodesics. Moreover they have the
same inital values

F(c(0)) = F(p),
G(c(0)) = G(p),
d .
ZF @)= = DF((0),
d

7GC®h=0 = DG(e(0).

This means that F' (¢ (t)) = G (¢ (¢)) . By varying the initial velocity of ¢ (0) we can
reach all points in a neighborhood of p. M

Often the best method for finding symmetries is to make educated guesses based on
what the metric looks like. One general guide line for creating symmetries is the obser-
vation that if the first fundamental form doesn’t depend on a specific variable such as
v, then translations in that variable will be symmetries. This is exemplified by surfaces
of revolution where the metric doesn’t depend on 6. Translations in § are the same as
rotations by a fixed angle and we know that such transformations are symmetries. Note
that reflections in such a parameter where v is mapped to vy —v will also be symmetries
in such a case.

Here is a slightly more surprising relationship between geodesics and symmetries.

Theorem 32 Let F' be a nontrivial symmetry and c (t) a unit speed curve such that
F (c(t)) = c(t) forall t, then ¢ (t) is a geodesic.

Proof. Since F' is a symmetry and it preserves ¢ we must also have that it preserves

its velocity and tangential acceleration

DF (c(t))
DF (&'(t)) = &(t).

|
oD
—~
~
~—

As cis unit speed we have ¢ - ¢ = 0. If & () # 0, then DF preserves c (t) as well as
the basis ¢ (¢) , & (¢) for the tangent space at ¢ (¢) . By the uniqueness result above this
shows that F' is the identity map as that map is always a symmetry that fixes any point
and basis. But this contradicts that F' is nontrivial. W

Note that circles in the plane are preserved by rotations, but they are not fixed,
nor are they geodesics. The picture we should have in mind for such symmetries and
geodesics is a mirror symmetry in a line in the plane, or a mirror symmetry in a great
circle on the sphere.

There are some further surprises along these lines.

Theorem 33  [f all geodesics are preserved by nontrivial symmetries, then the space
has constant Gauss curvature. Conversely, if the space has constant Gauss curvature,
then all geodesics are fixed by symmetries.
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Below we shall construct constant Gauss curvature spaces, and show that the sym-
metries and geodesics have these properties. More generally one will have to show that
locally all constant Gauss curvature spaces can be accounted ofr knowing only these
examples.

For now lets us discuss the symmetries of the plane and sphere.....
25 The Upper Half Plane

A particularly interesting case to study is the upper half plane where we don’t have
much intuition about what might happen. This section is devoted to calculating the
symmetries, geodesics, and curvature of this space. Recall that this is an assignment of
a first fundamental form
S
v2

to the tangent space at each point p = (u,v) € H = {(u,v) : v > 0} . We saw that it
was possible to construct a surface of revolution

o

x(t,0)

(1 cos (0), % sin (6) , h (t)) :

: 1
ho= (J1-==
t

1
t2

whose first fundamental form is

o

S
12

This might give us a local picture of the upper half plane but it doesn’t really help that
much.

Below we shall find the symmetries and geodesics by solving the equations we have
for these objects. As we shall see, even in a case where the metric is relatively simple,
this is a very difficult task.

25.1 The Symmetries of H

Our first observation is that the first fundamental form doesn’t depend on w, so the
transformations

F : H—H
F(u,v) = (u-+wug,v)

must be symmetries. Let us check what it means for a general transformation F’ (u, v) =
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(F* (u,v), F? (u,v)) to be a symmetry. Let p = (u,v) and ¢ = F (u,v)

i 0 oF" oF" % O OF™ OFY
p” _ m u,v m v
Z du,  Ou (F7(u,)) du,  du
0 1 oF OF 1 OF OF
v? ov ov (Fv (u,v))? ou v
1 OF"*  9F" oF"*  9F“
LR EIE E
(FU (u’ U)) ov “ov ou ov
OF™\2 OF"\2  QF“ 9F“ | QF" OFV
— 12[ (8u)+(8u) ov 3u2+8u 35 ]
v OF" 9F" OF" OF"” OF" OF"
(F (u’v)) ov  Ou ou Ov ( Jv ) ( ov )

This tells us

OF\?  [OFv\? (F? (u,0))?  [(OF*\?> [OF"\?
(Bv>+(80) v? :(8u>+(8u)’
OF* 9F"  OFv 9F"
ov Ou + ou Ov

In particular, we see that the translations F' (u,v) = (u + g, v) really are symmetries.
Could there be symmetries where F' only depends on what happens to v? We can check
an even more general situation: F' (u,v) = (u, f (u,v)) where the equations reduce to

(@) - (e

= 0

of of
oudv
So first we note that % 40 from the first equation, the second then implies that % =0,

which then from the first equation gives us that f (u,v) = v is the only possibility. Next
let’s try F' (u,v) = (g (w), f (v)) . This reduces to

(&) - () - (2)

So all transformations of the form F' (u,v) = c(u,v) where ¢ > 0 is constant are
also symmetries. Note that these maps are only similarities in the Euclidean metric,
but have now become genuine symmetries. This might give the idea to check maps
of the form F' (u,v) = h(u,v) (u,v). This is still a bit general so we make the rea-
sonable assumption that h doesn’t depend on the direction of (u,v), i.e., F (u,v) =
h (u* 4+ v?) (u,v) . Then

BBFU el il 2uvh’ h + 202K
u v

[ EJBLH“ 8(5: ] _ { h + 2u?h’ 2uvh’

and the equations become

(2uvh’)® + (h + 202h')? h? = (2uvh’)” + (h +20°1)?,
(h+2u”R) 2uvh’ + (h+ 20°R) 2uwh’ = 0.
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Since we just studied the case where ' = 0, we can assume that A’ # 0, the last
equation then reduces to
h=(u®+v*) 1
showing that
r

u? + v?
for some constant » > 0. It is then an easy matter to check that the equations in the
first line also hold. Note that this map preserves the circle of radius r centered at
(0,0) and switches points inside the circle with points outside the circle. It is called
an inversion and is a type of mirror symmetry on the upper half plane. Note that the
regular mirror symmetries in vertical lines are also symmetries of H. Note that both
mirror symmetries and inversions are their own inverses:

FoF(uv) = F( )

u? 4+ 02’ u2 + 2

r U TV
- )
" 2+ o V2 \u2 o2 u? o2
u2+v2 u2+v2
1
= ﬁ(%v)
o S v

= (u,v).

Between these three types of symmetries we can find all of the symmetries of the
half plane. There are two key observations to be made. First, for any pair p,q € H
we have to find a symmetry that takes p to ¢. This can be done using translations and
scalings. Second, for any p € H and direction v € T}, we have to find a symmetry
that fixes p and whose differential is a reflections in v. This can be done with inversions
or mirror symmetries in vertical lines should v be vertical.

25.2 The Geodesics of H

The fact that the metric is relatively simple allows us to compute the Christoffel sym-
bols without much trouble

U 09
T, = 21““%:0
w1
P = ‘zgq’;gvzv
1 » 1
s, = -3 “;gi’b”zo
1 » 1
Fuv = z”"ai;:‘v
L0 90
o, = 595 =0
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The geodesic equations then become

di“:_[@ dv][rﬂu Fude?}
dtQ dt dt Fgu I‘ZU ?g
et kit
dt dt - 0 E

_ 2dudy

T owudtdt
@:_[ﬂ dv][rlliu Ffw}{gﬁ}
dr2 dt dt re, TU, dv

u v 1 0 du
- (% %) &) %]

dt
dw)® 1 (du)’
dt v \ dt

We’ll try to find these geodesics as graphs over the w axis. Thus we should first
address what geodesics might not be such graphs. This corresponds to having points

where 9% = 0. In fact if we assume that * = 0, then the first equation is definitely

solved while the second equation becomes

dv _ 1 (dv)’
dt2 v\ dt
This shows that vertical lines, if parametrized appropriately will become geodesics.

This also means that no other geodesics can have vertical tangents. In particular, we
should be able to graph them as functions: v (u) . The geodesic equation simplifies to

dv (o 2dv\ _(dPv 1 (dv)F 1
du vdu)  \du?2 v \du v

(-
(&)

As this equation does not depend explicitly on u we are allowed to assume that

S|~

or
d?v
du?

Sl—= S|+

dv

S _ oy
Tu (v)
@ _ dh(v) _dh(v)dv _ dh ('U)h )
du? du ~ dv du dv
Thus i )
2
h=—_= 1
dvh v (h + )’
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or

h 1
——dh=—-=d
h?2+1 v v
S0
1 2
iln(h +1):—lnv+C
S0
2
9 T
h —&—1-@—2
so
@ 2+1—ﬁ
du T2
SO
dv r2
Y A |
du v?2
2 _ 2
= i ,U2

Even though this is a separable equation and the integerals involved can be computed
it is still a mess to sort out. The answer however is fairly simple:

In other words the geodesics are either vertical lines or semicircles whose center is on
the u axis. As these are precisely the curves that are fixed by mirror symmetries in
vertical lines or inversions this should not be a big surprise.

25.3 Curvature of H

Having just computed the Christoffel symbols

U 09
T, = 21“" g@u ~0
w1
P = 73 832
1 » 1
s, = -3 “;gi’b”zo
1 » 1
Fuv = z”"agvzw
L0 90
o, = 595 =0
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it is now also possible to calculate the Riemannian curvature tensor

ore or«
RY — VU VU T T e e — (Te 7T TV T
vvuU au av + VU uu + VU uv ( vUuU vU + vU 'U’U)
o—1 1 1 1\?
= 0- C+0+(—- — ] = — ] +0
ov v v v

1

=

and the Gauss curvature

25.4 Conformal Picture

Triangles and angle sum. Parallel lines.

26 Global Stuff

Closed surfaces must have positive curvature somewhere. Convex surfaces. Constant
mean curvature and/or Gauss curvature. Gauss-Bonnet. Hilbert.

27 Riemannian Geometry

As with abstract surfaces we simply define what the dot products of the tangent fields
should be:

gi1 - Jin

_[ & ) tr 9 ) _
=0z - axllar - axl=| ¢+ -
dnil e dnn
The notation g;f,; for the tangent field that corrsponds to the velocity of the u? curves is
borrowed from our view of what happens on a surface.

We have the very general formula for how vectors are expanded

—1
V = [E - En]([El .. B, }t[El .. E, ]) [Ei - E. ]
E,-E - E-E,] '[E -V
= [B - B ] oo :
E,-E, - B, -E, E,-V

provided we know how to compute dot products of the basis vectors and dots products
of V' with the basis vectors.
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The key now is to note that we have a way of defining Christoffel symbols in rela-
tion to the tangent fields when we know the dot products of those tangent fields:

Tin = (39k n Ogkj 593> ’

2\ 0wl T Qui Ouk

9gij

Ouk

So if we wish to define second partials, i.e., partials of the tangent fields we start by
declaring

= Dkij +Dij,

%z Oz
5 5 = Lijk
outous  Ouk
and then use
821: 9 5 -1 t
o = Low o e [T [Tin - T ]
1
L'
= [ oz, oz ] :
oul Oul .
r
Note that we still have
0z Oz

) ] Ouiow  Ouidut
since the Christoffel symbols are symmetric in these indices.

This will allow us to define acceleration and hence geodesics. It’1l also allow us to
show that curves that minimize are geodesics, as well as showing that short geodesics
must be minimal.

To define curvature we collect the Gauss formulas

9 oz ox ox oz Flll . Flln
N AR O S
g I

= [3% - & ][

and form the expression

0 0
v [Iy] - Ev (L] + [Ta] [Ty] — [T5] [T4]

When we used a frame in R? we got this to vanish, but that was due to the inclusion of
the second fundamental form terms. Recall that when we restricted attention to terms
that only involved I's then we got something that was related to the Gauss curvature.
This time we don’t have a Gauss curvature, but we can define the Riemann curvature
as the k, [ entry in this expression:

0 0
Rl = o 0] = s ]+ [P ) - ) ),
Il r!
ort,  ort ik ik
Tl Uik
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This expression shows how certain third order partials might not commute since we
have

R

3 3 ijk
0°x B 0°x _ [ b e ] .
outOud Ouk Oud OutOuk Oul Oul :
n

ijk

But recall that since second order partials do commute we have

Bz P

Outoui our — OutOukoui
So we see that third order partials commute if and only if the Riemann curvature
vanishes. One can in turn show that

Theorem 34 (Riemann) The Riemann curvature vanishes if and only if there are
Cartesian coordinates around any point.

Proof. The easy direction is to assume that Cartesian coodinates exist. Certainly this
shows that the curvatures vanish when we use Cartesian coordinates, but this does not
guarantee that they also vanish in some arbitrary coordinate system. For that we need
to figure out how the curvature terms change when we change coordinates. A long
tedious calculation shows that if the new coordinates are called v and the curvature in
these coordinates 12!, then

= Ou® Oul our D' s
R Gui Qui Quk Gud P
Thus we see that if the all curvatures vanish in one coordinate system, then they vanish
in all coordinate systems. H
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