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CHAPTER 1

Manifolds

1.1. Smooth Manifolds

1.1.1. Basic Definitions. >Manifolds of dimension n are most easily defined
as subsets of Euclidean space that are locally represented as graphs over a subspace
of dimension n. They can also be defined abstractly as separable Hausdorff (or
metrc) spaces that are locally Euclidean such that overlap maps are also smooth.

Spheres and their coordinates, both orthogonal projection coordinates and
stereographic projection coordinates.

Tangent spaces to spheres:

TSn �
�
(p, v) ∈ Rn+1 × Rn+1

: |p| = 1 and (p|v) = 0
�

1.1.2. Whitney Embeddings.

Lemma 1.1.1. (Smooth Urysohn) If M is a smooth manifold and F0, F1 ⊂ M
are disjoint closed sets, then there exists a smooth function f : M → [0, 1] such that
F0 = f−1

(0) and F1 = f−1
(1) .

Proof. First we claim that for each closed set C ⊂ M there is a smooth
function f : M → [0, 1) such that C = f−1

(0) .
We start by proving this in Euclidean space. Using bump functions we see that

this is true as long as the closed set is the complement of a box or open ball. The
trick is now to write the complement of C has a union of boxes such that for all
p /∈ C there is a neighborhood U that intersects only finitely many boxes. Using
bump functions on each of the boxes we can then add them up to get a function
that only vanishes on C. Finally as [0, 1) is diffeomorphic to [0,∞) we can assume
that the image is in [0,∞).

On a manifold we select a countable compact exhaustion M = ∪Ki, Ki ⊂
intKi+1 and a covering by by charts so that each Ki is covered by only finitely
many charts. We can now adapt our Euclidean construction to manifolds.

Finally we have to find the Urysohn function. Select fi : M → [0, 1) such that
f−1
i

(0) = Fi and consider

f (x) =
f0 (x)

f0 (x) + f1 (x)
.

This function is well-defined as F0∩F1 = ∅ and is the desired Urysohn function. �

Proposition 1.1.2. If U ⊂ M is an open set in a smooth manifold and f :

U → Rn is smooth, then λf defines a smooth function on M if λ and all of its
derivatives vanish on M − U.

4



1.1. SMOOTH MANIFOLDS 5

Proof. Clearly λf is smooth away from the boundary of U. On the boundary
λ and all it derivatives vanish so the product rule shows that λg is also smooth
there. �

Theorem 1.1.3. (Pre-Whitney Embedding) If Mm is a compact manifold,
then it admits an embedding into Euclidean space Rn for some n >> m.

Proof. Cover M by a finite number of coordinate charts Fi : Ui → Rm,
i = 1, ..., N. Next select bump functions λi : M → [0, 1] such that λ−1

i
(0) = M−Ui.

Then λiFi define smooth functions on M. We can then consider the smooth map

F : M → (Rm
)
N × RN

F (x) = (λ1 (x)F1 (x) , ..., λN (x)FN (x) , λ1 (x) , ..., λN (x))

This is our desired embedding. Since M is compact we only need to show that it
is injective and that the differential is injective.

If F (x) = F (y) , then λi (x) = λi (y) for all i. Selecting i so that λi (x) > 0

then shows that Fi (x) = Fi (y) . This shows that x = y as Fi is bijective.
If DF (v) = DF (w) for v, w ∈ TpM, then again dλi (v) = dλi (w) . The product

rule implies
D (λiFi) |p = (dλi) |pFi (p) + λi (p)DFi|p

Selecting i so that λi (p) > 0 then gives

DFi|p (v) = DFi|p (w)

showing that v = w. �

Note that we did not use the full power of Urysohn’s lemma. In fact we only
used the part of the proof that pertained to Euclidean space as we only needed
bump functions on domains of coordinate charts.

Theorem 1.1.4. (Whitney Embedding) If F : Mm → Rn is an injective im-
mersion, then there is also an injective immersion Mm → R2m+1. In particular,
when M is compact we obtain an embedding.

Proof. For each v ∈ Rn − {0} consider the orthogonal projection onto the
orthogonal complement

fv (x) = x− (x|v) v
|v|2

The image is an n − 1 dimensional subspace. So if we can show that fv ◦ F is an
injective immersion then the ambient dimension has been reduced by 1.

Note that fv ◦F (x) = fv ◦F (y) iff F (x)−F (y) is proportional to v. Similarly
D (fv ◦ F ) (w) = 0 iff DF (w) is proportional to v.

As long as 2m+1 < n Sard’s theorem implies that the union of the two images

H : M ×M × R → Rn

h (x, y, t) = t (F (x)− F (y))

G : TM → Rn

G (w) = dF (w)

has measure zero. Therefore, we can select v ∈ Rn − (H (M ×M × R) ∪G (TM)) .
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Assuming fv ◦ F (x) = fv ◦ F (y) , we have F (x) − F (y) = sv. If s = 0

this shows that F (x) = F (y) and hence x = y. Otherwise s �= 0 showing that
s−1

(F (x)− F (y)) = v and hence that v ∈ H (M ×M × R) .
Assuming D (fv ◦ F ) (w) we get that DF (w) = sv. If s = 0, this shows that

DF (w) = 0 and hence that w = 0. Otherwise DF
�
s−1w

�
= v showing that

v ∈ G (TM) . �
Note that the v we selected in the previous theorem could be selected from

O − (H (M ×M × R) ∪G (TM)) , where O ⊂ Rn is any open subset. This gives
us a bit of extra information. While we can’t get the ultimate map Mm → R2m+1

to map into a specific 2m + 1 dimensional subspace of Rn, we can map it into a
subspace arbitrarily close to a fixed subspace of dimension 2m + 1. To be specific
simply assume that R2m+1 ⊂ Rn consists of the first 2m + 1 coordinates. By
selecting v ∈ (−ε, ε)2m+1 × (1− ε, 1 + ε)n−2m−1 we see that fv changes the first
coordinates with an error that is small.

Note also that if F starts out being only an immersion, then we can find an
immersion into R2m. This is because G (TM) ⊂ Rn has measure zero as long as
n > 2m.

1.1.3. Extending Embeddings. >Local canonical forms for immersions and
nonsingular maps.

Lemma 1.1.5. Let F : M → N be an immersion, such that it is an embedding
when restricted to the embedded submanifold S ⊂ M, then F is an embedding on a
neighborhood of S.

Proof. We only do the case where dimM = dimN. It is a bit easier and also
the only case we actually need.

By assumption F is an open mapping as it is a local diffeomorphism. Thus
it suffices to show that it is injective on a neighborhood of S. If it is not injective
on any neighborhood, then we can find sequences xi and yi that approach S with
F (xi) = F (yi) . If both sequences have accumulation points, then those points will
lie in S and we can, by passing to subsequences, assume that they converge to
points x and y in S. Then F (x) = F (y) so x = y and xi = yi for large i as they lie
in a neighborhood of x = y where F is injective. If one or both of these sequences
have no accumulation points, then it is possible to find a neighborhood of S that
doesn’t contain the sequence. This shows that we don’t have to worry about the
sequence. �

Lemma 1.1.6. Let M ⊂ Rn be an embedded submanifold. Then some neighbor-
hood of the normal bundle of M in Rn is diffeomorphic to a neighborhood of M in
Rn.

Proof. The normal bundle is defined as
ν (M ⊂ Rn

) = {(v, p) ∈ TpRn ×M : v ⊥ TpM}
There is a natural map

ν (M ⊂ Rn
) → Rn,

(v, p) → v + p

One checks easily that this is a local diffeomorphism on some neighborhood of
the zero section M and that it is clearly an embedding when restricted to the
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zero section. The previous lemma then shows that it is a diffeomorphism on a
neighborhood of the zero section. �

Theorem 1.1.7. Let M ⊂ N be an embedded submanifold. Then some neigh-
borhood of the normal bundle of M in N is diffeomorphic to a neighborhood of M
in N.

Proof. Any subbundle of TN |M that is transverse to TM is a normal bundle.
It is easy to see that all such bundles are isomorphic. One specific choice comes
from embedding N ⊂ Rn and then defining

ν (M ⊂ N) = {(v, p) ∈ TpN ×M : v ⊥ TpM}

We don’t immediately get a map ν (M ⊂ N) → N. What we do is to select a
neighborhood N ⊂ U ⊂ Rn as in the previous lemma. The projection π : U → N
that takes w + q ∈ U to q ∈ N is a submersion deformation retraction. We then
select a neighborhood M ⊂ V ⊂ ν (M ⊂ N) such that v + p ∈ U if (v, p) ∈ V. Now
we get a map

V → N

(v, p) → π (v + p)

that is a local diffeomorphism near the zero section and an embedding on the zero
section. �

1.1.4. Flows and Submersions. We start with something very basic.

Proposition 1.1.8. Let F : Mm → Nn be a smooth map.
If F is proper, then it is closed.
If F is a submersion, then it is open.
If F is a proper submersion and N is connected then it is surjective.

Proof. 1. Let C ⊂ M be a closed set and assume F (xi) → y, where xi ∈ C.
The set {y, F (xi)} is compact. Thus the preimage is also compact. This that {xi}
has an accumulation point. If we assume that xij → x ∈ C, then continuity shows
that F

�
xij

�
→ F (x) . Thus y = F (x) ∈ F (C) .

2. Consequence of local coordinate representation of F.
3. Follows directly from the two other properties. �

Before delving in to the more general theory we present an important basic
result for maps with nonsingular differential.

Lemma 1.1.9. Let F : Mm → Nmbe a smooth proper map. If y ∈ N is a
regular value, then there exists a neighborhood V around y such that F−1

(V ) =�
n

k=1 Ukwhere Uk are mutually disjoint and F : Uk → V is a diffeomorphism.

Proof. First use that F is proper to show that F−1
(y) = {x1, . . . , xn} is a

finite set. Next use that y is regular to find mutually disjoint neighborhoods Wk

around each xk such that F : Wk → F (Wk) is a diffeomorpism. If the desired V
does not exist then we can find a sequence zi ∈ M −

�
n

k=1 Wk such that F (zi) → y.
Using again that F is proper it follows that (zi) must have an accumulation point
z. Continuity of F then shows that z ∈ F−1

(y). This in turn shows that infinitely
many zi must lie in

�
n

k=1 Wk, a contradiction. �
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>Main theorem on flows and integral curves, with emphasis on integrals curves
being defined for all time or leaving every compact set.

We use the general notation that Φt

X
is the flow corresponding to a vector field

X, i.e.
d

dt
Φ

t

X
= X|Φt

X
= X ◦ Φt

X

Let F : Mm → Nn be a smooth map between manifolds. If X is a vector field
on M and Y a vector field on N, then we say that X and Y are F -related provided
DF (X|p) = Y |F (p), or in other words DF (X) = Y ◦ F.

Proposition 1.1.10. X and Y are F -related iff F ◦Φt

X
= Φ

t

Y
◦F for sufficiently

small t.

Proof. Assuming that F ◦ Φt

X
= Φ

t

Y
◦ F we have

DF (X) = DF

�
d

dt
|t=0Φ

t

X

�

=
d

dt
|t=0

�
F ◦ Φt

X

�

=
d

dt
|t=0

�
Φ

t

Y
◦ F

�

= Y ◦ Φ0
Y
◦ F

= Y ◦ F

Conversely DF (X) = Y ◦ F implies that

d

dt

�
F ◦ Φt

X

�
= DF

�
d

dt
Φ

t

X

�

= DF
�
X ◦ Φt

X

�

= Y ◦ F ◦ Φt

Y

=
d

dt

�
Φ

t

Y
◦ F

�

Since the two curves t → F ◦ Φ
t

X
and t → Φ

t

Y
◦ F clearly agree when t = 0, this

shows that they are the same. In fact we just showed that t → F ◦Φt

X
is an integral

curve for Y. �

>Local canonical form for submersions
In case F is a submersion it is possible to construct vector fields in M that are

F -related to a given vector field in N.

Proposition 1.1.11. Assume that F is a submersion. Given a vector field Y
in N, there are vector fields X in M that are F -related to Y.

Proof. First we do a local construction of X. Since F is a submersion we can
always find charts in M and N so that in these charts F looks like

F
�
x1, ..., xm

�
=

�
x1, ..., xn

�
.

Note that m ≥ n so the RHS just consists of the first n coordinate from
�
x1, ..., xm

�
.

If we write Y = ai∂i, then we can simply define X =
�

n

i=1 a
i∂i. This gives the

local construction.
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For the global construction assume that we have a covering Uα, vector fields
Xα on Uα that are F -related to Y, and a partition of unity λα subordinate to Uα.
Then simply define X =

�
λαXα and note that

DF (X) = DF
��

λαXα

�

=

�
λαDF (Xα)

=

�
λαY ◦ F

= Y ◦ F.
�

Finally we can say something about the maximal domains of definition for the
flows of F -related vector fields given F is proper.

Proposition 1.1.12. Assume that F is proper and that X and Y are F -related
vector fields. If F (q) = p and Φ

t

Y
(p) is defined on [0, b), then Φ

t

X
(q) is also defined

on [0, b). In other words the relation F ◦Φt

X
= Φ

t

Y
◦F holds for as long as the RHS

is defined.

Proof. Assume Φ
t

X
(q) is defined on [0, a). If a < b, then the set

K =
�
x ∈ M : F (x) = Φ

t

Y
(p) for some t ∈ [0, a]

�

= F−1
��

Φ
t

Y
(p) : t ∈ [0, a]

��

is compact in M since F is proper. The integral curve t → Φ
t

X
(q) lies in K since

F (Φ
t

X
(q)) = Φ

t

Y
(p) . It is now a general result that maximally defined integral

curves are either defined for all time or leave every compact set. Thus Φt

X
(q) must

be defined on [0, b). �
These relatively simple properties lead to some very general and tricky results.
A fibration F : M → N is a smooth map which is locally trivial in the sense that

for every p ∈ N there is a neighborhood U of p such that F−1
(U) is diffeomorphic

to U×F−1
(p) . This diffeomorphism must commute with the natural maps of these

sets on to U. In other words (x, y) ∈ U × F−1
(p) must be mapped to a point in

F−1
(x) . Note that it is easy to destroy the fibration property by simply deleting a

point in M . Note also that in this context fibrations are necessarily submersions.
Special cases of fibrations are covering maps and vector bundles. The Hopf

fibration S3 → S2
= P1 is a more non trivial example of a fibration, which we shall

study further below. Tubular neighborhoods are also examples of fibrations.

Theorem 1.1.13. (Ehresman) If F : M → N is a proper submersion, then it
is a fibration.

Proof. As far as N is concerned this is a local result. In N we simply select
a set U that is diffeomorphic to Rn and claim that F−1

(U) ≈ U × F−1
(0) . Thus

we just need to prove the theorem in case N = Rn, or more generally a coordinate
box around the origin.

Next select vector fields X1, ..., Xn in M that are F -related to the coordinate
vector fields ∂1, ..., ∂n. Our smooth map G : Rn × F−1

(0) → M is then defined
by G

�
t1, ..., tn, x

�
= Φ

t
1

X1
◦ · · · ◦ Φ

t
n

Xn
(x) . The inverse to this map is G−1

(z) =�
F (z) ,Φ−t

n

Xn
◦ · · · ◦ Φ−t

1

X1
(Z)

�
, where F (z) =

�
t1, ..., tn

�
. �
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The theorem also unifies several different results.

Corollary 1.1.14. (Basic Lemma in Morse Theory) Let F : M → R be a
proper map. If F is regular on (a, b) ⊂ R, then F−1

(a, b) � F−1
(c)× (a, b) where

c ∈ (a, b) .

Corollary 1.1.15. Let F : M → N be a proper nonsingular map with N
connected, then F is a covering map.

Corollary 1.1.16. (Hadamard) Let F : Rn → Rn be a proper nonsingular
map, then F is a diffeomorphism.

Corollary 1.1.17. (Reeb) Let M be a closed manifold that admits a map with
two critical points, then M is homeomorphic to a sphere. (This is a bit easier to
show if we also assume that the critical points are nondegenerate.)

Finally we can extend the fibration theorem to the case when M has boundary.

Theorem 1.1.18. Assume that M is a manifold with boundary and that N is
a manifold without boundary, if F : M → N is proper and a submersion on M as
well as on ∂M, then it is a fibration.

Proof. The proof is identical and reduced to the case when N = Rn. The
assumptions allow us to construct the lifted vector fields so that they are tangent
to ∂M. The flows will then stay in ∂M or intM for all time if they start there. �

This theorem is sometimes useful when we have a submersion whose fibers are
not compact. It is then occasionally possible to add a boundary to M so as to
make the map proper. A good example is a tubular neighborhood around a closed
submanifold S ⊂ U. By possibly making U smaller we can assume that it is a
compact manifold with boundary such that the fibers of U → S are closed discs
rather than open discs.

There is also a very interesting coverse problem: If M is a manifold and ∼ an
equivalence relation on M when is M/ ∼ a manifold and M → M/ ∼ a submersion?
Clearly the equivalence classes must form a foliation and the leaves/equivalence
classes be closed subsets of M . The most basic and still very nontrivial case is that
of a Lie group G and a subgroup H. The equivalence classes are the cosets gH in
G and the quotient space is G/H. When H is dense in G the quotient topology
is not even Hausdorff. However one can prove that if H is closed in G then the
quotient is a manifold and the quotient map a submersion.

1.2. Projective Space

Given a vector space V we define P (V ) as the space of 1-dimensional subspaces
or lines through the origin. It is called the projective space of V. In the special case
were V = Fn+1 we use the notation P

�
Fn+1

�
= FPn

= Pn. This is a bit confusing
in terms of notation. The point is that Pn is an n-dimensional space as we shall
see below.

One can similarly develop a theory of the space of subspaces of any given
dimension. The space of k-dimensional subspaces is denoted Gk (V ) and is called
the Grassmannian.
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1.2.1. Basic Geometry of Projective Spaces. The space of operators or
endomorphisms on V is denoted end (V ) and the invertible operators or automor-
phisms by aut (V ) . When V = Fn these are represented by matrices end (Fn

) =

Mat (F) and aut (Fn
) = Gln (F) . Since invertible operators map lines to lines we see

that aut (V ) acts in a natural way on P (V ) . In fact this action is homogeneous, i.e.,
if we have p, q ∈ P (V ), then there is an operator A ∈ aut (V ) such that A (p) = q.
Moreover, as we know that any two bases in V can be mapped to each other by
invertible operators we have that any collection of k independent lines p1, ..., pk, i.e.,
p1+ · · ·+pk = p1⊕· · ·⊕pk can be mapped to any collection of k independent lines
q1, ..., qk. This means that the action of aut (V ) on P (V ) is k-point homogeneous
for all k ≤ dim (V ) . Note that this action is not effective, i.e., some transforma-
tions act trivially on P (V ) . Specifically, the maps that act trivially are precisely
the homotheties A = λ1V .

Since an endomorphism might have a kernel it is not true that it maps lines to
lines, however, if we have A ∈ end (V ) , then we do get a map A : P (V )−P (kerA) →
P (V ) defined on lines that are not in the kernel of A.

Let us now assume that V is an inner product space with an inner product
(v|w) that can be real or complex. The key observation in relation to subspaces
is that they are completely characterized by the orthogonal projections onto the
subspaces. Thus the space of k-dimensional subspaces is the same as the space of
orthogonal projections of rank k. It is convenient to know that an endomorphism
E ∈ end (V ) is an orthogonal projection iff it is a projection, E2

= E that is self-
adjoint, E∗

= E. In the case of a one dimensional subspace p ∈ P (V ) spanned by
a unit vector v ∈ V, the orthogonal projection is given by

proj
p
(x) = �x, v� v.

Clearly we get the same formula for all unit vectors in p. Note that the formula
is quadratic in v. Using this we get a map P (V ) → end (V ) . This gives P (V ) a
natural topology and even a metric. One can also easily see that P (V ) is compact.

We can define two natural metrics on P (V ) . One is simply the angle between
the lines. Another related metric uses that end (V ) is itself an inner product space
with inner product �A,B� = tr (AB∗

) . Let just compute this inner product for
proj

p
(x) = �x, v� v and proj

q
(x) = �x,w�w where v and w are unit vectors:

�
proj

p
, proj

q

�
= tr

�
proj

p
◦ proj

q

�

=

��
proj

p
◦ proj

q
(ei) , ei

�

=

���
proj

q
(ei) , v

�
v, ei

�

=

�
���ei, w�w, v� v, ei�

=

�
�ei, w� �w, v� �v, ei�

=

�
��v, ei� ei, w� �w, v�

=

�
�v, w� �w, v�

= |�v, w�|2 .
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Note again the quadratic nature of this formula. Since |�v, w�|2 ≤ |v|2 |w|2 = 1 we
can define the angle between p, q ∈ P (V ) as the unique � (p, q) ∈

�
0, π

2

�
such that

cos� (p, q) = |�v, w�|2 .

Our first observation is that this angle is zero iff |�v, w�|2 = |v|2 |w|2 , which we
know is equivalent to v and w being proportional, and hence defining the same line.

Note that this angle concept isn’t quite what we might expect geometrically
although it does recapture our intuitive notion of perpendicularity, e.g., p ⊥ q iff
v ⊥ w. A more geometric angle concept would be defined via

cos� (p, q) = |�v, w�| .

Automorphisms clearly do not preserve angles between lines and so are not
necessarily isometries. However if we restrict attention to unitary or orthogonal
transformations U ⊂ aut (V ) , then we know that they preserve inner products of
vectors. Therefore, they must also preserve angles between lines. Thus U acts by
isometries on P (V ) . This action is again homogeneous so P (V ) looks the same
everywhere.

1.2.2. Coordinates. We are now ready to coordinatize P (V ) . Select p ∈
P (V ) and consider the set of lines P (V )− P

�
p⊥

�
that are not perpendicular to p.

This is clearly an open set in P (V ) and we claim that there is a coordinate map
Gp : hom

�
p, p⊥

�
→ P (V )− P

�
p⊥

�
. To construct this map decompose V � p⊕ p⊥

and note that any line not in p⊥ is a graph over p given by a unique homomorpism
in hom

�
p, p⊥

�
. The next thing to check is that Gp is a homeomorphism onto its

image and is differentiable as a map into end (V ) . Neither fact is hard to verify.
Finally observe that hom

�
p, p⊥

�
is a vector space of dimension dimV − 1. In this

way P (V ) becomes a manifold of dimension dimV − 1.
In case we are considering Pn we can construct a more explicit coordinate map.

First we introduce homogenous coordinates: select z =
�
z0, ..., zn

�
∈ Fn+1 − {0}

denote the line by
�
z0 : · · · : zn

�
∈ Pn, thus

�
z0 : · · · : zn

�
=

�
w0

: · · · : wn
�

iff and
only if z and w are proportional and hence generate the same line. If we let
p = [1 : 0 : · · · : 0], then Fn → Pn is simply Gp

�
z1, ..., zn

�
=

�
1 : z1 : · · · : zn

�
.

Keeping in mind that p is the only line perpendicular to all lines in p⊥ we see
that Pn − p can be represented by

Pn − p =
��
z : z1 : · · · : zn

�
:
�
z1, ..., zn

�
∈ Fn − {0} and z ∈ F

�
.

Here the subset

P
�
p⊥

�
=

��
0 : z1 : · · · : zn

�
:
�
z1, ..., zn

�
∈ Fn − {0}

�

can be identified with Pn−1. Using the transformation

R0 =





0 0 · · · 0

0 1 0

...
. . .

...
0 0 · · · 1




,

ker (R0) = p
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we get a retract R0 : Pn − p → Pn−1, whose fibers are diffeomorphic to F. Using
the transformations

Rt =





t 0 · · · 0

0 1 0

...
. . .

...
0 0 · · · 1





we see that R0 is in fact a deformation retraction.
Finally we check the projective spaces in low dimensions. When dimV = 1,

P (V ) is just a point and that point is in fact V it self. Thus P (V ) = {V } . When
dimV = 2, we note that for each p ∈ P (V ) the orthogonal complement p⊥ is again
a one dimensional subspace and therefore an element of P (V ) . This gives us an
involution p → p⊥ on P (V ) just like the antipodal map on the sphere. In fact

P (V ) = (P (V )− {p}) ∪
�
P (V )−

�
p⊥

��
,

P (V )− {p} � F � P (V )−
�
p⊥

�
,

F− {0} � (P (V )− {p}) ∩
�
P (V )−

�
p⊥

��
.

Thus P (V ) is simply a one point compactification of F. In particular, we have
that RP1 � S1 and CP1 � S2, (you need to convince your self that this is a
diffeomorphism.) Since the geometry doesn’t allow for distances larger than π

2 it is
natural to suppose that these projective “lines” are spheres of radius 1

2 in F2. This
is in fact true.

1.2.3. Bundles. Define the tautological or canonical line bundle

τ (Pn
) =

�
(p, v) ∈ Pn × Fn+1

: v ∈ p
�
.

This is a natural subbundle of the trivial vector bundle Pn × Fn+1 and therefore
has a natural orthogonal complement

τ⊥ (Pn
) �

�
(p, v) ∈ Pn × Fn+1

: p ⊥ v
�

Note that in the complex case we are using Hermitian orthogonality. These are
related to the tangent bundle in an interesting fashion

TPn � hom
�
τ (Pn

) , τ⊥ (Pn
)
�

This identity comes from our coordinatization around a point p ∈ Pn. We should
check that these bundle are locally trivial, i.e., fibrations over Pn. This is quite easy,
for each p ∈ Pn we use the coordinate neighborhood around p and show that the
bundles are trivial over these neighborhoods.

Note that the fibrations τ (Pn
) → Pn and Fn+1 − {0} → Pn are suspiciously

similar. The latter has fibers p − {0} where the former as p. This means that the
latter fibration can be identified with the nonzero vectors in τ (Pn

) . This means
that the missing 0 in Fn+1 − {0} is replaced by the zero section in τ (Pn

) in order
to create a larger bundle. This process is called a blow up of the origin in Fn+1.
Essentially we have a map τ (Pn

) → Fn+1 that maps the zero section to 0 and is a
bijection outside that. We can use Fn+1 − {0} → Pn to create a new fibration by
restricting it to the unit sphere S ⊂ Fn+1 − {0} .

The conjugate to the tautological bundle can also be seen internally in Pn+1 as
the map

Pn+1 − {p} → Pn
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When p = [1 : 0 : · · · : 0] this fibration was given by
�
z : z0 : · · · : zn

�
→

�
z0 : · · · : zn

�
.

This looks like a vector bundle if we use fiberwise addition and scalar multiplication
on z.

The equivalence is obtained by mapping
Pn+1 − {[1 : 0 : · · · : 0]} → τ (Pn

) ,

�
z : z0 : · · · : zn

�
→

�
�
z0 : · · · : zn

�
, z̄

�
z0, ..., zn

�

|(z0, ..., zn)|2

�

It is necessary to conjugate z to get a well-defined map. This is why the identifica-
tion is only conjugate linear. The conjugate to the tautological bundle can also be
identified with the dual bundle hom (τ (Pn

) ,C) via the natural inner product struc-
ture coming from τ (Pn

) ⊂ Pn×Fn+1. The relevant linear functional corresponding
to

�
z : z0 : · · · : zn

�
is given by

v →
�
v, z̄

�
z0, ..., zn

�

|(z0, ..., zn)|2

�

This functional appears to be defined on all of Fn+1, but as it vanishes on the
orthogonal complement to

�
z0, ..., zn

�
we only need to consider the restriction to

span
��

z0, ..., zn
��

=
�
z0 : · · · : zn

�
.

Finally we prove that these bundles are not trivial. In fact, we show that there
can’t be any smooth sections F : Pn → S ⊂ Fn+1 − {0} such that F (p) ∈ p for
all p, i.e., it is not possible to find a smooth (or continuous) choice of basis for
all 1-dimensional subspaces. Should such a map exist it would evidently be a lift
of the identity on Pn to a map Pn → S. In case F = R, the map S → RPn is a
nontrivial two fold covering map. So it is not possible to find RPn → S as a lift
of the identity. In case F = C the unit sphere S has larger dimension than CPn

so Sard’s theorem tells us that CPn → S isn’t onto. But then it is homotopic to a
constant, thus showing that the identity CPn → CPn is homotopic to the constant
map. We shall see below that this is not possible.

In effect, we proved that a fibration of a sphere S → B is nontrivial if either
π1 (B) �= {1} or dimB < dimS.

1.2.4. Lefschetz Numbers. Finally we are going to study Lefschetz numbers
for linear maps on projective spaces. The first general observation is that a map
A ∈ aut (V ) has a fixed point p ∈ P (V ) iff p is an invariant one dimensional subspace
for A. In other words fixed points for A on P (V ) correspond to eigenvectors, but
without information about eigenvalues.

We start with the complex case as it is a bit simpler. The claim is that any
A ∈ aut (V ) with distinct eigenvalues is a Lefschetz map on P (V ) with L (A) =

dimV. Since such maps are diagonalizable we can restrict attention to V = Cn+1

and the diagonal matrix

A =




λ0 0

. . .
0 λn





By symmetry we need only study the fixed point p = [1 : 0 : · · · : 0] . Note that
the eigenvalues are assumed to be distinct and none of then vanish. To check
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the action of A on a neighborhood of p we use the coordinates introduced above�
1 : z1 : · · · : zn

�
. We see that

A
�
1 : z1 : · · · : zn

�
=

�
λ01 : λ1z

1
: · · · : λnz

n
�

=

�
1 :

λ1

λ0
z1 : · · · : λn

λ0
zn

�
.

This is already (complex) linear in these coordinates so the differential at p must
be represented by the complex n× n matrix

DA|p =





λ1
λ0

0

. . .
0

λn
λ0



 .

As the eigenvalues are all distinct 1 is not an eigenvalue of this matrix, show-
ing that A really is a Lefschetz map. Next we need to check the differential of
det (I −DA|p) . Note that in [Guillemin-Pollack] the authors use the sign of
det (DA|p − I) , but this is not consistent with Lefschetz’ formula for the Lefschetz
number as we shall see below. Since Gln (C) is connected it must lie in Gl+2n (R) as
a real matrix, i.e., complex matrices always have positive determinant when viewed
as real matrices. Since DA|p is complex it must follow that det (I −DA|p) > 0. So
all local Lefschetz numbers are 1. This shows that L (A) = n+1. Since Gln+1 (C) is
connected any linear map is homotopic to a linear Lefschetz map and must therefore
also have Lefschetz number n+ 1.

In particular, we have shown that all invertible complex linear maps must have
eigenvectors. Note that this fact is obvious for maps that are not invertible. This
could be the worlds most convoluted way of proving the Fundamental Theorem of
Algebra. We used the fact that Gln (C) is connected. This in turn follows from the
polar decomposition of matrices, which in turn follows from the Spectral Theorem.
Finally we observe that any reasonable proof of the Spectral Theorem will not use
the Fundamental Theorem of Algebra.

The alternate observation that the above Lefschetz maps are dense in Gln (C)
is quite useful as the density statement normally uses the Fundamental Theorem
of Algebra.

The real projective spaces can be analyzed in a similar way but we need to
consider the parity of the dimension as well as the sign of the determinant of the
linear map.

For A ∈ GL+
2n+2 (R) we might not have any eigenvectors whatsoever as A

could be n+1 rotations. Since GL+
2n+2 (R) is connected this means that L (A) = 0

on RP2n+1 if A ∈ GL+
2n+2 (R) . When A ∈ GL−

2n+2 (R) it must have at least two
eigenvalues of opposite sign. Since GL−

2n+2 (R) is connected we just need to check
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what happens for a specific

A =





1 0

0 −1

0 −1

1 0

. . .
0 −1

1 0





=




1 0 0

0 −1 0

0 0 R





We have two fixed points

p = [1 : 0 : · · · : 0] ,
q = [0 : 1 : · · · : 0] .

For p we can quickly guess that

DAp =

�
−1 0

0 R

�
.

This matrix doesn’t have 1 as an eigenvalue and

det

�
I −

�
−1 0

0 R

��
= det

�
2 0

0 I −R

�

= det





2

1 1

−1 1

. . .
1 1

−1 1





= 2
n+1.

So we see that the determinant is positive. For q we use the coordinates
�
z0 : 1 : z2 : · · · : zn

�

and easily see that the differential is
�

−1 0

0 −R

�

which also doesn’t have 1 as an eigenvalue and again gives us positive determinant
for I −DAq. This shows that L (A) = 2 if A ∈ GL−

2n+2 (R) .
In case A ∈ Gl2n+1 (R) it is only possible to compute the Lefschetz number

mod 2 as RP2n isn’t orientable. We can select

A±
=

�
±1 0

0 R

�
∈ GL±

2n+1 (R)

with R as above. In either case we have only one fixed point and it is a Lefschetz
fixed point since DA±

p
= ±R. Thus L (A±

) = 1 and all A ∈ Gl2n+1 (R) have
L (A) = 1.
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1.3. Matrix Spaces

Lie groups and spaces of matrices of constant rank.



CHAPTER 2

Basic Tensor Analysis

2.1. Lie Derivatives and Its Uses

Let X be a vector field and F t the corresponding locally defined flow on a
smooth manifold M . Thus F t

(p) is defined for small t and the curve t → F t
(p)

is the integral curve for X that goes through p at t = 0. The Lie derivative of a
tensor in the direction of X is defined as the first order term in a suitable Taylor
expansion of the tensor when it is moved by the flow of X.

2.1.1. Definitions and Properties. Let us start with a function f : M → R.
Then

f
�
F t

(p)
�
= f (p) + t (LXf) (p) + o (t) ,

where the Lie derivative LXf is just the directional derivative DXf = df (X) . We
can also write this as

f ◦ F t
= f + tLXf + o (t) ,

LXf = DXf = df (X) .

When we have a vector field Y things get a little more complicated. We wish
to consider Y |F t , but this can’t be directly compared to Y as the vectors live in
different tangent spaces. Thus we look at the curve t → DF−t

�
Y |F t(p)

�
that lies

in TpM. Then we expand for t near 0 and get

DF−t
�
Y |F t(p)

�
= Y |p + t (LXY ) |p + o (t)

for some vector (LXY ) |p ∈ TpM. This Lie derivative also has an alternate definition.

Proposition 2.1.1. For vector fields X,Y on M we have

LXY = [X,Y ] .

Proof. We see that the Lie derivative satisfies

DF−t
(Y |F t) = Y + tLXY + o (t)

or equivalently

Y |F t = DF t
(Y ) + tDF t

(LXY ) + o (t) .

18
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It is therefore natural to consider the directional derivative of a function f in the
direction of Y |F t −DF t

(Y ) .

DY |Ft−DF t(Y )f = DY |Ft f −DDF t(Y )f

= (DY f) ◦ F t −DY

�
f ◦ F t

�

= DY f + tDXDY f + o (t)

−DY (f + tDXf + o (t))

= t (DXDY f −DY DXf) + o (t)

= tD[X,Y ]f + o (t) .

This shows that

LXY = lim
t→0

Y |F t −DF t
(Y )

t
= [X,Y ] .

�

We are now ready to define the Lie derivative of a (0, p)-tensor T and also give
an algebraic formula for this derivative. We define

�
F t

�∗
T = T + t (LXT ) + o (t)

or more precisely
��

F t
�∗

T
�
(Y1, ..., Yp) = T

�
DF t

(Y1) , ..., DF t
(Yp)

�

= T (Y1, ..., Yp) + t (LXT ) (Y1, ..., Yp) + o (t) .

Proposition 2.1.2. If X is a vector field and T a (0, p)-tensor on M, then

(LXT ) (Y1, ..., Yp) = DX (T (Y1, ..., Yp))−
p�

i=1

T (Y1, ..., LXYi, ..., Yp)

Proof. We restrict attention to the case where p = 1. The general case is
similar but requires more notation. Using that

Y |F t = DF t
(Y ) + tDF t

(LXY ) + o (t)

we get
��

F t
�∗

T
�
(Y ) = T

�
DF t

(Y )
�

= T
�
Y |F t − tDF t

(LXY )
�
+ o (t)

= T (Y ) ◦ F t − tT
�
DF t

(LXY )
�
+ o (t)

= T (Y ) + tDX (T (Y ))− tT
�
DF t

(LXY )
�
+ o (t) .

Thus

(LXT ) (Y ) = lim
t→0

�
(F t

)
∗
T
�
(Y )− T (Y )

t
= lim

t→0

�
DX (T (Y ))− T

�
DF t

(LXY )
��

= DX (T (Y ))− T (LXY ) .

�
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Finally we have that Lie derivatives satisfy all possible product rules. From the
above propositions this is already obvious when multiplying functions with vector
fields or (0, p)-tensors. However, it is less clear when multiplying tensors.

Proposition 2.1.3. Let T1 and T2 be (0, pi)-tensors, then

LX (T1 · T2) = (LXT1) · T2 + T1 · (LXT2) .

Proof. Recall that for 1-forms and more general (0, p)-tensors we define the
product as

T1 · T2 (X1, ..., Xp1 , Y1, ..., Yp2) = T1 (X1, ..., Xp1) · T2 (Y1, ..., Yp2) .

The proposition is then a simple consequence of the previous proposition and the
product rule for derivatives of functions. �

Proposition 2.1.4. Let T be a (0, p)-tensor and f : M → R a function, then

LfXT (Y1, ..., Yp) = fLXT (Y1, ..., Yp) + df (Yi)

p�

i=1

T (Y1, ..., X, ..., Yp) .

Proof. We have that

LfXT (Y1, ..., Yp) = DfX (T (Y1, ..., Yp))−
p�

i=1

T (Y1, ..., LfXYi, ..., Yp)

= fDX (T (Y1, ..., Yp))−
p�

i=1

T (Y1, ..., [fX, Yi] , ..., Yp)

= fDX (T (Y1, ..., Yp))− f
p�

i=1

T (Y1, ..., [X,Yi] , ..., Yp)

+df (Yi)

p�

i=1

T (Y1, ..., X, ..., Yp)

�

The case where X|p = 0 is of special interest when computing Lie derivatives.
We note that F t

(p) = p for all t. Thus DF t
: TpM → TpM and

LXY |p = lim
t→0

DF−t
(Y |p)− Y |p
t

=
d

dt

�
DF−t

�
|t=0 (Y |p) .

This shows that LX =
d

dt
(DF−t

) |t=0 when X|p = 0. From this we see that if θ is
a 1-form then LXθ = −θ ◦ LX at points p where X|p = 0.

Before moving on to some applications of Lie derivatives we introduce the
concept of interior product, it is simply evaluation of a vector field in the first
argument of a tensor:

iXT (X1, ..., Xk) = T (X,X1, ..., Xk)

We can now list 4 general properties of Lie derivatives and how they are related to
interior products.
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L[X,Y ] = LXLY − LY LX ,

LX (fT ) = LX (f)T + fLXT,

LX [Y, Z] = [LXY, Z] + [Y, LXZ] ,

LX (iY T ) = iLXY T + iY (LXT ) ,

2.1.2. Lie Groups. Lie derivatives also come in handy when working with Lie
groups. For a Lie group G we have the inner automorphism Adh : x → hxh−1and
its differential at x = e denoted by the same letters

Adh : g → g.

Lemma 2.1.5. The differential of h → Adh is given by U → adU (X) = [U,X]

Proof. If we write Adh (x) = Rh−1Lh (x), then its differential at x = e is
given by Adh = DRh−1DLh. Now let F t be the flow for U. Then F t

(g) = gF t
(e) =

Lg (F t
(e)) as both curves go through g at t = 0 and have U as tangent everywhere

since U is a left-invariant vector field. This also shows that DF t
= DRF t(e). Thus

adU (X) |e =
d

dt
DRF−t(e)DLF t(e) (X|e) |t=0

=
d

dt
DRF−t(e)

�
X|F t(e)

�
|t=0

=
d

dt
DF−t

�
X|F t(e)

�
|t=0

= LUX = [U,X] .

�

This is used in the next Lemma.

Lemma 2.1.6. Let G = Gl (V ) be the Lie group of invertible matrices on V.
The Lie bracket structure on the Lie algebra gl (V ) of left invariant vector fields on
Gl (V ) is given by commutation of linear maps. i.e., if X,Y ∈ TIGl (V ) , then

[X,Y ] |I = XY − Y X.

Proof. Since x → hxh−1 is a linear map on the space hom (V, V ) we see that
Adh (X) = hXh−1. The flow of U is given by F t

(g) = g (I + tU + o (t)) so we have

[U,X] =
d

dt

�
F t

(I)XF−t
(I)

�
|t=0

=
d

dt
((I + tU + o (t))X (I − tU + o (t))) |t=0

=
d

dt
(X + tUX − tXU + o (t)) |t=0

= UX −XU.

�
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2.1.3. The Hessian. Lie derivatives are also useful for defining Hessians of
functions.

We start with a Riemannian manifold (Mm, g) . The Riemannian structure
immediately identifies vector fields with 1-froms. If X is a vector field, then the
corresponding 1-form is denoted ωX and is defined by

ωX (v) = g (X, v) .

In local coordinates this looks like

X = ai∂i,

ωX = gija
idxj .

This also tells us that the inverse operation in local coordinates looks like

φ = ajdx
j

= δk
j
akdx

j

= gjig
ikakdx

j

= gij
�
gikak

�
dxj

so the corresponding vector field is X = gikak∂i. If we introduce an inner product
on 1-forms that makes this correspondence an isometry

g (ωX , ωY ) = g (X,Y ) .

Then we see that

g
�
dxi, dxj

�
= g

�
gik∂k, g

jl∂l
�

= gikgjlgkl

= δi
l
gjl

= gji = gij .

Thus the inverse matrix to gij , the inner product of coordinate vector fields, is
simply the inner product of the coordinate 1-forms.

With all this behind us we define the gradient gradf of a function f as the
vector field corresponding to df, i.e.,

df (v) = g (gradf, v) ,

ωgradf = df,

gradf = gij∂if∂j .

This correspondence is a bit easier to calculate in orthonormal frames E1, ..., Em,
i.e., g (Ei, Ej) = δij , such a frame can always be constructed from a general frame
using the Gram-Schmidt procedure. We also have a dual frame φ1, ..., φm of 1-forms,
i.e., φi

(Ej) = δi
j
. First we observe that

φi
(X) = g (X,Ei)

thus

X = aiEi = φi
(X)Ei = g (X,Ei)Ei

ωX = δija
iφj

= aiφi
= g (X,Ei)φ

i
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In other words the coefficients don’t change. The gradient of a function looks like

df = aiφ
i
= (DEif)φ

i,

gradf = g (gradf,Ei)Ei = (DEif)Ei.

In Euclidean space we know that the usual Cartesian coordinates ∂i also form
an orthonormal frame and hence the differentials dxi yield the dual frame of 1-
forms. This makes it particularly simple to calculate in Rn. One other manifold
with the property is the torus Tn. In this case we don’t have global coordinates, but
the coordinates vector fields and differentials are defined globally. This is precisely
what we are used to in vector calculus, where the vector field X = P∂x +Q∂y +R
∂z corresponds to the 1-form ωX = Pdx+Qdy +Rdz and the gradient is given by
∂xf∂x + ∂yf∂y + ∂zf∂z.

Having defined the gradient of a function the next goal is to define the Hessian
of F. This is a bilinear form, like the metric, Hessf (X,Y ) that measures the second
order change of f. It is defined as the Lie derivative of the metric in the direction of
the gradient. Thus it seems to measure how the metric changes as we move along
the flow of the gradient

Hessf (X,Y ) =
1

2
(Lgradfg) (X,Y )

We will calculate this in local coordinates to check that it makes some sort of sense:

Hessf (∂i, ∂j) =
1

2
(Lgradfg) (∂i, ∂j)

=
1

2
Lgradfgij −

1

2
g (Lgradf∂i, ∂j)−

1

2
g (∂i, Lgradf∂j)

=
1

2
Lgradfgij −

1

2
g ([gradf, ∂i] , ∂j)−

1

2
g (∂i, [gradf, ∂j ])

=
1

2
Lgkl∂lf∂k

gij −
1

2
g
��
gkl∂lf∂k, ∂i

�
, ∂j

�
− 1

2
g
�
∂i,

�
gkl∂lf∂k, ∂j

��

=
1

2
gkl∂lf∂k (gij) +

1

2
g
�
∂i

�
gkl∂lf

�
∂k, ∂j

�
+

1

2
g
�
∂i, ∂j

�
gkl∂lf

�
∂k

�

=
1

2
gkl∂lf∂k (gij) +

1

2
∂i

�
gkl∂lf

�
gkj +

1

2
∂j

�
gkl∂lf

�
gik

=
1

2
gkl∂k (gij) ∂lf +

1

2
∂i

�
gkl

�
gkj∂lf +

1

2
∂j

�
gkl

�
gik∂lf

+
1

2
gkl∂i (∂lf) gkj +

1

2
gkl∂j (∂lf) gik

=
1

2
gkl∂k (gij) ∂lf − 1

2
gkl∂i (gkj) ∂lf − 1

2
gkl∂j (gik) ∂lf

+
1

2
δl
j
∂i∂lf +

1

2
δl
i
(∂j∂lf)

=
1

2
gkl (∂kgij − ∂igkj − ∂jgik) ∂lf + ∂i∂jf.

So if the metric coefficients are constant, as in Euclidean space, or we are at a
critical point, this gives us the old fashioned Hessian.

It is worth pointing out that these more general definitions and formulas are
useful even in Euclidean space. The minute we switch to some more general coordi-
nates, such as polar, cylindrical, spherical etc, the metric coefficients are no longer
all constant. Thus the above formulas are our only way of calculating the gradient
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and Hessian in such general coordinates. We also have the following interesting
result that is often used in Morse theory.

Lemma 2.1.7. If a function f : M → R has a critical point at p then the
Hessian of f at p does not depend on the metric.

Proof. Assume that X = ∇f and X|p = 0. Next select coordinates xi around
p such that the metric coefficients satisfy gij |p = δij . Then we see that

LX

�
gijdx

idxj
�
|p = LX (gij) |p + δijLX

�
dxi

�
dxj

+ δijdx
iLX

�
dxj

�

= δijLX

�
dxi

�
dxj

+ δijdx
iLX

�
dxj

�

= LX

�
δijdx

idxj
�
|p.

Thus Hessf |p is the same if we compute it using g and the Euclidean metric in the
fixed coordinate system. �

2.2. Operations on Forms

2.2.1. General Properties. Given p 1-forms ωi ∈ Ω
1
(M) on a manifold M

we define
(ω1 ∧ · · · ∧ ωp) (v1, ..., vp) = det ([ωi (vj)])

where [ωi (vj)] is the matrix with entries ωi (vj) . We can then extend the wedge
product to all forms using linearity and associativity. This gives the wedge product
operation

Ω
p
(M)× Ω

q
(M) → Ω

p+q
(M) ,

(ω, ψ) → ω ∧ ψ.

This operation is bilinear and antisymmetric in the sense that:

ω ∧ ψ = (−1)
pq ψ ∧ ω.

The wedge product of a function and a form is simply standard multiplication.
The exterior derivative of a form is defined by

dω (X0, ...., Xk) =

k�

i=0

(−1)
i LXi

�
ω
�
X0, ..., �Xi, ..., Xk

��

−
�

i<j

(−1)
i ω

�
X0, ..., �Xi, ..., LXiXj , ..., Xk

�

=

k�

i=0

(−1)
i LXi

�
ω
�
X0, ..., �Xi, ..., Xk

��

+

�

i<j

(−1)
i+j ω

�
LXiXj , X0, ..., �Xi, ..., �Xj , ..., Xk

�

=
1

2

k�

i=0

(−1)
i




(LXiω)

�
X0, ..., �Xi, ..., Xk

�

+LXi

�
ω
�
X0, ..., �Xi, ..., Xk

��




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Lie derivatives, interior products, wedge products and exterior derivatives on forms
are related as follows:

d (ω ∧ ψ) = (dω) ∧ ψ + (−1)
p ω ∧ (dψ) ,

iX (ω ∧ ψ) = (iXω) ∧ ψ + (−1)
p ω ∧ (iXψ) ,

LX (ω ∧ ψ) = (LXω) ∧ ψ + ω ∧ (LXψ) ,

and the composition properties

d ◦ d = 0,

iX ◦ iX = 0,

LX = d ◦ iX + iX ◦ d,
LX ◦ d = d ◦ LX ,

iX ◦ LX = LX ◦ iX .

The third property LX = d◦ iX + iX ◦d is also known a H. Cartan’s formula (son of
the geometer E. Cartan). It is behind the definition of exterior derivative we gave
above in the form

iX ◦ d = LX − d ◦ iX .

2.2.2. The Volume Form. We are now ready to explain how forms are used
to unify some standard concepts from differential vector calculus. We shall work
on a Riemannian manifold (M, g) and use orthonormal frames E1, ..., Em as well as
the dual frame φ1, ..., φm of 1-forms.

The local volume form is defined as:

dvol = dvolg = φ1 ∧ · · · ∧ φm.

We see that if ψ1, ..., ψm is another collection of 1-forms coming from an orthonor-
mal frame F1, ..., Fm, then

ψ1 ∧ · · · ∧ ψm
(E1, ..., Em) = det

�
ψi

(Ej)
�

= det (g (Fi, Ej))

= ±1.

The sign depends on whether or not the two frames define the same orientation. In
case M is oriented and we only use positively oriented frames we will get a globally
defined volume form. Next we calculate the local volume form in local coordinates
assuming that the frame and the coordinates are both positively oriented:

dvol (∂1, ...∂m) = det
�
φi

(∂j)
�

= det (g (Ei, ∂j)) .

As Ei hasn’t been eliminated we have to work a little harder. To this end we note
that

det (g (∂i, ∂j)) = det (g (g (∂i, Ek)Ek, g (∂j , El)El))

= det (g (∂i, Ek) g (∂j , El) δkl)

= det (g (∂i, Ek) g (∂j , Ek))

= det (g (∂i, Ek)) det (g (∂j , Ek))

= (det (g (Ei, ∂j)))
2 .
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Thus

dvol (∂1, ...∂m) =

�
det gij ,

dvol =

�
det gijdx

1 ∧ · · · ∧ dxm.

2.2.3. Divergence. The divergence of a vector field is defined as the change
in the volume form as we flow along the vector field. Note the similarity with the
Hessian.

LXdvol = div (X) dvol

In coordinates using that X = ai∂i we get

LXdvol = LX

��
det gkldx

1 ∧ · · · ∧ dxm

�

= LX

��
det gkl

�
dx1 ∧ · · · ∧ dxm

+

�
det gkl

�

i

dx1 ∧ · · · ∧ LX

�
dxi

�
∧ · · · ∧ dxm

= ai∂i
��

det gkl
�
dx1 ∧ · · · ∧ dxm

+

�
det gkl

�

i

dx1 ∧ · · · ∧ d
�
LXxi

�
∧ · · · ∧ dxm

= ai∂i
��

det gkl
�
dx1 ∧ · · · ∧ dxm

+

�
det gkl

�

i

dx1 ∧ · · · ∧ d
�
ai
�
∧ · · · ∧ dxm

= ai∂i
��

det gkl
�
dx1 ∧ · · · ∧ dxm

+

�
det gkl

�

i

dx1 ∧ · · · ∧
�
∂ja

idxj
�
∧ · · · ∧ dxm

ai∂i
��

det gkl
�
dx1 ∧ · · · ∧ dxm

+

�
det gkl

�

i

dx1 ∧ · · · ∧
�
∂ia

idxi
�
∧ · · · ∧ dxm

=

�
ai∂i

��
det gkl

�
+

�
det gkl∂ia

i

�
dx1 ∧ · · · ∧ dxm

=
∂i

�
ai
√
det gkl

�
√
det gkl

�
det gkldx

1 ∧ · · · ∧ dxm

=
∂i

�
ai
√
det gkl

�
√
det gkl

dvol

We see again that in case the metric coefficients are constant we get the familiar
divergence from vector calculus.

H. Cartan’s formula for the Lie derivative of forms gives us a different way of
finding the divergence

div (X) dvol = LXdvol

= diX (dvol) + iXd (dvol)

= diX (dvol) ,

in particular div (X) dvol is always exact.
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This formula suggests that we should study the correspondence that takes a
vector field X to the (n− 1)-form iX (dvol) . Using the orthonormal frame this
correspondence is

iX (dvol) = ig(X,Ej)Ej

�
φ1 ∧ · · · ∧ φm

�

= g (X,Ej) iEj

�
φ1 ∧ · · · ∧ φm

�

=

�
(−1)

j+1 g (X,Ej)φ
1 ∧ · · · ∧�φj ∧ · · · ∧ φm

while in coordinates

iX (dvol) = iaj∂j

��
det gkldx

1 ∧ · · · ∧ dxm

�

=

�
det gkl

�
aji∂j

�
dx1 ∧ · · · ∧ dxm

�

=

�
det gkl

�
(−1)

j+1 ajdx1 ∧ · · · ∧ �dxj ∧ · · · ∧ dxm

If we compute diX (dvol) using this formula we quickly get back our coordinate
formula for div (X) .

In vector calculus this gives us the correspondence
i(P∂x+Q∂y+R∂z)dx ∧ dy ∧ dz = Pi∂xdx ∧ dy ∧ dz

+Qi∂ydx ∧ dy ∧ dz

+Ri∂zdx ∧ dy ∧ dz

= Pdy ∧ dz −Qdx ∧ dz +Rdx ∧ dy

= Pdy ∧ dz +Qdz ∧ dx+Rdx ∧ dy

If we compose the grad and div operations we get the Laplacian:
div (gradf) = ∆f

For this to make sense we should check that it is the “trace” of the Hessian. This
is most easily done using an orthonormal frame Ei. On one hand the trace of the
Hessian is:
�

i

Hessf (Ei, Ei) =

�

i

1

2
(Lgradfg) (Ei, Ei)

=

�

i

1

2
Lgradf (g (Ei, Ei))−

1

2
g (LgradfEi, Ei)−

1

2
g (Ei, LgradfEi)

= −
�

i

g (LgradfEi, Ei) .

While the divergence is calculated as
div (gradf) = div (gradf) dvol (E1, ..., Em)

=
�
Lgradfφ

1 ∧ · · · ∧ φm
�
(E1, ..., Em)

=

��
φ1 ∧ · · · ∧ Lgradfφ

i ∧ · · · ∧ φm
�
(E1, ..., Em)

=

��
Lgradfφ

i
�
(Ei)

=

�
Lgradf

�
φi

(Ei)
�
− φi

(LgradfEi)

= −
�

φi
(LgradfEi)

= −
�

g (LgradfEi, Ei) .
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2.2.4. Curl. While the gradient and divergence operations work on any Rie-
mannian manifold, the curl operator is specific to oriented 3 dimensional manifolds.
It uses the above two correspondences between vector fields and 1-forms as well as
2-forms:

d (ωX) = icurlX (dvol)

If X = P∂x +Q∂y +R∂z and we are on R3 we can easily see that

curlX = (∂yR− ∂zQ) ∂x + (∂zP − ∂xR) ∂y + (∂xQ− ∂yP ) ∂z

Taken together these three operators are defined as follows:

ωgradf = df,

icurlX (dvol) = d (ωX) ,

div (X) dvol = diX (dvol) .

Using that d ◦ d = 0 on all forms we obtain the classical vector analysis formulas

curl (gradf) = 0,

div (curlX) = 0,

from

icurl(gradf) (dvol) = d (ωgradf ) = ddf,

div (curlX) dvol = dicurlX (dvol) = ddωX .

2.3. Orientability

Recall that two ordered bases of a finite dimensional vector space are said to
represent the same orientation if the transition matrix from one to the other is of
positive determinant. This evidently defines an equivalence relation with exactly
two equivalence classes. A choice of such an equivalence class is called an orientation
for the vector space.

Given a smooth manifold each tangent space has two choices for an orientation.
Thus we obtain a two fold covering map OM → M, where the preimage of each
p ∈ M consists of the two orientations for TpM. A connected manifold is said to be
orientable if the orientation covering is disconnected. For a disconnected manifold,
we simply require that each connected component be connected. A choice of sheet
in the covering will correspond to a choice of an orientation for each tangent space.

To see that OM really is a covering just note that if we have a chart
�
x1, x2, ..., xn

�
:

U ⊂ M → Rn, where U is connected, then we have two choices of orientations over
U, namely, the class determined by the framing (∂1, ∂2, ..., ∂n) and by the fram-
ing (−∂1, ∂2, ..., ∂n) . Thus U is covered by two sets each diffeomorphic to U and
parametrized by these two different choices of orientation. Observe that this tells
us that Rn is orientable and has a canonical orientation given by the standard
Cartesian coordinate frame (∂1, ∂2, ..., ∂n) .

Note that since simply connected manifolds only have trivial covering spaces
they must all be orientable. Thus Sn, n > 1 is always orientable.

An other important observation is that the orientation covering OM is an ori-
entable manifold since it is locally the same as M and an orientation at each tangent
space has been picked for us.



2.3. ORIENTABILITY 29

Theorem 2.3.1. The following conditions for a connected n-manifold M are
equivalent.

1. M is orientable.
2. Orientation is preserved moving along loops.
3. M admits an atlas where the Jacobians of all the transitions functions are

positive.
4. M admits a nowhere vanishing n-form.

Proof. 1 ⇔ 2 : The unique path lifting property for the covering OM → M
tells us that orientation is preserved along loops if and only if OM is disconnected.

1 ⇒ 3 : Pick an orientation. Take any atlas (Uα, Fα) of M where Uα is con-
nected. As in our description of OM from above we see that either each Fα corre-
sponds to the chosen orientation, otherwise change the sign of the first component
of Fα. In this way we get an atlas where each chart corresponds to the chosen
orientation. Then it is easily checked that the transition functions Fα ◦ F−1

β
have

positive Jacobian as they preserve the canonical orientation of Rn.
3 ⇒ 4 : Choose a locally finite partition of unity (λα) subordinate to an atlas

(Uα, Fα) where the transition functions have positive Jacobians. On each Uα we
have the nowhere vanishing form ωα = dx1

α
∧ ... ∧ dxn

α
. Now note that if we are in

an overlap Uα ∩ Uβ then

dx1
α
∧ ... ∧ dxn

α

�
∂

∂x1
β

, ...,
∂

∂xn

β

�
= det

�
dxi

α

�
∂

∂xj

β

��

= det

�
D

�
Fα ◦ F−1

β

��

> 0.

Thus the globally defined form ω =
�

λαωα is always nonnegative when evaluated
on

�
∂

∂x
1
β
, ..., ∂

∂x
n
β

�
. What is more, at least one term must be positive according to

the definition of partition of unity.
4 ⇒ 1 : Pick a nowhere vanishing n-form ω. Then define two sets O± according

to whether ω is positive or negative when evaluated on a basis. This yields two
disjoint open sets in OM which cover all of M. �

With this result behind us we can try to determine which manifolds are ori-
entable and which are not. Conditions 3 and 4 are often good ways of establishing
orientability. To establish non-orientability is a little more tricky. However, if we
suspect a manifold to be non-orientable then 1 tells us that there must be a non-
trivial 2-fold covering map π : M̂ → M, where M̂ is oriented and the two given
orientations at points over p ∈ M are mapped to different orientations in M via
Dπ. A different way of recording this information is to note that for a two fold
covering π : M̂ → M there is only one nontrivial deck transformation I : M̂ → M̂
with the properties: I (x) �= x, I ◦ I = idM , and π ◦ I = π. With this is mind we
can show

Proposition 2.3.2. Let π : M̂ → M be a non-trivial 2-fold covering and M̂ an
oriented manifold. Then M is orientable if and only if I preserves the orientation
on M̂.

Proof. First suppose I preserves the orientation of M̂. Then given a choice
of orientation e1, ..., en ∈ TxM̂ we can declare Dπ (e1) , ..., Dπ (en) ∈ Tπ(x)M to



2.3. ORIENTABILITY 30

be an orientation at π (x) . This is consistent as DI (e1) , ..., DI (en) ∈ TI(x)M̂ is
mapped to Dπ (e1) , ..., Dπ (en) as well (using π ◦ I = π) and also represents the
given orientation on M̂ since I was assumed to preserve this orientation.

Suppose conversely that M is orientable and choose an orientation for M. Since
we assume that both M̂ and M are connected the projection π : M̂ → M, being
nonsingular everywhere, must always preserve or reverse the orientation. We can
without loss of generality assume that the orientation is preserved. Then we just
use π ◦ I = π as in the first part of the proof to see that I must preserve the
orientation on M̂. �

We can now use these results to check some concrete manifolds for orientability.
We already know that Sn, n > 1 are orientable, but what about S1

? One way
of checking that this space is orientable is to note that the tangent bundle is trivial
and thus a uniform choice of orientation is possible. This clearly generalizes to Lie
groups and other parallelizable manifolds. Another method is to find a nowhere
vanishing form. This can be done on all spheres Sn by considering the n-form

ω =

n+1�

i=1

(−1)
i+1 xidx1 ∧ · · · ∧ �dxi ∧ · · · ∧ dxn+1

on Rn+1. This form is a generalization of the 1-form xdy − ydx, which is ± the
angular form in the plane. Note that if X = xi∂i denotes the radial vector field,
then we have (see also the section below on the classical integral theorems)

iX
�
dx1 ∧ · · · ∧ dxn+1

�
= ω.

From this it is clear that if v2, ..., vn form a basis for a tangent space to the sphere,
then

ω (v2, ..., vn) = dx1 ∧ · · · ∧ dxn+1
(X, v2, ..., vn+1)

�= 0.

Thus we have found a nonvanishing n-form on all spheres regardless of whether or
not they are parallelizable or simply connected. As another exercise people might
want to use one of the several coordinate atlases known for the spheres to show
that they are orientable.

Recall that RPn has Sn as a natural double covering with the antipodal map
as a natural deck transformation. Now this deck transformation preserves the
radial field X = xi∂i and thus its restriction to Sn preserves or reverses orientation
according to what it does on Rn+1. On the ambient Euclidean space the map is
linear and therefore preserves the orientation iff its determinant is positive. This
happens iff n+ 1 is even. Thus we see that RPn is orientable iff n is odd.

Using the double covering lemma show that the Klein bottle and the Möbius
band are non-orientable.

Manifolds with boundary are defined like manifolds, but modeled on open sets
in Ln

=
�
x ∈ Rn

: x1 ≤ 0
�
. The boundary ∂M is then the set of points that cor-

respond to elements in ∂Ln
=

�
x ∈ Rn

: x1
= 0

�
. It is not hard to prove that if

F : M → R has a ∈ R as a regular value then F−1
(−∞, a] is a manifold with

boundary. If M is oriented then the boundary is oriented in such a way that if we
add the outward pointing normal to the boundary as the first basis vector then we
get a positively oriented basis for M. Thus ∂2, ..., ∂n is the positive orientation for
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∂Ln since ∂1 points away from Ln and ∂1, ∂2, ..., ∂n is the usual positive orientation
for Ln.

2.4. Integration of Forms

We shall assume that M is an oriented n-manifold. Thus, M comes with
a covering of charts ϕα =

�
x1
α
, . . . , xn

α

�
: Uα ←→ B (0, 1) ⊂ Rn such that the

transition functions ϕα ◦ ϕ−1
β

preserve the usual orientation on Euclidean space,

i.e., det

�
D

�
ϕα ◦ ϕ−1

β

��
> 0. In addition, we shall also assume that a partition

of unity with respect to this covering is given. In other words, we have smooth
functions φα : M → [0, 1] such that φα = 0 on M −Uα and

�
α
φα = 1. For the last

condition to make sense, it is obviously necessary that the covering be also locally
finite.

Given an n-form ω on M we wish to define:ˆ
M

ω.

When M is not compact, it might be necessary to assume that the form has compact
support, i.e., it vanishes outside some compact subset of M.

In each chart we can write

ω = fαdx
1
α
∧ · · · ∧ dxn

α
.

Using the partition of unity, we then obtain

ω =

�

α

φαω

=

�

α

φαfαdx
1
α
∧ · · · ∧ dxn

α
,

where each of the forms φαfαdx1
α
∧ · · · ∧ dxn

α
has compact support in Uα. Since Uα

is identified with Ūα ⊂ Rn, we simply declare thatˆ
Uα

φαfαdx
1
α
∧ · · · ∧ dxn

α
=

ˆ
Ūα

φαfαdx
1 · · · dxn.

Here the right-hand side is simply the integral of the function φαfα viewed as a
function on Ūα. Then we defineˆ

M

ω =

�

α

ˆ
Uα

φαfαdx
1
α
∧ · · · ∧ dxn

α

whenever this sum converges. Using the standard change of variables formula for
integration on Euclidean space, we see that indeed this definition is independent of
the choice of coordinates.

With these definitions behind us, we can now state and prove Stokes’ theorem
for manifolds with boundary.

Theorem 2.4.1. For any ω ∈ Ω
n−1

(M) with compact support we haveˆ
M

dω =

ˆ
∂M

ω.
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Proof. If we use the trick

dω =

�

α

d (φαω) ,

then we see that it suffices to prove the theorem in the case M = Ln and ω has
compact support. In that case we can write

ω =

n�

i=1

fidx
1 ∧ · · · ∧ �dxi ∧ · · · ∧ dxn,

The differential of ω is now easily computed:

dω =

n�

i=1

(dfi) ∧ dx1 ∧ · · · ∧ �dxi ∧ · · · ∧ dxn

=

n�

i=1

�
∂fi
∂xi

�
dxi ∧ dx1 ∧ · · · ∧ �dxi ∧ · · · ∧ dxn

=

n�

i=1

(−1)
i−1 ∂fi

∂xi
dx1 ∧ · · · ∧ dxi ∧ · · · ∧ dxn.

Thus,
ˆ
Ln

dω =

ˆ
Ln

n�

i=1

(−1)
i−1 ∂fi

∂xi
dx1 ∧ · · · ∧ dxn

=

n�

i=1

(−1)
i−1
ˆ
Ln

∂fi
∂xi

dx1 · · · dxn

=

n�

i=1

(−1)
i−1
ˆ �ˆ �

∂fi
∂xi

�
dxi

�
dx1 · · · �dxi · · · dxn.

The fundamental theorem of calculus tells us thatˆ ∞

−∞

�
∂fi
∂xi

�
dxi

= 0, for i > 1,

ˆ 0

−∞

�
∂f1
∂x1

�
dx1

= f1
�
0, x2, ..., xn

�
.

Thus ˆ
Ln

dω =

ˆ
∂Ln

f1
�
0, x2, ..., xn

�
dx2 ∧ · · · ∧ dxn.

Since dx1
= 0 on ∂Ln it follows that

ω|∂Ln = f1dx
2 ∧ · · · ∧ dxn.

This proves the theorem. �

We get a very nice corollary out of Stokes’ theorem.

Theorem. (Brouwer) Let M be a connected compact manifold with nonempty
boundary. Then there is no retract r : M → ∂M.
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Proof. Note that if ∂M is not connected such a retract clearly can’t exists so
we need only worry about having connected boundary.

If M is oriented and ω is a volume form on ∂M, then we have

0 <

ˆ
∂M

ω

=

ˆ
∂M

r∗ω

=

ˆ
M

d (r∗ω)

=

ˆ
M

r∗dω

= 0.

If M is not orientable, then we lift the situation to the orientation cover and obtain
a contradiction there. �

We shall briefly discuss how the classical integral theorems of Green, Gauss,
and Stokes follow from the general version of Stokes’ theorem presented above.

Green’s theorem in the plane is quite simple.

Theorem 2.4.2. (Green’s Theorem) Let Ω ⊂ R2 be a domain with smooth
boundary ∂Ω. If X = P∂x +Q∂y is a vector field defined on a region containing Ω

then ˆ
Ω
(∂xQ− ∂yP ) dxdy =

ˆ
∂Ω

Pdx+Qdy.

Proof. Note that the integral on the right-hand side is a line integral, which
can also be interpreted as the integral of the 1-form ω = Pdx1

+ Qdx2 on the 1-
manifold ∂Ω. With this in mind we just need to observe that dω = (∂1Q− ∂2P ) dx1∧
dx2 in order to establish the theorem. �

Gauss’ Theorem is quite a bit more complicated, but we did some of the ground
work when we defined the divergence above. The context is a connected, compact,
oriented Riemannian manifold M with boundary, but the example to keep in mind
is a domain M ⊂ Rn with smooth boundary

Theorem 2.4.3. (The divergence theorem or Gauss’ theorem) Let X be a vector
field defined on M and N the outward pointing unit normal field to ∂M, thenˆ

M

(divX) dvolg =

ˆ
∂M

g (X,N) dvolg|∂M

Proof. We know that

divXdvolg = d (iX (dvolg)) .

So by Stokes’ theorem it suffices to show that

iX (dvolg) |∂M = g (X,N) dvolg|∂M

The orientation on Tp∂M is so that v2, ..., vn is a positively oriented basis for Tp∂M
iff N, v2, ..., vn is a positively oriented basis for TpM. Therefore, the natural volume
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form for ∂M denoted dvolg|∂M
is given by iN (dvolg) . If v2, ..., vn ∈ Tp∂M is a basis,

then
iX (dvolg) |∂M (v2, ..., vn) = dvolg (X, v2, ..., vn)

= dvolg (g (X,N)N, v2, ..., vn)

= g (X,N) dvolg (N, v2, ..., vn)

= g (X,N) iN (dvolg)

= g (X,N) dvolg|∂M

where we used that X−g (X,N)X, the component of X tangent Tp∂M, is a linear
combination of v2, ..., vn and therefore doesn’t contribute to the form. �

Stokes’ Theorem is specific to 3 dimensions. Classically it holds for an oriented
surface S ⊂ R3 with smooth boundary but can be formulated for oriented surfaces
in oriented Riemannian 3-manifolds.

Theorem 2.4.4. (Stokes’ theorem) Let S ⊂ M3 be an oriented surface with
boundary ∂S. If X is a vector field defined on a region containing S and N is the
unit normal field to S, thenˆ

S

g (curlX,N) dvolg|S =

ˆ
∂S

ωX .

Proof. Recall that ωX is the 1-form defined by
ωX (v) = g (X, v) .

This form is related to curlX by
d (ωX) = icurlX (dvolg) .

So Stokes’ Theorem tells us thatˆ
∂S

ωX =

ˆ
S

icurlX (dvolg) .

The integral on the right-hand side can now be understood in a manner completely
analogous to our discussion of iX (dvolg) |∂M in the Divergence Theorem. We note
that N is chosen perpendicular to TpS in such a way that N, v2, v3 ∈ TpM is
positively oriented iff v2, v3 ∈ TpS is positively oriented. Thus we have again that

dvolg|S = iNdvolg

and consequently
icurlX (dvolg) = g (curlX,N) dvolg|S

�



CHAPTER 3

Basic Cohomology Theory

3.1. De Rham Cohomology

Throughout we let M be an n-manifold. Using that d ◦ d = 0, we trivially get
that the exact forms

Bp
(M) = d

�
Ω

p−1
(M)

�

are a subset of the closed forms

Zp
(M) = {ω ∈ Ω

p
(M) : dω = 0} .

The de Rham cohomology is then defined as

Hp
(M) =

Zp
(M)

Bp (M)
.

Given a closed form ψ, we let [ψ] denote the corresponding cohomology class.
The first simple property comes from the fact that any function with zero

differential must be locally constant. On a connected manifold we therefore have

H0
(M) = R.

Given a smooth map F : M → N, we get an induced map in cohomology:

Hp
(N) → Hp

(M) ,

F ∗
([ψ]) = [F ∗ψ] .

This definition is independent of the choice of ψ, since the pullback F ∗ commutes
with d.

The two key results that are needed for a deeper understanding of de Rham
cohomology are the Meyer-Vietoris sequence and homotopy invariance of the pull
back map.

Lemma 3.1.1. (The Mayer-Vietoris Sequence) If M = A ∪ B for open sets
A,B ⊂ M, then there is a long exact sequence

· · · → Hp
(M) → Hp

(A)⊕Hp
(B) → Hp

(A ∩B) → Hp+1
(M) → · · · .

Proof. The proof is given in outline, as it is exactly the same as the corre-
sponding proof in algebraic topology. We start by defining a short exact sequence

0 → Ω
p
(M) → Ω

p
(A)⊕ Ω

p
(B) → Ω

p
(A ∩B) → 0.

The map Ω
p
(M) → Ω

p
(A) ⊕ Ω

p
(B) is simply restriction ω → (ω|A, ω|B) . The

second is given by (ω, ψ) → (ω|A∩B − ψ|A∩B) . With these definitions it is clear
that Ω

p
(M) → Ω

p
(A) ⊕ Ω

p
(B) is injective and that the sequence is exact at

Ω
p
(A) ⊕ Ω

p
(B) . It is a bit less obvious why Ω

p
(A) ⊕ Ω

p
(B) → Ω

p
(A ∩B) is

surjective. To see this select a partition of unity λA, λBwith respect to the covering

35
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A,B. Given ω ∈ Ω
p
(A ∩B) we see that λAω defines a form on B, while λBω defines

a form on A. Then (λBω,−λAω) → ω.
These maps induce maps in cohomology

Hp
(M) → Hp

(A)⊕Hp
(B) → Hp

(A ∩B)

such that this sequence is exact. The connecting homomorphisms

δ : Hp
(A ∩B) → Hp+1

(M)

are constructed using the diagram

0 → Ω
p+1

(M) → Ω
p+1

(A)⊕ Ω
p+1

(B) → Ω
p+1

(A ∩B) → 0

↑ d ↑ d ↑ d
0 → Ω

p
(M) → Ω

p
(A)⊕ Ω

p
(B) → Ω

p
(A ∩B) → 0

If we take a form ω ∈ Ω
p
(A ∩B) , then (λBω,−λAω) ∈ Ω

p
(A)⊕Ω

p
(B) is mapped

onto ω. If dω = 0, then

d (λBω,−λAω) = (dλB ∧ ω,−dλA ∧ ω)

∈ Ω
p+1

(A)⊕ Ω
p+1

(B)

vanishes when mapped to Ω
p+1

(A ∩B) . So we get a well-defined form

δω =

�
dλB ∧ ω on A
−dλA ∧ ω on B

∈ Ω
p+1

(M) .

It is easy to see that this defines a map in cohomology that makes the Meyer-Vietoris
sequence exact.

The construction here is fairly concrete, but it is a very general homological
construction. �

The first part of the Meyer-Vietoris sequence

0 → H0
(M) → H0

(A)⊕H0
(B) → H0

(A ∩B) → H1
(M)

is particularly simple since we know what the zero dimensional cohomology is. In
case A ∩B is connected it must be a short exact sequence

0 → H0
(M) → H0

(A)⊕H0
(B) → H0

(A ∩B) → 0

so the Meyer-Vietoris sequence for higher dimensional cohomology starts with

0 → H1
(M) → H1

(A)⊕H1
(B) → · · ·

To study what happens when we have homotopic maps between manifolds we
have to figure out how forms on the product [0, 1]×M relate to forms on M.

On the product [0, 1]×M we have the vector field ∂t tangent to the first factor
as well as the corresponding one form dt. In local coordinates forms on [0, 1]×M
can be written

ω = aIdx
I
+ bJdt ∧ dxJ

if we use summation convention and multi index notation

aI = ai···ik ,

dxI
= dxi1 ∧ · · · ∧ dxik
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For each form the dt factor can be integrated out as follows

I (ω) =

ˆ 1

0
ω =

ˆ 1

0
bJdt ∧ dxJ

=

�ˆ 1

0
bJdt

�
dxJ

Thus giving a map
Ω

k+1
([0, 1]×M) → Ω

k
(M)

Another way of defining this integral is to write it as follows

I (ω) =

ˆ 1

0
dt ∧ i∂tω

since
i∂t (ω) = bJdx

J

This gives us a more natural way of eliminating the first part of the form.

Lemma 3.1.2. Let jt : M → [0, 1]×M be the map jt (x) = (t, x) , then
I (dω) + dI (ω) = j∗1 (ω)− j∗0 (ω)

Proof. The key is to prove that
I (dω) + dI (ω) = I (L∂tω)

Given this we see that the right hand side is

I (L∂tω) =

ˆ 1

0
dt ∧ L∂tω

=

ˆ 1

0
dt ∧ L∂t

�
aIdx

I
+ bJdt ∧ dxJ

�

=

ˆ 1

0
dt ∧

�
∂taIdx

I
+ ∂tbJdt ∧ dxJ

�

=

ˆ 1

0
dt ∧ (∂taI) dx

I

=

�ˆ 1

0
dt∂taI

�
dxI

= (aI (1, x)− aI (0, x)) dx
I

= j∗1 (ω)− j∗0 (ω)

The first formula follows by noting that

I (dω) + dI (ω) =

ˆ 1

0
dt ∧ i∂tdω + d

�ˆ 1

0
dt ∧ i∂tω

�

=

ˆ 1

0
dt ∧ i∂tdω +

ˆ 1

0
dt ∧ di∂tω

=

ˆ 1

0
dt ∧ (i∂tdω + di∂tω)

=

ˆ 1

0
dt ∧ (L∂tω)

The one tricky move here is the identity

d

�ˆ 1

0
dt ∧ i∂tω

�
=

ˆ 1

0
dt ∧ di∂tω
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On the left hand side it is clear what d does, but on the right hand side we are
computing d of a form on the product. However, as we are wedging with dt this
does not become an issue. More worrisome is the thought that one would expect

d

�ˆ 1

0
dt ∧ i∂tω

�
=

ˆ 1

0
d (dt ∧ i∂tω)

=

ˆ 1

0
ddt ∧ i∂tω −

ˆ 1

0
dt ∧ di∂tω

= −
ˆ 1

0
dt ∧ di∂tω

but this is not what is happening as the dt has in fact been integrated out. Specif-
ically if d is exterior differentiation on [0, 1]×M and dx exterior differentiation on
M, then

dx

�ˆ 1

0
dt ∧ i∂tω

�
= dx

�ˆ 1

0
bJdt

�
∧ dxJ

=

�ˆ 1

0
dt ∧ (dxbJ)

�
∧ dxJ

=

�ˆ 1

0
dt ∧ (dbJ − ∂tbJdt)

�
∧ dxJ

=

�ˆ 1

0
dt ∧ dbJ

�
∧ dxJ

=

ˆ 1

0
dt ∧ di∂tω

�

We can now establish homotopy invariance.

Proposition 3.1.3. If F0, F1 : M → N are smoothly homotopic, then they
induce the same maps on de Rham cohomology.

Proof. Assume we have a homotopy H : [0, 1]×M → N, such that F0 = H◦j0
and F1 = H ◦ j1, then

F ∗
1 (ω)− F ∗

0 (ω) = (H ◦ j1)∗ (ω)− (H ◦ j0)∗ (ω)
= j∗1 (H

∗
(ω))− j∗0 (H

∗
(ω))

= dI (H∗
(ω)) + I (H∗

(dω))

So if ω ∈ Ω
k
(N) is closed, then we have shown that the difference

F ∗
1 (ω)− F ∗

0 (ω) ∈ Ω
k
(M)

is exact. Thus the two forms F ∗
1 (ω) and F ∗

0 (ω) must lie in the same de Rham
cohomology class. �

Corollary 3.1.4. If two manifolds, possibly of different dimension, are ho-
motopy equivalent, then they have the same de Rham cohomology.

Proof. This follows from having maps F : M → N and G : N → M such
that F ◦G and G ◦ F are homotopic to the identity maps. �
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Lemma 3.1.5. (The Poincaré Lemma) The cohomology of a contractible man-
ifold M is

H0
(M) = R,

Hp
(M) = {0} for p > 0.

In particular convex sets in Rn have trivial de Rham cohomology.

Proof. Being contractible is the same as being homotopy equivalent to a point.
�

3.2. Examples of Cohomology Groups

For Sn we use that

Sn
= (Sn − {p}) ∪ (Sn − {−p}) ,

Sn − {±p} � Rn,

(Sn − {p}) ∩ (Sn − {−p}) � Rn − {0} .

Since Rn−{0} deformation retracts onto Sn−1 this allows us to compute the coho-
mology of Sn by induction using the Meyer-Vietoris sequence. We start with S1,
which a bit different as the intersection has two components. The Meyer-vietoris
sequence starting with p = 0 looks like

0 → R → R⊕ R → R⊕ R → H1
�
S1

�
→ 0.

Showing that H1
�
S1

�
� R. For n ≥ 2 the intersection is connected so the connect-

ing homomorphism must be an isomorphism

Hp−1
�
Sn−1

�
→ Hp

(Sn
)

for p ≥ 1. Thus

Hp
(Sn

) =

�
0, p �= 0, n,
R, p = 0, n.

For Pn we use the decomposition

Pn
=

�
Pn − Pn−1

�
∪ (Pn − p) ,

where

p = [1 : 0 : · · · : 0] ,
Pn−1

= P
�
p⊥

�
=

��
0 : z1 : · · · : zn

�
:
�
z1, ..., zn

�
∈ Fn − {0}

�
,

and consequently

Pn − p =
��
z : z1 : · · · : zn

�
:
�
z1, ..., zn

�
∈ Fn − {0} and z ∈ F

�
� Pn−1,

Pn − Pn−1
=

��
1 : z1 : · · · : zn

�
:
�
z1, ..., zn

�
∈ Fn

�
� Fn,

�
Pn − Pn−1

�
∩ (Pn − p) =

��
1 : z1 : · · · : zn

�
:
�
z1, ..., zn

�
∈ Fn − {0}

�
� Fn − {0} .

We have already identified P1 so we don’t need to worry about having a disconnected
intersection when F = R and n = 1. Using that Fn − {0} deformation retracts to
the unit sphere S of dimension dimR Fn−1 we see that the Meyer-Vietoris sequence
reduces to

0 → H1
(Pn

) → H1
�
Pn−1

�
→ H1

(S) → · · ·
· · · → Hp−1

(S) → Hp
(Pn

) → Hp
�
Pn−1

�
→ Hp

(S) → · · ·
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for p ≥ 2. To get more information we need to specify the scalars and in the real
case even distinguish between even and odd n. First assume that F = C. Then
S = S2n−1 and CP1 � S2. A simple induction then shows that

Hp
(CPn

) =

�
0, p = 1, 3, ..., 2n− 1,
R, p = 0, 2, 4, ..., 2n.

.

When F = R, we have S = Sn−1 and RP1 � S1. This shows that Hp
(RPn

) = 0

when p = 1, ..., n− 2. The remaining cases have to be extracted from the last part
of the sequence

0 → Hn−1
(RPn

) → Hn−1
�
RPn−1� → Hn−1

�
Sn−1

�
→ Hn

(RPn
) → 0

where we know that
Hn−1

�
Sn−1

�
= R.

This first of all shows that Hn
(RPn

) is either 0 or R. Moreover if Hn
(RPn

) = 0,
then it follows that Hn−1

�
RPn−1�

= R and Hn−1
(RPn

) = 0. While if Hn
(RPn

) =

R, then we first obtain that Hn−1
(RPn

) = 0 and then that Hn−1
�
RPn−1�

= 0.
Given that we know that H1

�
RP1�

= R we then obtain the cohomology groups:

Hp
�
RP2n�

=

�
0, p ≥ 1,
R, p = 0.

,

Hp
�
RP2n+1�

=

�
0, 2n ≥ p ≥ 1,
R, p = 0, 2n+ 1.

.

3.3. Poincaré Duality

The last piece of information we need to understand is how the wedge product
acts on cohomology. It is easy to see that we have a map

Hp
(M)×Hq

(M) → Hp+q
(M) ,

([ψ] , [ω]) → [ψ ∧ ω] .

We are interested in understanding what happens in case p+ q = n. This requires
a surprising amount of preparatory work. First we have

Theorem 3.3.1. If M is an oriented closed n-manifold, then we have a well-
defined isomorphism

Hn
(M) → R,

[ω] →
ˆ
M

ω.

Proof. That the map is well-defined follows from Stokes’ theorem. It is also
onto, since any form with the property that it is positive when evaluated on a
positively oriented frame is integrated to a positive number. Thus, we must show
that any form with

´
M

ω = 0 is exact. This is not easy to show, and in fact, it is
more natural to show this in a more general context: If M is an oriented n-manifold
that can be covered by finitely many charts, then any compactly supported n-form
ω with

´
M

ω = 0 is exact.
The proof of this result is by induction on the number of charts it takes to cover

M. But before we can start the inductive procedure, we must establish the result
for the n-sphere.
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Case 1: M = Sn. We know that Hn
(Sn

) = R, so
´
: Hn

(Sn
) → R must be an

isomorphism.
Case 2: M = Rn. We can think of M = Sn − {p} . Any compactly supported

form ω on M therefore yields a form on Sn. Given that
´
M

ω = 0, we therefore also
get that

´
Sn ω = 0. Thus, ω must be exact on Sn. Let ψ ∈ Ω

n−1
(Sn

) be chosen
such that dψ = ω. Use again that ω is compactly supported to find an open disc
U around p such that ω vanishes on U and U ∪M = Sn. Then ψ is clearly closed
on U and must by the Poincaré lemma be exact. Thus, we can find θ ∈ Ω

n−2
(U)

with dθ = ψ on U. This form does necessarily extend to Sn, but we can select a
bump function λ : Sn → [0, 1] that vanishes on Sn − U and is 1 on some smaller
neighborhood V ⊂ U around p. Now observe that ψ− d (λθ) is actually defined on
all of Sn. It vanishes on V and clearly

d (ψ − d (λθ)) = dψ = ω.

Case 3: M = A ∪ B where the result holds on A and B. Select a partition
of unity λA + λB = 1 subordinate to the cover {A,B} . Given an n-form ω with´
M

ω = 0, we get two forms λA ·ω and λB ·ω with support in A and B, respectively.
Using our assumptions, we see that

0 =

ˆ
M

ω

=

ˆ
A

λA · ω +

ˆ
B

λB · ω.

On A∩B we can select an n-form ω̃ with compact support inside A∩B such thatˆ
A∩B

ω̃ =

ˆ
A

λA · ω.

Using ω̃ we can create two forms,

λA · ω − ω̃,

λB · ω + ω̃,

with support in A and B, respectively. From our constructions it follows that they
both have integral zero. Thus, we can by assumption find ψA and ψB with support
in A and B, respectively, such that

dψA = λA · ω − ω̃,

dψB = λB · ω + ω̃.

Then we get a globally defined form ψ = ψA + ψB with

dψ = λA · ω − ω̃ + λB · ω + ω̃

= (λA + λB) · ω
= ω.

The theorem now follows by using induction on the number of charts it takes to
cover M . �

The above proof indicates that it might be more convenient to work with com-
pactly supported forms. This leads us to compactly supported cohomology, which is
defined as follows: Let Ωp

c
(M) denote the compactly supported p-forms. With this
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we have the compactly supported exact and closed forms Bp

c
(M) ⊂ Zp

c
(M) (note

that d : Ω
p

c
(M) → Ω

p+1
c

(M)). Then define

Hp

c
(M) =

Zp

c
(M)

Bp
c (M)

.

Needless to say, for closed manifolds the two cohomology theories are identical. For
open manifolds, on the other hand, we have that the closed 0-forms must be zero,
as they also have to have compact support. Thus H0

c
(M) = {0} if M is not closed.

Note that only proper maps F : M → N have the property that they map
F ∗

: Ω
p

c
(N) → Ω

p

c
(M) . In particular, if A ⊂ M is open, we do not have a map

Hp

c
(M) → Hp

c
(A) . Instead we observe that there is a natural inclusion Ω

p

c
(A) →

Ω
p

c
(M) , which induces

Hp

c
(A) → Hp

c
(M) .

The above proof, stated in our new terminology, says that

Hn

c
(M) → R,

[ω] →
ˆ
M

ω

is an isomorphism for oriented n-manifolds. Moreover, using that Rn
= Sn − {p} ,

Case 2 in the above proof shows that

Hn

c
(Rn

) = R
a similar but simpler argument can now be used to prove:

Hp

c
(Rn

) = 0, p < n.

In order to carry out induction proofs with this cohomology theory, we also
need a Meyer-Vietoris sequence:

· · · −→ Hp

c
(A ∩B) −→ Hp

c
(A)⊕Hp

c
(B) −→ Hp

c
(M) −→ Hp+1

c
(A ∩B) −→ · · · .

This is established in the same way as before using the diagram
0 −→ Ω

p+1
c

(A ∩B) −→ Ω
p+1
c

(A)⊕ Ω
p+1
c

(B) −→ Ω
p+1
c

(M) −→ 0

↑ d ↑ d ↑ d
0 −→ Ω

p

c
(A ∩B) −→ Ω

p

c
(A)⊕ Ω

p

c
(B) −→ Ω

p

c
(M) −→ 0

where the horizontal arrows are defined by:

Ω
p

c
(A ∩B) → Ω

p

c
(A)⊕ Ω

p

c
(B)

[ω] → ([ω] ,− [ω])

and

Ω
p

c
(A)⊕ Ω

p

c
(B) → Ω

p

c
(M)

([ωA] , [ωB ]) → [ωA + ωB ]

Theorem 3.3.2. Let M be an oriented n-manifold that can be covered by finitely
many charts. The pairing

Hp
(M)×Hn−p

c
(M) → R,

([ω] , [ψ]) →
´
M

ω ∧ ψ

is well-defined and nondegenerate. In particular, the two cohomology groups Hp
(M)

and Hn−p

c
(M) are dual to each other and therefore have the same dimension as

finite-dimensional vector spaces.
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Proof. We proceed by induction on the number of charts it takes to cover M.
For the case M = Rn, this theorem follows from the Poincaré lemma and the above
calculation of Hp

c
(Rn

). Next note that if M is the disjoint union of a possibly
infinite collection of open sets and the result holds for each open set then it must
hold for M . In general suppose M = A ∪ B, where the theorem is true for A, B,
and A ∩B. Note that the pairing gives a natural map

Hp
(N) →

�
Hn−p

c
(N)

�∗
= hom

�
Hn−p

c
(N) ,R

�

for any manifold N. We apparently assume that this map is an isomorphism for
N = A,B,A ∩ B. Using that taking duals reverses arrows, we obtain a diagram
where the left- and right most columns have been eliminated

→ Hp−1
(A ∩B) → Hp

(M) → Hp
(A)⊕Hp

(B) →
↓ ↓ ↓

→
�
Hn−p+1

c
(A ∩B)

�∗ → (Hn−p

c
(M))

∗ → (Hn−p
(A))

∗ ⊕ (Hn−p
(B))

∗ →

Each square in this diagram is either commutative or anticommutative (i.e., com-
mutes with a minus sign.) As all vertical arrows, except for the middle one, are
assumed to be isomorphisms, we see by a simple diagram chase (the five lemma)
that the middle arrow is also an isomorphism.

It is now clear that the theorem holds for all open subsets of Rn that are finite
unions of open convex sets. This in turn shows that we can prove the theorem for
all open sets in Rn. Use an exhaustion of compact sets to write such an open set as
a union

�
Ui where each Ui is a finite union of convex sets and Ui ∩ Uj = ∅ when

|i − j| ≥ 2. Thus the theorem holds for
�

U2i,
�
U2i+1, and (

�
U2i) ∩ (

�
U2i+1)

and consequently for the entire union.
Finally we can then establish the theorem using induction of the number of

charts it takes to cover the manifold. In fact one can also use an argument similar
to the argument that worked for open sets in Rn to prove the theorem in complete
generality. Thus M =

�
Uiwhere each Ui is a finite union of charts and Ui∩Uj = ∅

when |i− j| ≥ 2. This means the theorem holds for
�

U2i,
�

U2i+1, and (
�
U2i) ∩

(
�
U2i+1) and consequently for the entire union. �

Corollary 3.3.3. On a closed oriented n-manifold M we have that Hp
(M)

and Hn−p
(M) are isomorphic.

Note that RP2 does not satisfy this duality between H0 and H2. In fact we
always have

Theorem 3.3.4. Let M be an n-manifold that is not orientable, then

Hn

c
(M) = 0.

Proof. We use the two fold orientation cover F : M̂ → M and the involution
I : M̂ → M̂ such that F = F ◦ I. The fact that M is not orientable means that I
is orientation reversing. The key now is that pull back by I changes integrals by a
sign: ˆ

M̂

η = −
ˆ
M̂

I∗η, η ∈ Ω
n

c

�
M̂

�
.
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To prove the theorem select ω ∈ Ω
n

c
(M) and consider the pull-back F ∗ω ∈

Ω
n

c

�
M̂

�
. Since F = F ◦ I this form is invariant under pull back by I we have

ˆ
M̂

F ∗ω =

ˆ
M̂

I∗ ◦ F ∗ω.

On the other hand as I reverses orientation we must also haveˆ
M̂

F ∗ω = −
ˆ
M̂

I∗ ◦ F ∗ω.

Thus ˆ
M̂

F ∗ω = 0.

This shows that the pull back is exact

F ∗ω = dψ, ψ ∈ Ω
n−1
c

�
M̂

�

The form ψ need not be a pull back of a form on M, but we can average it

ψ̄ =
1

2
(ψ + I∗ψ) ∈ Ω

n−1
c

�
M̂

�

to get a form that is invariant under I

I∗ψ̄ =
1

2
(I∗ψ + I∗I∗ψ)

=
1

2
(I∗ψ + ψ)

= ψ̄.

The differential, however, stays the same

dψ̄ =
1

2
(dψ + I∗dψ)

=
1

2
(F ∗ω + I∗F ∗ω)

= F ∗ω.

Now there is a unique φ ∈ Ω
n−1
c

(M) , such that F ∗φ = ψ̄. Moreover dφ = ω, since
F is a local diffeomorphism and

ω = F ∗dφ = dF ∗φ = dψ̄

�

The last part of this proof yields a more general result:

Corollary 3.3.5. Let F : M → N be a two fold covering map, then

F ∗
: Hp

c
(N) → Hp

c
(M)

is an injection.
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3.4. Degree Theory

Given the simple nature of the top cohomology class of a manifold, we see that
maps between manifolds of the same dimension can act only by multiplication on
the top cohomology class. We shall see that this multiplicative factor is in fact an
integer, called the degree of the map.

To be precise, suppose we have two oriented n-manifolds M and N and also a
proper map F : M → N. Then we get a diagram

Hn

c
(N)

F
∗

→ Hn

c
(M)

↓
´

↓
´

R d→ R.

Since the vertical arrows are isomorphisms, the induced map f∗ yields a unique
map d : R → R. This map must be multiplication by some number, which we call
the degree of f, denoted by degF. Clearly, the degree is defined by the property

ˆ
M

F ∗ω = degF ·
ˆ
N

ω.

From the functorial properties of the induced maps on cohomology we see that

deg (F ◦G) = deg (F ) deg (G)

Lemma 3.4.1. If F : M → N is a diffeomorphism between oriented n-manifolds,
then degF = ±1, depending on whether F preserves or reverses orientation.

Proof. Note that our definition of integration of forms is independent of co-
ordinate changes. It relies only on a choice of orientation. If this choice is changed
then the integral changes by a sign. This clearly establishes the lemma. �

Theorem 3.4.2. If F : M → N is a proper map between oriented n-manifolds,
then degF is an integer.

Proof. The proof will also give a recipe for computing the degree. First, we
must appeal to Sard’s theorem. This theorem ensures that we can find y ∈ N such
that for each x ∈ F−1

(y) the differential DF : TxM → TyN is an isomorphism.
The inverse function theorem then tells us that F must be a diffeomorphism in a
neighborhood of each such x. In particular, the preimage F−1

(y) must be a discrete
set. As we also assumed the map to be proper, we can conclude that the preimage
is finite: {x1, . . . , xk} = F−1

(y) . We can then find a neighborhood U of y in N,
and neighborhoods Ui of xi in M, such that F : Ui → U is a diffeomorphism for
each i. Now select ω ∈ Ω

n

c
(U) with

´
ω = 1. Then we can write

F ∗ω =

k�

i=1

F ∗ω|Ui ,

where each F ∗ω|Ui has support in Ui. The above lemma now tells us that
ˆ
Ui

F ∗ω|Ui = ±1.
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Hence,

degF = degF ·
ˆ
N

ω

= degF ·
ˆ
U

ω

=

ˆ
M

F ∗ω

=

k�

i=1

ˆ
Ui

F ∗ω|Ui

is an integer. �
Note that

´
Ui

F ∗ω|Ui is ±1, depending simply on whether F preserves or re-
verses the orientations at xi. Thus, the degree simply counts the number of preim-
ages for regular values with sign. In particular, a finite covering map has degree
equal to the number of sheets in the covering.

We get several nice results using degree theory. Several of these have other
proofs as well using differential topological techniques. Here we emphasize the
integration formula for the degree. The key observation is that the degree of a map
is a homotopy invariant. However, as we can only compute degrees of proper maps
it is important that the homotopies are though proper maps. When working on
closed manifolds this is not an issue. But if the manifold is Euclidean space, then
all maps are homotopy equivalent, although not necessarily through proper maps.

Corollary 3.4.3. Let F : M → N be a proper nonsingular map of degree ±1

between oriented connected manifolds, then F is a diffeomorphism.

Proof. Since F is nonsingular everywhere it either reverses or preserves ori-
entations and all points. If the degree is well defined it follows that it can only be
±1 if the map is injective. On the other hand the fact that it is proper shows that
it is a covering map, thus it must be a diffeomorphism. �

Corollary 3.4.4. The identity map on a closed manifold is not homotopic to
a constant map.

Proof. The constant map has degree 0 while the identity map has degree 1
on an oriented manifold. In case the manifold isn’t oriented we can lift to the
orientation cover and still get it to work. �

Corollary 3.4.5. Even dimensional spheres do not admit nonvanishing vector
fields.

Proof. Let X be a vector field on Sn we can scale it so that it is a unit
vector field. If we consider it as a function X : Sn → Sn ⊂ Rn+1 then it is always
perpendicular to its foot point. We can then create a homotopy

H (p, t) = p cos (πt) +Xp sin (πt) .

Since p ⊥ Xp and both are unit vectors the Pythagorean theorem shows that
H (p, t) ∈ Sn as well. When t = 0 the homotopy is the identity, and when t = 1

it is the antipodal map. Since the antipodal map reverses orientations on even
dimensional spheres it is not possible for the identity map to be homotopic to the
antipodal map. �
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On an oriented Riemannian manifold (M, g) we always have a canonical volume
form denoted by dvolg. Using this form, we see that the degree of a map between
closed Riemannian manifolds F : (M, g) → (N, h) can be computed as

degF =

´
M

F ∗
(dvolh)

vol (N)
.

In case F is locally a Riemannian isometry, we must have that:
F ∗

(dvolh) = ±dvolg.

Hence,

degF = ±volM

volN
.

This gives the well-known formula for the relationship between the volumes of
Riemannian manifolds that are related by a finite covering map.

On Rn − {0} we have an interesting (n− 1)-form

w = r−n

n�

i=1

(−1)
i+1 xidx1 ∧ · · · ∧ �dxi ∧ · · · ∧ dxn

that is closed. If we restrict this to a sphere of radius ε around the origin we see
that ˆ

Sn−1(ε)
w = ε−n

ˆ
Sn−1(ε)

n�

i=1

(−1)
i+1 xidx1 ∧ · · · ∧ �dxi ∧ · · · ∧ dxn

= ε−n

ˆ
B̄(0,ε)

d

�
n�

i=1

(−1)
i+1 xidx1 ∧ · · · ∧ �dxi ∧ · · · ∧ dxn

�

= ε−n

ˆ
B̄(0,ε)

ndx1 ∧ · · · ∧ dxn

= nε−n
volB̄ (0, ε)

= nvolB̄ (0, 1)

= voln−1S
n−1

(1) .

More generally if F : Mn−1 → Rn−{0} is a smooth map then it is clearly homotopic
to the map F1 : Mn−1 → Sn−1

(1) defined by F1 = F/ |F | so we obtain
1

voln−1Sn−1 (1)

ˆ
M

F ∗w =
1

voln−1Sn−1 (1)

ˆ
M

F ∗
1w

= degF1

This is called the winding number of F.



CHAPTER 4

Characteristic Classes

4.1. Intersection Theory

Let Sk ⊂ Nn be a closed oriented submanifold of an oriented manifold. The
codimension is denoted by m = n − k. By integrating k-forms on N over S we
obtain a linear functional Hk

(N) → R. The Poincaré dual to this functional is an
element ηN

S
∈ Hm

c
(N) such that

ˆ
S

ω =

ˆ
M

ηN
S

∧ ω

for all ω ∈ Hk
(N) . We call ηN

S
the dual to S ⊂ N. The obvious defect of this

definition is that several natural submanifolds might not have nontrivial duals for
the simple reason that Hm

c
(N) vanishes, e.g., N = Sn.

To get a nontrivial dual we observe that
´
S
ω only depends on the values of ω

in a neighborhood of S. Thus we can find duals supported in any neighborhood U
of S in N, i.e., ηU

S
∈ Hm

c
(U) . We normally select the neighborhood so that there

is a deformation retraction π : U → S. In particular

π∗
: Hk

(S) → Hk
(U)

is an isomorphism. In case S is connected we also know that integration on Hk
(S)

defines an isomorphism ˆ
: Hk

(S) → R

This means that ηU
S

is just the Poincaré dual to 1 ∈ R modulo these isomorphisms.
Specifically, if ω ∈ Hk

(S) is a volume form that integrates to 1, then
ˆ
U

ηU
S
∧ π∗ω = 1.

Our first important observation is that if we change the orientation of S, then
integration changes sign on S and hence ηU

S
also changes sign. This will become

important below.
The dual gives us an interesting isomorphism called the Thom isomorphism.

Lemma 4.1.1. (Thom) The map

Hp−m

c
(S) → Hp

c
(U)

ω → ηU
S
∧ π∗

(ω)

is an isomorphism.

48
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Proof. Using Poincaré duality twice we see that

Hp

c
(U) � hom

�
Hn−p

(U) ,R
�

� hom
�
Hn−p

(S) ,R
�

� Hp−m

c
(S)

Thus it suffices to show that the map

Hp−m

c
(S) → Hp

c
(U)

ω → ηN
S

∧ π∗
(ω)

is injective. When p = n this is clearly the above construction. For p < n select
τ ∈ Hn−p

(S) � Hn−p
(U) , then ω ∧ τ ∈ Hk

(S) soˆ
U

ηU
S
∧ π∗

(ω) ∧ π∗
(τ) =

ˆ
U

ηU
S
∧ π∗

(ω ∧ τ)

=

ˆ
S

ω ∧ τ

Note that since τ is closed the form ηU
S
∧π∗

(ω)∧π∗
(τ) is exact provided ηU

S
∧π∗

(ω)
is exact. Therefore the formula shows that the linear map τ →

´
S
ω ∧ τ is trivial

if ηU
S
∧ π∗

(ω) is trivial in Hp

c
(U) . Poincaré duality then implies that ω it self is

trivial in Hp−m

c
(S) . �

The next goal is to find a characterization of ηU
S

when we have a deformation
retraction submersion π : U → S.

Proposition 4.1.2. The dual is characterized as a closed form with compact
support that integrates to 1 along fibers π−1

(p) for all p ∈ S.

Proof. The characterization requires a choice of orientation for the fibers. It is
chosen so that Tpπ−1

(p)⊕TpS and TpN have the same orientation (this is consistent
with [Guillemin-Pollack], but not with several other texts.) For ω ∈ Ω

k
(S) we

note that π∗ω is constant on π−1
(p) , p ∈ S. Therefore, if η is a closed compactly

supported form that integrates to 1 along all fibers, thenˆ
U

ηU
S
∧ π∗ω =

ˆ
S

ω

as desired.
Conversely we define

f : S → R,

f (p) =

ˆ
π−1(p)

ηU
S

and note that ˆ
S

ω =

ˆ
U

ηU
S
∧ π∗ω =

ˆ
S

fω

for all ω. Since the support of ω can be chosen to be in any open subset of S, this
shows that f = 1 on S. �

In case S is not connected the dual is constructed on each component.
Next we investigate naturality of the dual.
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Theorem 4.1.3. Let F : M → N be transverse to S, then for suitable U we
have

F ∗ �ηU
S

�
= ηF

−1(U)
F−1(S) .

Proof. To make sense of ηF
−1(U)

F−1(S) we need to choose orientations for F−1
(S) .

This is done as follows. First note that by shrinking U we can assume that F−1
(U)

deformation retracts onto F−1
(S) in such a way that we have a commutative

diagram
F−1

(U)
F−→ U

↓ π ↓ π

F−1
(S)

F−→ S

Transversality of F then shows that F restricted to the fibers F : π−1
(q) →

π−1
(F (q)) is a diffeomorphism. We then select the orientation on π−1

(q) such
that F has degree 1 and then on TqF−1

(S) such that Tqπ−1
(q) ⊕ TqF−1

(S) has
the orientation of TqM. In case F−1

(S) is a finite collection of points we are simply
assigning 1 or −1 to each point depending on whether π−1

(q) got oriented the same
way as M or not. With all of these choices it is now clear that if ηU

S
integrates to

1 along fibers then so does the pullback F ∗ �ηU
S

�
, showing that the pullback must

represent ηF
−1(U)

F−1(S) . �

This gives us a new formula for intersection numbers.

Corollary 4.1.4. If dimM + dimS = dimN, and F : M → N is transverse
to S, then

I (F, S) =

ˆ
F−1(U)

F ∗ �ηU
S

�
.

The advantage of this formula is that the right-hand side can be calculated even
when F isn’t transverse to S. And since both sides are invariant under homotopies
of F this gives us a more general way of calculating intersection numbers. We shall
see how this works in the next section.

Another interesting special case of naturality occurs for submanifolds.

Corollary 4.1.5. Assume S1, S2 ⊂ N are transverse and oriented, with suit-
able orientations on S1 ∩ S2 the dual is given by

ηS1 ∧ ηS2 = ηS1∩S2 .

Finally we wish to study to what extent η depends only on its values on the
fibers. First we note that if the tubular neighborhood S ⊂ U is a product neigh-
borhood, i.e. there is a diffeomorphism F : D × S → U which is a degree 1
diffeomorphism on fibers: D × {p} → π−1

(p) for all p ∈ S, then ηD×S

S
= F ∗ �ηU

S

�

can be represented as the volume form on D pulled back to D × S.
To better measure this effect we define the Euler class

eU
S
= i∗

�
ηU
S

�
∈ Hm

(S)

as the restriction of the dual to S. Since duals are natural we quickly get

Proposition 4.1.6. Let F : M → N be transverse to S, then for suitable U
we have

F ∗ �eU
S

�
= eF

−1(U)
F−1(S) .
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This shows

Corollary 4.1.7. If U is a trivial tubular neighborhood of S, then eU
S
= 0.

We also see that intersection numbers of maps are carried by the Euler class.

Lemma 4.1.8. If dimM + dimS = dimN, and F : M → N , then

I (F, S) =

ˆ
F−1(U)

F ∗ �π∗ �eU
S

��
.

Proof. Assume that π : U → S is a deformation retraction. Then F and
i ◦ π ◦ F are homotopy equivalent as maps from F−1

(U) . This shows that

I (F, S) =

ˆ
F−1(U)

F ∗ �ηU
S

�

=

ˆ
F−1(U)

(i ◦ π ◦ F )
∗ �ηU

S

�

=

ˆ
F−1(U)

(π ◦ F )
∗ �i∗ηU

S

�

=

ˆ
F−1(U)

(π ◦ F )
∗ �eU

S

�

=

ˆ
F−1(U)

F ∗ �π∗ �eU
S

��
.

�

This formula makes it clear that this integral really is an intersection number
as it must vanish if F doesn’t intersect S.

Finally we show that Euler classes vanish if the codimension is odd.

Theorem 4.1.9. The Euler class is characterized by

ηU
S
∧ π∗ �eU

S

�
= ηU

S
∧ ηU

S
∈ H2m

c
(U) .

In particular eU
S
= 0 if m is odd.

Proof. Since π∗ �eU
S

�
and ηU

S
represent the same class in Hm

(U) we have that

π∗ �eU
S

�
− ηU

S
= dω.

Then

ηU
S
∧ π∗ �eU

S

�
− ηU

S
∧ ηU

S
= ηU

S
∧ (dω)

= d
�
ηU
S
∧ ω

�

Since ηU
S
∧ ω is compactly supported this shows that ηU

S
∧ π∗ �eU

S

�
= ηU

S
∧ ηU

S
.

Next recall that we have an isomorphism ηU
S
∧ π∗

(·) : Hm
(S) → H2m

c
(U) .

Thus eU
S
= 0 if ηU

S
∧ ηU

S
= 0. This applies to the case when m is odd as

ηU
S
∧ ηU

S
= −ηU

S
∧ ηU

S
.

�
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4.2. The Künneth-Leray-Hirch Theorem

In this section we shall compute the cohomology of a fibration under certain
simplifying assumptions. We assume that we have a submersion-fibration π : N →
S where the fibers are diffeomorphic to a manifold M and that S is connected. As
an example we might have the product M × S → S. We shall further assume that
the restriction to any fiber is a surjection in cohomology

H∗
(N) → N∗

(M) → 0

In the case of a product this obviously holds since the projection M × S → M
is a right inverse to all the inclusions M → M × {s} ⊂ M × S. In general such
cohomology classes might not exist, e.g., the fibration S3 → S2 is a good counter
example.

It seems a daunting task to check the condition for all fibers in a general situ-
ation. Assuming we know it is true for a specific fiber M = π−1

(s) we can select a
neighborhood U around s such that π−1

(U) = M ×U. As long as U is contractible
we see that π−1

(U) and M are homotopy equeivalent and so the restriction to any
of the fibers over U will also give a surjection in cohomology. Covering S with
contractible sets now shows that the restriction to all of the fibers has to be a
submersion since S is connected. In fact this constrauction gives us a bit more.
First note that for a specific fiber M it is possible to select τi ∈ H∗

(N) that form
a basis for H∗

(M). The construction now shows that τi restrict to a basis for the
cohomology of all fibers as long as S is connected.

Theorem 4.2.1. (Künneth-Leray-Hirch) Given the above collection τi, a basis
for H∗

(N) can be found by selecting a basis ωk for H∗
(S) and then constructing

τi ∧ F ∗
(ωk) .

Proof. We employ the usual induction trick over open subsets of S. Note that
if U ⊂ S is an open subset we get a submersion-fibration π : π−1

(U) → U and the
restriction of τi to π−1

(U) obviously still have the desired properties.
In case U is diffeomorphic to an open disc and the bundle is trivial over U the

result is obvious as M × U has the same cohomology as M.
Next assume that the result holds for open sets U, V, U ∩V ⊂ S. A restatement

of the theorem will now make it clear that the five-lemma in conjunction with the
Meyer-Vietoris sequence shows that also U ∪ V must satisfy the theorem.

The restatement is as follows: First note that we have a natural map

span {τi} ⊗H∗
(S) → H∗

(N)

τi ⊗ ω → τi ∧ π∗
(ω)

that can be graded by collecting all terms on the left hand side that have degree p.
Defining

Hp
= span {τi ⊗Hq

(S) : deg τi = p− q}
we assert that the map

Hp → Hp
(N)

is an isomorphism for all p. �

Künneth’s theorem or formula is the above result in the case where the fibration
is a product, while the Leray-Hirch theorem or formula is for a fibration of the above
type.
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4.3. The Hopf-Lefschetz Formulas

We are going to relate the Euler characteristic and Lefschetz numbers to the
cohomology of the space.

Theorem 4.3.1. (Hopf-Poincaré) Let M be a closed oriented n-manifold, then

χ (M) = I (∆,∆) =

�
(−1)

p
dimHp

(M) .

Proof. If we consider the map

(id, id) : M → ∆,

(id, id) (x) = (x, x) ,

then the Euler characteristic can be computed as the intersection number

χ (M) = I (∆,∆)

= I ((id, id) ,∆)

=

ˆ
M

(id, id)∗
�
ηM×M

∆

�
.

Thus we need a formula for the Poincaré dual η∆ = ηM×M

∆ . To find this formula
we use Künneth’s formula for the cohomology of the product. To this end select a
basis ωi for the cohomology theory H∗

(M) and a dual basis τi, i.e.,

ˆ
M

ωi ∧ τj = δij ,

where the integral is assumed to be zero if the form ωi ∧ τj doesn’t have degree n.
By Künneth’s theorem π∗

1 (ωi) ∧ π∗
2 (τj) is a basis for H∗

(M ×M) . The dual
basis is up to a sign given by π∗

1 (τk) ∧ π∗
2 (ωl) as we can see by calculating

ˆ
M×M

π∗
1 (ωi) ∧ π∗

2 (τj) ∧ π∗
1 (τk) ∧ π∗

2 (ωl)

= (−1)
deg τj deg τk

ˆ
M×M

π∗
1 (ωi) ∧ π∗

1 (τk) ∧ π∗
2 (τj) ∧ π∗

2 (ωl)

= (−1)
deg τj(deg τk+degωl)

ˆ
M×M

π∗
1 (ωi) ∧ π∗

1 (τk) ∧ π∗
2 (ωl) ∧ π∗

2 (τj)

= (−1)
deg τj(deg τk+degωl)

�ˆ
M

ωi ∧ τk

��ˆ
M

ωl ∧ τj

�

= (−1)
deg τj(deg τk+degωl) δikδlj

Clearly this vanishes unless i = k and l = j.
This can be used to compute η∆ for ∆ ⊂ M ×M. We assume that

η∆ =

�
cijπ

∗
1 (ωi) ∧ π∗

2 (τj) .
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On one hand ˆ
M×M

η∆ ∧ π∗
1 (τk) ∧ π∗

2 (ωl)

=

�
cij

ˆ
M×M

π∗
1 (ωi) ∧ π∗

2 (τj) ∧ π∗
1 (τk) ∧ π∗

2 (ωl)

=

�
cij (−1)

deg τj(deg τk+degωl) δkiδjl

= ckl (−1)
deg τl(deg τk+degωl)

On the other hand using that (id, id) : M → ∆ is a map of degree 1 tells us thatˆ
M×M

η∆ ∧ π∗
1 (τk) ∧ π∗

2 (ωl) =

ˆ
∆
π∗
1 (τk) ∧ π∗

2 (ωl)

=

ˆ
M

(id, id)∗ (π∗
1 (τk) ∧ π∗

2 (ωl))

=

ˆ
M

τk ∧ ωl

= (−1)
deg(τk) deg(ωl) δkl.

Thus
ckl (−1)

deg τl(degωl+deg τk)
= (−1)

deg τk degωl δkl

or in other words ckl = 0 unless k = l and in that case

ckk = (−1)
deg τk(2 degωk+deg τk)

= (−1)
deg τk deg τk

= (−1)
deg τk .

This yields the formula

η∆ =

�
(−1)

deg τi π∗
1 (ωi) ∧ π∗

2 (τi) .

The Euler characteristic can now be computed as follows

χ (M) =

ˆ
M

(id, id)∗
�
ηM×M

∆

�

=

ˆ
M

(id, id)∗
��

(−1)
deg τi π∗

1 (ωi) ∧ π∗
2 (τi)

�

=

�
(−1)

deg τi

ˆ
M

ωi ∧ τi

=

�
(−1)

deg τi

=

�
(−1)

p
dimHp

(M) .

�

A generalization of this leads us to a similar formula for the Lefschetz number
of a map F : M → M .

Theorem 4.3.2. (Hopf-Lefschetz) Let F : M → M, then

L (F ) = I (graph (F ) ,∆) =

�
(−1)

p
tr (F ∗

: Hp
(M) → Hp

(M)) .
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Proof. This time we use the map (id, F ) : M → graph (F ) sending x to
(x, F (x)) to compute the Lefschetz number

I (graph (F ) ,∆) =

ˆ
M

(id, F )
∗ η∆

=

ˆ
M

(id, F )
∗
��

(−1)
deg τi π∗

1 (ωi) ∧ π∗
2 (τi)

�

=

�
(−1)

deg τi

ˆ
M

ωi ∧ F ∗τi

=

�
(−1)

deg τi

ˆ
M

ωi ∧ Fijτj

=

�
(−1)

deg τi Fijδij

=

�
(−1)

deg τi Fii

=

�
(−1)

p
tr (F ∗

: Hp
(M) → Hp

(M)) .

�
The definition I (graph (F ) ,∆) for the Lefschetz number is not consistent with

[Guillemin-Pollack]. But if we use their definition then the formula we just
established would have a sign (−1)

dimM on it. This is a very common confusion in
the general literature.

4.4. Examples of Lefschetz Numbers

It is in fact true that tr (F ∗
: Hp

(M) → Hp
(M)) is always an integer, but to

see this requires that we know more algebraic topology. In the cases we study here
this will be established directly. Two cases where we do know this to be true are
when p = 0 or p = dimM, in those cases

tr
�
F ∗

: H0
(M) → H0

(M)
�

= # of components of M,

tr (F ∗
: Hn

(M) → Hn
(M)) = degF.

4.4.1. Spheres and Real Projective Spaces. The simplicity of the coho-
mology of spheres and odd dimensional projective spaces now immediately give us
the Lefschetz number in terms of the degree.

When F : Sn → Sn we have L (F ) = 1 + (−1)
n
degF. This conforms with our

knowledge that any map without fixed points must be homotopic to the antipodal
map and therefore have degree (−1)

n+1 .
When F : RP2n+1 → RP2n+1 we have L (F ) = 1− deg (F ) . This also conforms

with our feeling for what happens with orthogonal transformations. Namely, if
F ∈ Gl+2n+2 (R) then it doesn’t have to have a fixed point as it doesn’t have to have
an eigenvector, while if F ∈ Gl−2n+2 (R) there should be at least two fixed points.

The even dimensional version F : RP2n → RP2n is a bit trickier as the manifold
isn’t orientable and thus our above approach doesn’t work. However, as the only
nontrivial cohomology group is when p = 0 we would expect the mod 2 Lefschetz
number to be 1 for all F. When F ∈ Gl2n+1 (R) , this is indeed true as such maps
have an odd number of real eigenvalues. For general F we can lift it to a map
F̃ : S2n → S2n satisfying the symmetry condition

F̃ (−x) = ±F̃ (x) .
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The sign ± must be consistent on the entire sphere. If it is + then we have that
F̃ ◦A = F̃ , where A is the antipodal map. This shows that deg F̃ ·(−1)

2n+1
= deg F̃ ,

and hence that deg F̃ = 0. In particular, F̃ and also F must have a fixed point. If
the sign is − and we assume that F̃ doesn’t have a fixed point, then the homotopy
to the antipodal map

H (x, t) =
(1− t) F̃ (x)− tx���(1− t) F̃ (x)− tx

���

must also be odd

H (−x, t) =
(1− t) F̃ (−x)− t (−x)���(1− t) F̃ (−x)− t (−x)

���

= − (1− t) F̃ (x)− t (x)���(1− t) F̃ (x)− t (x)
���

= −H (x, t) .

This implies that F is homotopic to the identity on RP2n and thus L (F ) = L (id) =
1.

4.4.2. Tori. Next let us consider M = Tn. The torus is a product of n circles.
If we let θ be a generator for H1

�
S1

�
and θi = π∗

i
(θ), where πi : Tn → S1 is the

projection onto the ith factor, then Künneth formula tells us that Hp
(Tn

) has a
basis of the form θi1 ∧ · · · ∧ θip , i1 < · · · < ip. Thus F ∗ is entirely determined by
knowing what F ∗ does to θi. We write F ∗

(θi) = αijθj . The action of F ∗ on the
basis θi1 ∧ · · · ∧ θip , i1 < · · · < ip is

F ∗ �θi1 ∧ · · · ∧ θip
�

= F ∗
(θi1) ∧ · · · ∧ F ∗ �θip

�

= αi1j1θj1 ∧ · · · ∧ αipjpθjp

=
�
αi1j1 · · ·αipjp

�
θj1 ∧ · · · ∧ θjp

this is zero unless j1, ..., jp are distinct. Even then, these indices have to be reordered
thus introducing a sign. Note also that there are p! ordered j1, ..., jp that when
reordered to be increasing are the same. To find the trace we are looking for
the “diagonal” entries, i.e., those j1, ..., jp that when reordered become i1, ..., ip. If
S (i1, ..., ip) denotes the set of permutations of i1, ..., ip then we have shown that

trF ∗|Hp(Tn) =

�

i1<···<ip

�

σ∈S(i1,...,ip)

sign (σ)αi1σ(i1) · · ·αipσ(ip).

This leads us to the formula

L (F ) =

n�

p=0

(−1)
p

�

i1<···<ip

�

σ∈S(i1,...,ip)

sign (σ)αi1σ(i1) · · ·αipσ(ip)

We claim that this can be simplified considerably by making the observation

det (δij − αij) =

�

σ∈S(1,...,n)

sign (σ)
�
δ1σ(1) − α1σ(1)

�
· · ·

�
δnσ(n) − αnσ(n)

�

=

�

σ∈S(1,...,n)

sign (σ) (−1)
p αi1σ(i1) · · ·αipσ(ip)δip+1σ(ip+1) · · · δinσ(in)
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where in the last sum {i1, ..., ip, ip+1, ..., in} = {1, ..., n} . Since the terms vanish
unless the permutation fixes ip+1, ..., in we have shown that

L (F ) = det (δij − αij) .

Finally we claim that the n × n matrix [αij ] has integer entries. To see this
first lift F to F̃ : Rn → Rn and think of Tn

= Rn/Zn where Zn is the usual integer
lattice. Let ei be the canonical basis for Rn and observe that ei ∈ Zn. The fact
that F̃ is a lift of a map in Tn means that F̃ (x+ ei) − F̃ (x) ∈ Zn for all x and
i = 1, ..., n. Since F̃ is continuous we see that

F̃ (x+ ei)− F̃ (x) = F̃ (ei)− F̃ (0) = Aei ∈ Zn

For some A = [aij ] ∈ Matn×n (Z) . We can then construct a linear homotopy

H (x, t) = (1− t) F̃ (x) + t (Ax) .

Since

H (x+ ei, t) = (1− t) F̃ (x+ ei) + tA (x+ ei)

= (1− t)
�
F̃ (x) +Aei

�
+ t (Ax+Aei)

= (1− t)
�
F̃ (x)

�
+ t (Ax) +Aei

= H (x, t) +Aei

we see that this defines a homotopy on Tn as well. Thus showing that F is homo-
topic to the linear map A on Tn. This means that F ∗

= A∗. Since A∗
(θi) = ajiθj ,

we have shown that [αij ] is an integer valued matrix.

4.4.3. Complex Projective Space. The cohomology groups of Pn
= CPn

vanish in odd dimensions and are one dimensional in even dimensions. The trace
formula for the Lefschetz number therefore can’t be too complicated. It turns
out to be even simpler and completely determined by the action of the map on
H2

(Pn
) , analogously with what happened on tori. To show this we need to find

ω ∈ H2
(Pn

) such that ωk ∈ H2k
(Pn

) always generates the cohomology. We give
a concrete description below. This description combined with the fact that τ (Pn

)

and Pn+1−{p} are isomorphic bundles over Pn with conjugate structures, i.e., they
have opposite orientations but are isomorphic over R, shows that the Euler class
eτ(P

n)
Pn ∈ H2

(Pn
) also generates the cohomology of Pn.

Using the submersion Cn+1 −{0} → Pn that sends
�
z0, ..., zn

�
to

�
z0 : · · · : zn

�

we should be able to construct ω on Cn+1. To make the form as nice as possible we
want it to be U (n+ 1) invariant. This is extremely useful as it will force

´
P1 ω to

be the same for all P1 ⊂ Pn. Since ω is closed it will also be exact on Cn+1. We use
a bit of auxiliary notation to define the desired 2-form ω on Cn+1 − {0} as well as
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some complex differentiation notation

dzi = dxi
+

√
−1dyi,

dz̄i = dxi −
√
−1dyi,

∂f

∂zi
=

1

2

�
∂f

∂xi
−
√
−1

∂f

∂yi

�
,

∂f

∂z̄i
=

1

2

�
∂f

∂xi
+
√
−1

∂f

∂yi

�

∂f =
∂f

∂zi
dzi,

∂̄f =
∂f

∂z̄i
dz̄i.

The factor 1
2 and strange signs ensure that the complex differentials work as one

would think

dzj
�

∂

∂zi

�
=

∂zj
∂zi

= δj
i
=

∂z̄j
∂z̄i

= dz̄j
�

∂

∂z̄i

�
,

dzj
�

∂

∂z̄i

�
= 0 = dz̄j

�
∂

∂zi

�

More generally we can define ∂ω and ∂̄ω for complex valued forms by simply com-
puting ∂ and ∂̄ of the coefficient functions just as the local coordinate definition of
d, specifically

∂
�
fdzi1 ∧ · · · ∧ dzip ∧ dz̄j1 ∧ · · · ∧ dz̄jq

�
= ∂f ∧ dzi1 ∧ · · · ∧ dzip ∧ dz̄j1 ∧ · · · ∧ dz̄jq ,

∂̄
�
fdzi1 ∧ · · · ∧ dzip ∧ dz̄j1 ∧ · · · ∧ dz̄jq

�
= ∂̄f ∧ dzi1 ∧ · · · ∧ dzip ∧ dz̄j1 ∧ · · · ∧ dz̄jq .

With this definition we see that

d = ∂ + ∂̄,

∂2
= ∂̄2

= ∂∂̄ + ∂̄∂ = 0

and the Cauchy-Riemann equations for holomorphic functions can be stated as

∂̄f = 0.

Working on Cn+1 − {0} define

Φ (z) = log |z|2

= log
�
z0z̄0 + · · ·+ znz̄n

�

and

ω =

√
−1

2π
∂∂̄Φ.

As r2 is invariant under U (n+ 1) the form ω will also be invariant. If we multiply
z ∈ Cn+1 − {0} by a nonzero scalar λ then

Φ (λz) = log

�
|λz|2

�
= log |λ|2 + log |z|2

= log |λ|2 +Φ(z)

so when taking derivatives the constant log |λ|2 disappears. This shows that the
form ω becomes invariant under multiplication by scalars. That said, it is not
possible to define Φ on Pn as it is essentially forced to be constant and hence have
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zero derivative. But it is defined in any given coordinate system as we shall see.
It is called the potential, or Kähler potential of ω. Finally the form is exact on
Cn+1 − {0} since

∂∂̄ =
�
∂ + ∂̄

�
∂̄ = d∂̄

To show that ω is a nontrivial element of H2
(Pn

) it suffices to show that´
P1 ω �= 0. By deleting a point from P1 we can coordinatize it by C. Specifically we

consider

P1
=

�
z0 : z1 : 0 : · · · : 0

�
,

and coordinatize P1 − {[0 : 1 : 0 : · · · : 0]} by z → [1 : z : 0 : · · · : 0] . Then

ω =

√
−1

2π
∂∂̄ log (1 + zz̄)

=

√
−1

2π

�
∂

�
zdz̄

1 + |z|2

��

=

√
−1

2π




∂ (zdz̄)

1 + |z|2
−
�
∂
�
1 + |z|2

��
∧ zdz̄

�
1 + |z|2

�2





=

√
−1

2π




dz ∧ dz̄

1 + |z|2
− (z̄dz) ∧ zdz̄

�
1 + |z|2

�2





=

√
−1

2π




dz ∧ dz̄

1 + |z|2
− |z|2 dz ∧ dz̄

�
1 + |z|2

�2





=

√
−1

2π

dz ∧ dz̄
�
1 + |z|2

�2

=

√
−1

2π

d
�
x+

√
−1y

�
∧ d

�
x−

√
−1y

�

(1 + x2 + y2)2

=

√
−1

2π

2
√
−1dy ∧ dx

(1 + x2 + y2)2

=
1

π

dx ∧ dy

(1 + x2 + y2)2

=
1

π

rdr ∧ dθ

(1 + r2)2

If we delete the π in the formula this is the volume form for the sphere of radius
1
2 in stereographic coordinates, or the volume form for that sphere in Riemann’s
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conformally flat model. ˆ
P1

ω =

ˆ
P1−{[0:1:0:···:0]}

ω

=

ˆ
C

1

2π
√
−1

dz̄ ∧ dz
�
1 + |z|2

�2

=

ˆ
R2

1

π

dx ∧ dy

(1 + x2 + y2)2

=
1

π

ˆ ∞

0

ˆ 2π

0

rdr ∧ dθ

(1 + r2)2

=

ˆ ∞

0

2rdr

(1 + r2)2

= 1.

The fact that this integral is 1 also tells us that ω is the dual to any Pn−1 ⊂ Pn.
To see this let

p = [1 : 0 : 0 : · · · : 0] ,
Pn−1

=
��

0 : z1 : · · · : zn
�
:
�
z1, ..., zn

�
∈ Cn − {0}

�
.

Then we know that

Pn − p =
��

z : z1 : · · · : zn
�
:
�
z1, ..., zn

�
∈ Cn − {0} and z ∈ C

�
.

and there is a retract r0 : Pn − p → Pn−1, whose fibers consist of the P1s that pass
through p and a point in Pn−1. More precisely

(r0)
−1 ��

0 : z1 : · · · : zn
��

− {p} =
��

z : z1 : · · · : zn
�
: z ∈ C

�
.

Since ω is closed and integrates to 1 over these fibers it must be the dual to Pn−1 ⊂
Pn. This shows that ˆ

Pn

ωn
=

ˆ
Pn−p

ωn

=

ˆ
Pn−p

ω ∧ ωn−1

=

ˆ
Pn−1

ωn−1.

Next we note that the restriction of ω to Pn−1 is simply our natural choice for ω
on that space so we have proven thatˆ

Pn

ωn
=

ˆ
Pn−1

ωn−1

=

ˆ
Pk

ωk

=

ˆ
P1

ω

= 1.

This means that ωk ∈ H2k
(Pn

) is a generator for the cohomology.
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Now let F : Pn → Pn and define λ by F ∗
(ω) = λω. Then F ∗ �ωk

�
= λkωk and

L (F ) = 1 + λ+ · · ·+ λn

If λ = 1 this gives us L (F ) = n + 1, which was the answer we got for maps from
Gln+1 (C) . In particular the Euler characteristic χ (Pn

) = n+ 1. When λ �= 1, the
formula simplifies to

L (F ) =
1− λn+1

1− λ
.

Since λ is real we note that this can’t vanish unless λ = −1 and n+1 is even. Thus
all maps on P2n have fixed points, just as on RP2n. On the other hand P2n+1 does
admit a map without fixed points, it just can’t come from a complex linear map.
Instead we just select a real linear map without fixed points that still yields a map
on P2n+1

I
��
z0 : z1 : · · ·

��
=

�
−z̄1 : z̄0 : · · ·

�
.

If I fixes a point then

−λz̄1 = z0,

λz̄0 = z1

which implies

− |λ|2 zi = zi

for all i. Since this is impossible the map does not have any fixed points.
Finally we should justify why λ is an integer. Let F1 = F |P1 : P1 → Pn and

observe that

λ =

ˆ
P1

F ∗
(ω)

=

ˆ
P1

F ∗
1 (ω)

We now claim that F1 is homotopic to a map P1 → P1. To see this note that
F1

�
P1

�
⊂ Pn is compact and has measure 0 by Sard’s theorem. Thus we can find

p /∈ im (F1) ∪ P1. This allows us to deformation retract Pn − p to a Pn−1 ⊃ P1.
This Pn−1 might not be perpendicular to p in the usual metric, but one can always
select a metric where p and P1 are perpendicular and then use the Pn−1 that is
perpendicular to p. Thus F1 : P1 → Pn is homotopic to a map F2 : P1 → Pn−1.
We can repeat this argument until we get a map Fn : P1 → P1 homotopic to the
original F1. This shows that

λ =

ˆ
P1

F ∗
1 (ω)

=

ˆ
P1

F ∗
n
(ω)

= deg (Fn)

ˆ
P1

ω

= deg (Fn) .
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4.5. The Euler Class

We are interested in studying duals and in particular Euler classes in the special
case where we have a vector bundle π : E → M and M is thought of a submanifold
of E by embedding it into E via the zero section. The total space E is assumed
oriented in such a way that a positive orientation for the fibers together with a
positive orientation of M gives us the orientation for E. The dimensions are set up
so that the fibers of E → M have dimension m.

The dual ηE
M

∈ Hm

c
(E) is in this case usually called the Thom class of the

bundle E → M. The embedding M ⊂ E is proper so by restriction this dual defines
a class e (E) ∈ Hm

(M) called the Euler class (note that we only defined duals
to closed submanifolds so Hc (M) = H (M) .) Since all sections s : M → E are
homotopy equivalent we see that e (E) = s∗ηM . This immediately proves a very
interesting theorem generalizing our earlier result for trivial tubular neighborhoods.

Theorem 4.5.1. If a bundle π : E → M has a nowhere vanishing section then
e (E) = 0.

Proof. Let s : M → E be a section and consider C · s for a large constant
C. Then the image of C · s must be disjoint from the compact support of ηM and
hence s∗ (ηM ) = 0. �

This Euler class is also natural

Proposition 4.5.2. Let F : N → M be a map that is covered by a vector
bundle map F̄ : E� → E, i.e., F̄ is a linear orientation preserving isomorphism on
fibers. Then

e (E�
) = F ∗

(e (E)) .

An example is the pull-back vector bundle is defined by

F ∗
(E) = {(p, v) ∈ N × E : π (v) = F (q)} .

Reversing orientation of fibers changes the sign of ηE
M

and hence also of e (E).
Using F = id and F̄ (v) = −v yields an orientation reversing bundle map when k is
odd, showing that e (E) = 0. Thus we usually only consider Euler classes for even
dimensional bundles.

The Euler class can also be used to detect intersection numbers as we have
see before. In case M and the fibers have the same dimension, we can define the
intersection number I (s,M) of a section s : M → E with the zero section or simply
M. The formula is

I (s,M) =

ˆ
M

s∗ (e (E))

=

ˆ
M

e (E)

since all sections are homotopy equivalent to the zero section.
In the special case of the tangent bundle to an oriented manifold M we already

know that the intersection number of a vector field X with the zero section is the
Euler characteristic. Thus

χ (M) = I (X,M) =

ˆ
M

e (TM)
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This result was first proven by Hopf and can be used to compute χ using a
triangulation. This is explained in [Guillemin-Pollack] and [Spivak].

The Euler class has other natural properties when we do constructions with
vector bundles.

Theorem 4.5.3. Given two vector bundles E → M and E� → M, the Whitney
sum has Euler class

e (E ⊕ E�
) = e (E) ∧ e (E�

) .

Proof. As we have a better characterization of duals we start with a more
general calculation.

Let π : E → M and π�
: E� → M � be bundles and consider the product bundle

π × π�
: E × E� → M ×M �. With this we have the projections π1 : E × E� → E

and π2 : E × E� → E�. Restricting to the zero sections gives the projections π1 :

M ×M � → M and π2 : M ×M � → M �. We claim that

ηM×M � = (−1)
n·m�

π∗
1 (ηM ) ∧ π∗

2 (ηM �) ∈ Hm+m
�

c
(E × E�

) .

Note that since the projections are not proper it is not clear that π∗
1 (ηM )∧π∗

2 (ηM �)

has compact support. However, the support must be compact when projected to
E and E� and thus be compact in E × E�. To see the equality we select volume
forms ω ∈ Hn

(M) and ω� ∈ Hn
�
(M �

) that integrate to 1. Then π∗
1 (ω) ∧ π∗

2 (ω
�
) is

a volume form on M ×M � that integrates to 1. Thus it suffices to computeˆ
E×E�

π∗
1 (ηM ) ∧ π∗

2 (ηM �) ∧ (π × π�
)
∗
(π∗

1 (ω) ∧ π∗
2 (ω

�
))

=

ˆ
E×E�

π∗
1 (ηM ) ∧ π∗

2 (ηM �) ∧ π∗
1 (π

∗
(ω)) ∧ π∗

2

�
(π�

)
∗
(ω�

)
�

= (−1)
n·m�
ˆ
E×E�

π∗
1 (ηM ) ∧ π∗

1 (π
∗
(ω)) ∧ π∗

2 (ηM �) ∧ π∗
2

�
(π�

)
∗
(ω�

)
�

= (−1)
n·m�

�ˆ
E

ηM ∧ π∗
(ω)

��ˆ
E�

ηM � ∧ (π�
)
∗
(ω�

)

�

= (−1)
n·m�

.

When we consider Euler classes this gives us

e (E × E�
) = π∗

1 (e (E)) ∧ π∗
2 (e (M

�
)) ∈ Hm+m

�

c
(M ×M �

) .

The sign is now irrelevant since e (M �
) = 0 if m� is odd.

The Whitney sum E ⊕ E� → M of two bundles over the same space is gotten
by taking direct sums of the vector space fibers over points in M. This means that
E ⊕ E�

= (id, id)∗ (E × E�
) where (id, id) : M → M ×M since

(id, id)∗ (E × E�
) = {(p, v, v�) ∈ M × E × E�

: π (v) = p = π�
(v�)} = E ⊕ E�.

Thus we get the formula

e (E ⊕ E�
) = e (E) ∧ e (E�

) .

�
This implies

Corollary 4.5.4. If a bundle π : E → M admits an orientable odd dimen-
sional sub-bundle F ⊂ E, then e (E) = 0.
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Proof. We have that E = F ⊕E/F or if E carries an inner product structure
E = F ⊕F⊥. Now orient F and then E/F so that F ⊕E/F and E have compatible
orientations. Then e (E) = e (F ) ∧ e (E/F ) = 0. �

Note that if there is a nowhere vanishing section, then there is a 1 dimensional
orientable subbundle. So this recaptures our earlier vanishing theorem. Conversely
any orientable 1 dimensional bundle is trivial and thus yields a nowhere vanishing
section.

A meaningful theory of invariants for vector bundles using forms should try
to avoid odd dimensional bundles altogether. The simplest way of doing this is
to consider vector bundles where the vector spaces are complex and then insist on
using only complex and Hermitian constructions. This will be investigated further
below.

The trivial bundles Rm ⊕ M all have e (Rm ⊕M) = 0. This is because these
bundles are all pull-backs of the bundle Rm ⊕ {0} , where {0} is the 1 point space.

To compute e (τ (Pn
)) recall that τ (Pn

) is the conjugate of Pn+1 − {p} → Pn

which has dual ηPn = ω. Since conjugation reverses orientation on 1 dimensional
bundles this shows that e (τ (Pn

)) = −ω.
Since χ (Pn

) = n+ 1 we know that e (TPn
) = (n+ 1)ωn.

We go on to describe how the dual and Euler class can be calculated locally.
Assume that M is covered by sets Uk such that E|Uk is trivial and that there is a
partition of unit λk relative to this covering.

First we analyze what the dual restricted to the fibers might look like. For
that purpose we assume that the fiber is isometric to Rm. We select a volume form
ψ ∈ Ω

m−1
�
Sm−1

�
that integrates to 1 and a bump function ρ : [0,∞) → [−1, 0]

that is −1 on a neighborhood of 0 and has compact support. Then extend ψ to
Rm − {0} and consider

d (ρψ) = dρ ∧ ψ.

Since dρ vanishes near the origin this is a globally defined form with total integralˆ
Rm

dρ ∧ ψ =

ˆ ∞

0
dρ

ˆ
Sm−1

ψ

= (ρ (∞)− ρ (0))

= 1.

Each fiber of E carries such a form. The bump function ρ is defined on all of E
by ρ (v) = ρ (|v|) , but the “angular” form ψ is not globally defined. As we shall
see, the Euler class is the obstruction for ψ to be defined on E. Over each Uk the
bundle is trivial so we do get a closed form ψk ∈ Ω

m−1
(S (E|Uk)) that restricts

to the angular form on fibers. As these forms agree on the fibers the difference
depends only on the footpoints:

ψk − ψl = π∗φkl,

where φkl ∈ Ω
m−1

(Uk ∩ Ul) are closed. These forms satisfy the cocycle conditions

φkl = −φlk,

φki + φil = φkl.

Now define
εk =

�

i

λiφki ∈ Ω
m−1

(Uk)
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and note that the cocycle conditions show that

εk − εl =

�

i

λiφki −
�

i

λiφli

=

�

i

λi (φki − φli)

=

�

i

λiφkl

= φkl.

Thus we have a globally defined form e = dεk on M since d (εk − εl) = dφkl = 0.
This will turn out to be the Euler form

e = d

�
�

i

λiφki

�
=

�

i

dλi ∧ φki.

Next we observe that
π∗εk − π∗εl = ψk − ψl

so
ψ = ψk − π∗εk

defines a form on E. This is our global angular form. We now claim that

η = d (ρψ)

= dρ ∧ ψ + ρdψ

= dρ ∧ ψ − ρπ∗dεk

= dρ ∧ ψ − ρπ∗e

is the dual. First we note that it is defined on all of E, is closed, and has compact
support. It yields e when restricted to the zero section as ρ (0) = −1. Finally when
restricted to a fiber we can localize the expression

η = dρ ∧ ψk − dρ ∧ π∗εk − ρπ∗e.

But both π∗εk and π∗e vanish on fibers so η, when restricted to a fiber, is simply
the form we constructed above whose integral was 1. This shows that η is the dual
to M in E and that e is the Euler class.

We are now going to specialize to complex line bundles with a Hermitian struc-
ture on each fiber. Since an oriented Euclidean plane has a canonical complex
structure this is the same as studying oriented 2-plane bundles. The complex
structure just helps in setting up the formulas.

The angular form is usually denoted dθ as it is the differential of the locally
defined angle. To make sense of this we select a unit length section sk : Uk →
S (E|Uk) . For v ∈ S (E|Uk) the angle can be defined by

v = hk (v) sk = e
√
−1θksk.

This shows that the angular form is given by

dθk = −
√
−1

dhk

hk

= −
√
−1d log hk.
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Since we want the unit circles to have unit length we normalize this and define

ψk = −
√
−1

2π
d log hk.

On Uk ∩ Ul we have that
hlsl = v = hksk

So
(hl)

−1 hksk = sl.

But (hl)
−1 hk now only depends on the base point in Uk ∩ Ul and not on where v

might be in the unit circle. Thus

π∗gkl = gkl ◦ π = hk (hl)
−1

where gkl : Uk ∩ Ul → S1 satisfy the cocycle conditions

(gkl)
−1

= glk

gkigil = gkl.

Taking logarithmic differentials then gives us

−
√
−1

2π
π∗ dgkl

gkl
= −

√
−1

2π
π∗d log (gkl)

=

�
−
√
−1

2π
d log (hk)

�
−
�
−
√
−1

2π
d log (hl)

�

=

�
−
√
−1

2π

dhk

hk

�
−
�
−
√
−1

2π

dhl

hl

�
.

Thus

εk = −
√
−1

2π

�

i

λid log (gki) ,

ψ =

�
−
√
−1

2π

dhk

hk

�
− π∗εk

e = dεk

= d

�√
−1

2π

�

i

λid log (gki)

�

=

√
−1

2π

�

i

dλi ∧ d log (gki)

This can be used to prove an important result.

Lemma 4.5.5. Let E → M and E� → M be complex line bundles, then

e (hom (E,E�
)) = −e (E) + e (E�

) ,

e (E ⊗ E�
) = e (E) + e (E�

) .
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Proof. Note that the sign ensures that the Euler class vanishes when E = E�.
Select a covering Uk such that E and E� have unit length sections sk respectively

tk on Uk. If we define Lk ∈ hom (E,E�
) such that Lk (sk) = tk, then hk is a unit

length section of hom (E,E�
) over Uk. The transitions functions are

gklsk = sl,

ḡkltk = tl.

For hom (E,E�
) we see that

Ll (sk) = hk (glksl)

= glkLl (sl)

= glktl

= glkḡkltk

= (gkl)
−1 ḡkltk

Thus
Ll = (gkl)

−1 ḡklLk.

This shows that

e (hom (E,E�
)) = −

√
−1

2π

�

i

dλi ∧ d log
�
(gki)

−1 ḡki
�

=

√
−1

2π

�

i

dλi ∧ d log (gki)−
√
−1

2π

�

i

dλi ∧ d log (ḡki)

= −e (E) + e (E�
) .

The proof is similar for tensor products using

sl ⊗ tl = (gklsk)⊗ (ḡkltk)

= gklḡkl (sk ⊗ tk) .

�

4.6. Characteristic Classes

All vector bundles will be complex and for convenience also have Hermitian
structures. Dimensions etc will be complex so a little bit of adjustment is sometimes
necessary when we check where classes live. Note that complex bundles are always
oriented since Glm (C) ⊂ Gl+2m (R) .

We are looking for a characteristic class c (E) ∈ H∗
(M) that can be written as

c (E) = c0 (E) + c1 (E) + c2 (E) + · · · ,
c0 (E) = 1 ∈ H0

(M) ,

c1 (E) ∈ H2
(M) ,

c2 (E) ∈ H4
(M) ,

...
cm (E) = e (E) ∈ H2m

(M) ,

cl (E) = 0, l > m
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For a 1 dimensional or line bundle we simply define c (E) = 1+ c1 (E) = 1+ e (E) .
There are two more general properties that these classes should satisfy. First they
should be natural in the sense that

c (E) = F ∗
(c (E�

))

where F : M → M � is covered by a complex bundle map E → E� that is an
isomorphism on fibers. Second, they should satisfy the product formula

c (E ⊕ E�
) = c (E) ∧ c (E�

)

=

m+m
��

p=0

p�

i=0

ci (E) ∧ cp−i (E
�
)

for Whitney sums.
There are two approaches to defining c (E) . In [Milnor-Stasheff] an inductive

method is used in conjunction with the Gysin sequence for the unit sphere bundle.
As this approach doesn’t seem to have any advantage over the one we shall give
here we will not present it. The other method is more abstract, clean and does not
use the Hermitian structure. It is analogous to the construction of splitting fields
in Galois theory and is due to Grothendieck.

First we need to understand the cohomology of H∗
(P (E)) . Note that we have

a natural fibration π : P (E) → M and a canonical line bundle τ (P (E)) . The Euler
class of the line bugle is for simplicity denoted

e = e (τ (P (E))) ∈ H2
(P (E)) .

The fibers of P (E) → M are Pm−1 and we note that the natural inclusion i :

Pm−1 → P (E) is also natural for the tautological bundles

i∗ (τ (P (E))) = τ
�
Pm−1

�

thus showing that
i∗ (e) = e

�
τ
�
Pm−1

��
.

As e
�
τ
�
Pm−1

��
generates the cohomology of the fiber we have shown that the

Leray-Hirch formula for the cohomology of the fibration P (E) → M can be applied.
Thus any element ω ∈ H∗

(P (E)) has an expression of the form

ω =

m�

i=1

π∗
(ωi) ∧ em−i

where ωi ∈ H∗
(M) are unique. In particular,

0 = (−e)m + π∗
(c1 (E)) ∧ (−e)m−1

+ · · ·+ π∗
(ck−1 (E)) ∧ (−e) + π∗

(ck (E))

=

m�

i=0

π∗
(ci (E)) ∧ (−e)m−i

This means that H∗
(P (E)) is an extension of H∗

(M) where the polynomial

tm + c1 (E) tm−1
+ · · ·+ cm−1 (E) t+ cm (E)

has −e as a root. The reason for using −e rather than e is that −e restricts to the
form ω on the fibers of P (E) .
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Theorem 4.6.1. Assume that we have vector bundles E → M and E� → M �

both of rank m, and a smooth map F : M → M � that is covered by a bundle map
that is fiberwise an isomorphism. Then

c (E) = F ∗
(c (E�

)) .

Proof. We start by selecting a Hermitian structure on E� and then transfer
it to E by the bundle map. In that way the bundle map preserves the unit sphere
bundles. Better yet, we get a bundle map

π∗
(E) → (π�

)
∗
(E�

)

that also yields a bundle map

τ (P (E)) → τ (P (E�
)) .

Since the Euler classes for these bundles is natural we have

F ∗
(e�) = e

and therefore

0 = F ∗

�
m�

i=0

ci (E
�
) ∧ (−e�)

m−i

�

=

m�

i=0

F ∗ci (E
�
) ∧ (−e)m−i

Since ci (E) are uniquely defined by

0 =

m�

i=0

ci (E) ∧ (−e)m−i

we have shown that
ci (E) = F ∗ci (E

�
) .

�

The trivial bundles Cm ⊕ M all have c (Cm ⊕M) = 1. This is because these
bundles are all pull-backs of the bundle Cm ⊕ {0} , where {0} is the 1 point space.

To compute e (τ (Pn
)) recall that τ (Pn

) is the conjugate of Pn+1 − {p} → Pn

which has dual ηPn = ω. Since conjugation reverses orientation on 1 dimensional
bundles this shows that e (τ (Pn

)) = −ω.
The Whitney sum formula is established by proving the splitting principle.

Theorem 4.6.2. If a bundle π : E → M splits E = L1 ⊕ · · · ⊕ Lm as a direct
sum of line bundles, then

c (E) =

m�

i=1

(1 + e (Li)) .

Proof. We pull everything back to P (E) but without changing notation and
note that it then suffices to prove that

0 =

m�

i=1

(−e+ e (Li)) .
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This is because
�

m

i=1 (−e+ e (Li)) is a polynomial in e of degree m whose coeffi-
cients are forced to be the characteristic classes of E. The theorem then follows if
we consider how

m�

i=1

(1 + e (Li))

and
m�

i=1

(−e+ e (Li))

are multiplied out.
To see that

m�

i=1

(−e+ e (Li)) = 0

we identify −e+ e (Li) with the Euler class of hom (τ, Li). This shows that
m�

i=1

(−e+ e (Li)) = e

�
m�

i=1

hom (τ, Li)

�

= e (hom (τ, L1 ⊕ · · · ⊕ Lm))

= e (hom (τ, E))

= e
�
hom

�
τ, τ ⊕ τ⊥

��

= e (hom (τ, τ)) ∧ e
�
hom

�
τ, τ⊥

��

= 0

since hom (τ, τ) has the identity map as a nowhere vanishing section. �

The splitting principle can be used to compute c (TPn
) . First note that TPn �

hom

�
τ (Pn

) , τ (Pn
)
⊥
�
. Thus

TPn ⊕ C = hom

�
τ (Pn

) , τ (Pn
)
⊥
�
⊕ C

= hom

�
τ (Pn

) , τ (Pn
)
⊥
�
⊕ hom (τ (Pn

) , τ (Pn
))

= hom

�
τ (Pn

) , τ (Pn
)
⊥ ⊕ τ (Pn

)

�

= hom
�
τ (Pn

) ,Cn+1
�

= hom (τ (Pn
) ,C)⊕ · · · ⊕ hom (τ (Pn

) ,C) .
Thus

c (TPn
) = c (TPn ⊕ C)

= (1 + ω)n+1 .

This shows that

ci (TPn
) =

�
n+ 1

i

�
ωi

which conforms with

e (TPn
) = cn (TPn

) = (n+ 1)ωn.

We can now finally establish the Whitney sum formula.
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Theorem 4.6.3. For two vector bundles E → M and E� → M we have

c (E ⊕ E�
) = c (E) ∧ c (E�

) .

Proof. First we repeatedly projectivize so as to create a map Ñ → M with
the property that it is an injection on cohomology and the pull-back of E to Ñ
splits as a direct sum of line bundles. Then repeat this procedure on the pull-back
of E� to Ñ until we finally get a map F : N → M such that F ∗ is an injection on
cohomology and both of the bundles split

F ∗
(E) = L1 ⊕ · · · ⊕ Lm,

F ∗
(E�

) = K1 ⊕ · · · ⊕Km�

The splitting principle together with naturality then implies that

F ∗
(c (E ⊕ E�

)) = c (F ∗
(E ⊕ E�

))

= c (L1) ∧ · · · ∧ c (Lm) ∧ c (K1) ∧ · · · ∧ c (Km�)

= c (F ∗
(E)) ∧ c (F ∗

(E�
))

= F ∗c (E) ∧ F ∗c (E�
)

= F ∗
(c (E) ∧ c (E�

)) .

Since F ∗ is an injection this shows that

c (E ⊕ E�
) = c (E) ∧ c (E�

) .

�

4.7. Generalized Cohomology

In this section we are going to explain how one can define relative cohomology
and also indicate how it can be used to calculate some of the cohomology groups
we have seen earlier.

We start with the simplest and most important situation where S ⊂ M is a
closed submanifold of a closed manifold.

Proposition 4.7.1. If S ⊂ M is a closed submanifold of a closed manifold,
then

1. The restriction map i∗ : Ω
p
(M) → Ω

p
(S) is surjective.

2. If ω ∈ Ω
p
(S) is closed, then ω = i∗ω̄, ω̄ ∈ Ω

p
(M) , where dω̄ ∈ Ω

p+1
c

(M − S) .
3. If ω̄ ∈ Ω

p
(M) with dω̄ ∈ Ω

p+1
c

(M − S) and ω = i∗ (ω̄) ∈ Ω
p
(S) is exact,

then ω̄ − dθ̄ ∈ Ω
p

c
(M − S) for some θ̄ ∈ Ω

p−1
(M) .

Proof. Select a neighborhood S ⊂ U ⊂ M that deformation retracts π :

U → S. Then i∗ : Hp
(U) → Hp

(S) is an isomorphism. We also need a function
λ : M → [0, 1] that is compactly supported in U and is 1 on a neighborhood of S.

1. Given ω ∈ Ω
p
(S) let ω̄ = λπ∗

(ω) .
2. With that choice dω̄ = dλ∧ π∗

(ω) + λπ∗
(dω) so the second property is also

verified.
3. Conversely assume that ω̄ ∈ Ω

p
(M) has dω̄ ∈ Ω

p+1
c

(M − S). By possibly
shrinking the support for λ to make it disjoint from the support of dω̄ we can
assume that λω̄ is closed. If we assume that i∗ (λω̄) = ω is exact, then λω̄ = dθ for
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θ ∈ Ω
p
(U). We can then use θ̄ = λθ and note that

ω̄ − dθ̄ = ω̄ − dλ ∧ θ − λdθ̄

= ω̄ − dλ ∧ θ − λ2ω̄

∈ Ω
p

c
(M − S) .

�

This shows that we have a short exact sequence

0 → Ω
p
(M,S) → Ω

p
(M) → Ω

p
(S) → 0,

Ω
p
(M,S) = ker (i∗ : Ω

p
(M) → Ω

p
(S))

as well as a natural inclusion

Ω
p

c
(M − S) → Ω

p
(M,S)

that is an isomorphism on cohomology.

Corollary 4.7.2. Assume S ⊂ M is a closed submanifold of a closed manifold,
then

→ Hp

c
(M − S) → Hp

(M) → Hp
(S) → Hp+1

c
(M − S) →

is a long exact sequence of cohomology groups.

Good examples are Sn−1 ⊂ Sn with Sn − Sn−1 being two copies of Rn and
Pn−1 ⊂ Pn where Pn − Pn−1 � Fn. This gives us a different inductive method for
computing the cohomology of the spaces. Conversely, given the cohomology groups
of those spaces, it computes the compactly supported cohomology of Rn. It can
also be used on manifolds with boundary:

→ Hp

c
(intM) → Hp

(M) → Hp
(∂M) → Hp+1

c
(intM) →

where we can specialize to M = Dn ⊂ Rn, the closed unit ball. The Poincaré
lemma computes the cohomology of Dn so we get that

Hp+1
c

(Bn
) � Hp

�
Sn−1

�
.

For general connected compact manifolds with boundary we also get some interest-
ing information.

Theorem 4.7.3. If M is an oriented compact n-manifold with boundary, then

Hn
(M) = 0.

Proof. If M is oriented, then we know that ∂M is also oriented and that

Hn
(M,∂M) = Hn

c
(intM) � R

Hn
(∂M) = {0} ,

Hn−1
(∂M) � Rk,

where k is the number of components of ∂M. The connecting homomorphism
Hn−1

(∂M) → Hn

c
(intM) can be analyzed from the diagram

0 → Ω
n
(M,∂M) → Ω

n
(M) → Ω

n
(∂M) → 0

↑ d ↑ d ↑ d
0 → Ω

n−1
(M,∂M) → Ω

n−1
(M) → Ω

n−1
(∂M) → 0
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Evidently any ω ∈ Ω
n−1

(∂M) is the restriction of some ω̄ ∈ Ω
n−1

(M) , where we
can further assume that dω̄ ∈ Ω

n

c
(M) . Stokes’ theorem then tells us thatˆ

M

dω̄ =

ˆ
∂M

ω̄ =

ˆ
∂M

ω.

This shows that the map Hn−1
(∂M) → Hn

c
(intM) is nontrivial and hence surjec-

tive, which in turn implies that Hn
(M) = {0} . �

It is possible to extend the above long exact sequence to the case where M is
noncompact by using compactly supported cohomology on M. This gives us the
long exact sequence

→ Hp

c
(M − S) → Hp

c
(M) → Hp

(S) → Hp+1
c

(M − S) →
It is even possible to also have S be noncompact if we assume that the embedding
is proper and then also use compactly supported cohomology on S.

We can generalize further to a situation where S is simply a compact subset of
M. In that case we define the deRham-Cech cohomology groups H̄p

(S) using

Ω̄
p
(S) =

{ω}
ω1 ∼ ω2 iff ω1 = ω2 on a ngbd of S

,

ω ∈ Ω
p
(M)

and the short exact sequence
0 → Ω

p

c
(M − S) → Ω

p

c
(M) → Ω̄

p
(S) → 0.

This in turn gives us a long exact sequence
→ Hp

c
(M − S) → Hp

c
(M) → H̄p

(S) → Hp+1
c

(M − S) →
Finally we can define a more general relative cohomology group. We take a

differentiable map F : S → M between manifolds. It could, e.g., be an embedding
of S ⊂ M , but S need not be closed. Define

Ω
p
(F ) = Ω

p
(M)⊕ Ω

p−1
(S)

and the differential
d : Ω

p
(F ) → Ω

p+1
(F )

d (ω, ψ) = (dω, F ∗ω − dψ)

Note that d2 = 0 so we get a complex and cohomology groups Hp
(F ) . These

“forms” fit into a sort exact sequence
0 → Ω

p−1
(S) → Ω

p
(F ) → Ω

p
(M) → 0,

where the maps are just the natural inclusion and projection. When we include the
differential we get a large diagram where the left square is anticommutative and
the right one commutative

0 → Ω
p
(S) → Ω

p+1
(M)⊕ Ω

p
(S) → Ω

p+1
(M) → 0

↑ d ↑ (d, F ∗ − d) ↑ d
0 → Ω

p−1
(S) → Ω

p
(M)⊕ Ω

p−1
(S) → Ω

p
(M) → 0

This still leads us to a long exact sequence
→ Hp−1

(S) → Hp
(F ) → Hp

(M) → Hp
(S) →

The connecting homomorphism Hp
(M) → Hp

(S) is in fact the pull-back map F ∗

as can be seen by a simple diagram chase.
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In case i : S ⊂ M is an embedding we also use the notation Hp
(M,S) = Hp

(i) .
In this case it’d seem that the connecting homomorphism is more naturally defined
to be Hp−1

(S) → Hp
(M,S) , but we don’t have a short exact sequence

0 → Ω
p
(M)⊕ Ω

p−1
(S) → Ω

p
(M) → Ω

p
(S) → 0

hence the tricky shift in the groups.
We can easily relate the new relative cohomology to the one defined above.

This shows that the relative cohomology, while trickier to define, is ultimately
more general and useful.

Proposition 4.7.4. If i : S ⊂ M is a closed submanifold of a closed manifold
then the natural map

Ω
p

c
(M − S) → Ω

p
(M)⊕ Ω

p−1
(S)

ω → (ω, 0)

defines an isomorphism
Hp

c
(M − S) � Hp

(i) .

Proof. Simply observe that we have two long exact sequences

→ Hp
(i) → Hp

(M) → Hp
(S) → Hp+1

(i) →

→ Hp

c
(M − S) → Hp

(M) → Hp
(S) → Hp+1

c
(M − S) →

where two out of three terms are equal. �

Finally, now that we have a fairly general relative cohomology theory we can
establish the well-known excision property. This property is actually a bit delicate
to establish in general algebraic topology and is also requires a bit of work here.

Theorem 4.7.5. Assume that a manifold M = U ∪V, where U and V are open,
then the restriction map

Hp
(M,U) → Hp

(V, U ∩ V )

is an isomorphism.

Proof. First select a partition of unity λU , λV relative to U, V . Then λU , λV

are constant on M − U ∩ V and hence dλU = 0 = dλV on M − U ∩ V.
We start with injectivity. Take a class [(ω, ψ)] ∈ Hp

(M,U) , then

dω = 0,

ω|U = dψ.

If the restriction to (V, U ∩ V ) is exact then we can find
�
ω̄, ψ̄

�
∈ Ω

p−1
(V ) ⊕

Ω
p−2

(U ∩ V ) such that

ω|V = dω̄,

ψ|U∩V = ω̄|U∩V − dψ̄.

This shows that
�
ψ + d

�
λV ψ̄

��
|U∩V =

�
ω̄ − d

�
λU ψ̄

��
|U∩V ,

ψ + d
�
λV ψ̄

�
∈ Ω

p−1
(U) ,

ω̄ − d
�
λU ψ̄

�
∈ Ω

p−1
(V ) .
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Thus we have a form ω̃ ∈ Ω
p−1

(M) defined by ψ+ d
�
λV ψ̄

�
on U and ω̄− d

�
λU ψ̄

�

on V. Clearly dω̃ = ω and ψ = ω̃|U −d
�
λV ψ̄

�
so we have shown that (ω, ψ) is exact.

For surjectivity select
�
ω̄, ψ̄

�
∈ Ω

p−1
(V )⊕ Ω

p−2
(U ∩ V ) that is closed

dω̄ = 0,

ω̄|U∩V = dψ̄.

Using

ω̄|U∩V − d
�
λU ψ̄

�
= d

�
λV ψ̄

�
,

ω̄ − d
�
λU ψ̄

�
∈ Ω

p
(V ) ,

d
�
λV ψ̄

�
∈ Ω

p
(U)

we can define ω as ω̄ − d
�
λU ψ̄

�
on V and d

�
λV ψ̄

�
on U. Clearly ω is closed

and ω|U = d
�
λV ψ̄

�
. Thus we define ψ = λV ψ̄ in order to get a closed form

(ω, ψ) ∈ Ω
p
(M)⊕Ω

p−1
(U) . Restricting this form to Ω

p
(V )⊕Ω

p−1
(U ∩ V ) yields�

ω̄ − d
�
λU ψ̄

�
, λV ψ̄

�
which is not

�
ω̄, ψ̄

�
. However, the difference

�
ω̄, ψ̄

�
−
�
ω̄ − d

�
λU ψ̄

�
, λV ψ̄

�
=

�
d
�
λU ψ̄

�
, λU ψ̄

�

= d
�
λU ψ̄, 0

�

is exact. Thus [(ω, ψ)] ∈ Hp
(M,U) is mapped to

��
ω̄, ψ̄

��
∈ Hp

(V, U ∩ V ) . �

4.8. The Gysin Sequence

This sequence allows us to compute the cohomology of certain fibrations where
the fibers are spheres. As we saw above, these fibrations are not necessarily among
the ones where we can use the Hirch-Leray formula. This sequence uses the Euler
class and will recapture the dual, or Thom class, from the Euler class.

We start with an oriented vector bundle π : E → M. It is possible to put
a smoothly varying inner product structure on the vector spaces of the fibration,
using that such bundles are locally trivial and gluing inner products together with
a partition of unity on M. The function E → R that takes v to |v|2 is then smooth
and the only critical value is 0. As such we get a smooth manifold with boundary

D (E) = {v ∈ E : |v| ≤ 1}

called the disc bundle with boundary

S (E) = ∂D (E) = {v ∈ E : |v| = 1}

being the unit sphere bundle and interior

intD (E) = {v ∈ E : |v| < 1} .

Two different inner product structures will yield different disc bundles, but it is easy
to see that they are all diffeomorphic to each other. We also note that intD (E)

is diffeomorphic to E, while D (E) is homotopy equivalent to E. This gives us a
diagram

→ Hp

c
(intD (E)) → Hp

(D (E)) → Hp
(S (E)) → Hp+1

c
(intD (E)) →

↓ ↑ � ↑
→ Hp

c
(E) → Hp

(E) → Hp
(S (E)) ��� Hp+1

c
(E) →
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where the vertical arrows are simply pull-backs and all are isomorphims. The
connecting homomorphism

Hp
(S (E)) → Hp+1

c
(intD (E))

then yields a map
Hp

(S (E)) ��� Hp+1
c

(E)

that makes the bottom sequence a long exact sequence. Using the Thom isomor-
phism

Hp−m
(M) → Hp

c
(E)

then gives us a new diagram

→ Hp−m
(M)

e∧−→ Hp
(M) → Hp

(S (E)) ��� Hp+1−m
(M) →

↓ ηM ∧ π∗
(·) � � ↓

→ Hp

c
(E) → Hp

(E) → Hp
(S (E)) → Hp+1

c
(E) →

Most of the arrows are pull-backs and the vertical arrows are isomorphisms. The
first square is commutative since π∗i∗ (ηM ) = π∗

(e) is represented by ηM in
Hm

(E) . This is simply because the zero section I : M → E and projection
π : E → M are homotopy equivalences. The second square is obviously com-
mutative. Thus we get a map

Hp
(S (E)) ��� Hp+1−m

(M)

making the top sequence exact. This is the Gysin sequence of the sphere bundle of
an oriented vector bundle. The connecting homomorphism which lowers the degree
by m − 1 can be constructed explicitly and geometrically by integrating forms on
S (E) along the unit spheres, but we won’t need this interpretation.

The Gysin sequence also tells us how the Euler class can be used to compute
the cohomology of the sphere bundle from M .

To come full circle with the Leray-Hirch Theorem we now assume that E → M
is a complex bundle of complex dimension m and construct the projectivized bundle

P (E) =
�
(p, L) : L ⊂ π−1

(p) is a 1 dimensional subspace
�

This gives us projections
S (E) → P (E) → M.

There is also a tautological bundle

τ (P (E)) = {(p, L, v) : v ∈ L} .
The unit-sphere bundle for τ is naturally identified with S (E) by

S (E) → S (τ (P (E))) ,

(p, v) → (p, span {v} , v) .
This means that S (E) is part of two Gysin sequences. One where M is the

base and one where P (E) is the base. These two sequences can be connected in a
very interesting manner.

If we pull back E to P (E) and let

τ⊥ =
�
(p, L,w) : w ∈ L⊥�

be the orthogonal complement then we have that

π∗
(e (E)) = e (π∗

(E)) = e (τ (P (E))) ∧ e
�
τ⊥

�
∈ H∗

(P (E)) .
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Thus we obtain a commutative diagram

Hp−2
(P (E))

e(τ)∧·−→ Hp
(P (E))

� � � �
Hp−1

(S (E)) ↑ e
�
τ⊥

�
∧ π∗

(·) ↑ π∗ Hp
(S (E))

� � � �
Hp−2m

(M)
e(E)∧·−→ Hp

(M)

What is more we can now show in two ways that
span

�
1, e, ..., em−1

�
⊗H∗

(M) → H∗
(P (E))

is an isomorphism. First we can simply use the Leray-Hirch result by noting that
the classes 1, e, ..., em−1 when restricted to the fibers are the usual cohomology
classes of the fiber Pm. Or we can use diagram chases on the above diagram.

4.9. Further Study

There are several texts that expand on the material covered here. The book
by [Guillemin-Pollack] is the basic prerequisite for the material covered here.
What we cover here corresponds to a simplified version of [Bott-Tu]. Another
text is the well constructed [Madsen-Tornehave], which in addition explains how
characteristic classes can be computed using curvature. The comprehensive text
[Spivak, vol. V] is also worth consulting for many aspects of the theory discussed
here. For a more topological approach we recommend [Milnor-Stasheff]. Other
useful texts are listed in the references.
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