120A Final Instructions

November 28, 2011

The final is on Tu Dec 6 3-6pm in MS 5127 (classroom.)

Here are some previous exam problems. I've generally given 11-13 of these types of questions on a final. There are also similar questions on the hwk and in the book that I suggest that you look at carefully. We are covering sections 2A-F and 3A-D on this midterm. Look at problems:

Chapter 2: 1,3,4,5,6,9,10,12,13,16,17,18,19,20,21,22

Chapter 3: 2,3,5,9,11,12,13,14,15,17,18.

For the final you are allowed to bring ONE sheet of paper with your notes. NO books or electronic devices are allowed.

I'll have extended office hrs next week: Monday 10-Noon, 1-2pm and Tuesday 10:30-12:30.

1. Let $\gamma(s) = f(u(s), v(s))$ be a unit speed curve on a surface S. Prove that

$$\frac{d\nu}{ds} = -\mathrm{II}\left(T,T\right)T - \mathrm{II}\left(T,C\right)C,$$

where $T = \frac{d\gamma}{ds}$, ν is the normal to S, and $C = \nu \times T$.

2. Let $X, Y \in T_pS$ be an orthonormal basis for the tangent space at p to the surface S. Prove that the mean and Gauss curvatures can be computed as follows:

$$H = \frac{1}{2} \left(\operatorname{II} \left(X, X \right) + \operatorname{II} \left(Y, Y \right) \right),$$

$$K = \operatorname{II} \left(X, X \right) \operatorname{II} \left(Y, Y \right) - \left(\operatorname{II} \left(X, Y \right) \right)^{2}$$

3. Let $\alpha : (a,b) \to \mathbb{R}^3$ be a unit speed curve with $\kappa (s) \neq 0$ for all $s \in (a,b)$. Define

$$f(s,t) = \alpha(s) + t\alpha'(s).$$

Prove that f defines a parametrized surface as long as $t \neq 0$. Compute the first and second fundamental forms and show that the Gauss curvature K vanishes.

4. For a surface of revolution $x(t, \theta) = (r(t) \cos(\theta), r(t) \sin(\theta), z(t))$ compute the first and second fundamental forms and the principal curvatures.

- 5. Let γ be a curve on the unit sphere S^2 . Prove that its normal curvature κ_n is constant.
- 6. Let f(u, v) be a parametrized surface. Recall that a tangent vector is a principal direction if it is an eigenvector for the Weingarten map. Assume that the principal curvatures are different. Show that $\frac{\partial f}{\partial u}$ and $\frac{\partial f}{\partial v}$ are the principal directions if and only if F = 0 = M.
- 7. Let $\alpha(u)$ be a unit speed curve in the x, y plane \mathbb{R}^2 . Show that

$$f(u,v) = (\alpha(u), v)$$

yields a parametrized surface. Compute its first and second fundamental forms and principal curvatures. Compute its Gauss curvature.

8. Show that the equation

$$ax + by + cz = d$$

defines a surface if and only if $(a, b, c) \neq (0, 0, 0)$. Show that this surface has a parametrization that is Cartesian.

9. Let γ be a unit speed curve on a surface S with normal ν . Define $C = \nu \times T$, $T = \dot{\gamma}$ and

$$\kappa_g = \frac{dT}{ds} \cdot C, \ \kappa_n = \frac{dT}{ds} \cdot \nu, \ \tau_g = \frac{dC}{ds} \cdot \nu$$

Prove that

$$\frac{dT}{ds} = \kappa_g C + \kappa_n \nu,$$

$$\frac{dC}{ds} = -\kappa_g T + \tau_g \nu,$$

$$\frac{d\nu}{ds} = -\kappa_n T - \tau_g C.$$

10. Let $\gamma(u)$ be a regular curve in the x, y plane \mathbb{R}^2 . Show that

$$f(u,v) = (\gamma(u), v).$$

yields a parametrized surface. Compute its first fundamental form. Show that it has a Cartesian parametrization.

- 11. For a regular curve $\gamma(u): I \to \mathbb{R}^3 \{(0,0,0)\}$ show that $f(u,v) = v\gamma(u)$ defines a surface for v > 0 provided γ and $\dot{\gamma}$ are linearly independent. Compute its first fundamental form. Show that it admits Cartesian coordinates by rewriting the surface as $f(r,\theta) = rX(\theta)$ for a suitable unit speed curve $X(\theta)$.
- 12. Let $f(z, \theta) = (\sqrt{1 z^2} \cos \theta, \sqrt{1 z^2} \sin \theta, z)$ with -1 < z < 1 and $-\pi < \theta < \pi$. Show that f defines a parametrized surface. What is the surface?

- 13. Let f be a parametrized surface such that E = 1 and F = 0. Prove that the u curves are unit speed with acceleration that is perpendicular to the surface. The u curves are given by $\gamma(u) = f(u, v)$ where v is fixed.
- 14. For a surface of revolution $\sigma(t, \theta) = (r(t)\cos(\theta), r(t)\sin(\theta), z(t))$ show that the first fundamental form is given by

$$\left[\begin{array}{cc} E & F \\ F & G \end{array}\right] = \left[\begin{array}{cc} \dot{r}^2 + \dot{z}^2 & 0 \\ 0 & r^2 \end{array}\right]$$

and that the longitudes/meridians $\gamma(t) = \sigma((t, \theta))$ have acceleration perpendicular to the surface provided that (r(t), 0, z(t)) is unit speed.

- 15. Reparametrize the curve (r(u), z(u)) so that the new parametrization $\sigma(t, \theta) = (r(t) \cos(\theta), r(t) \sin(\theta), z(t))$ is conformal.
- 16. Reparametrize the curve (r(u), z(u)) so that the new parametrization $\sigma(t, \theta) = (r(t) \cos(\theta), r(t) \sin(\theta), z(t))$ is equiareal.
- 17. Let $f: U \to S^2$ be a parametrization of part of the unit sphere. Show that the normal $\frac{\partial f}{\partial u} \times \frac{\partial f}{\partial v}$ is always proportional to f.
- 18. Show that a Monge patch z = f(x, y) is equiareal if and only if f is constant.
- 19. Show that a Monge patch z = f(x, y) is conformal if and only if f is constant.
- 20. Show that the equation

$$ax + by + cz = d$$

defines a surface if and only if $(a, b, c) \neq (0, 0, 0)$. Show that this surface has a parametrization that is Cartesian.

21. The conoid is a special type of ruled surface given by

$$f(t,\theta) = (r(t)\cos\theta, r(t)\sin\theta, z(\theta))$$

= $(0,0, z(\theta)) + r(t)(\cos\theta, \sin\theta, 0)$

Compute its first fundamental form. Show that if $z(\theta) = a\theta$ for some constant a, then r(t) can be reparametrized in such a way that we get a conformal parametrization.

22. Consider the two parametrized surfaces given by

$$f_1(\phi, u) = (\sinh \phi \cos u, \sinh \phi \sin u, u)$$

= (0, 0, u) + sinh \phi (cos u, sin u, 0)
$$f_2(t, \theta) = (\cosh t \cos \theta, \cosh t \sin \theta, t)$$

Compute the first fundamental forms for both surfaces and show that they can be reparametrized in such a way that they have the same first fundamental forms. (The first surface is a ruled surface with a one-toone parametrization called the helicoid, the second surface is a surface of revolution called the catenoid.)

23. Let $S = \{x \in \mathbb{R}^3 : |x - m|^2 = R^2\}$. Show that S is a surface, and that if I and II denote the first and second fundamental forms, then

$$\mathbf{II} = \pm \frac{1}{R}\mathbf{I}$$

24. The conoid is a special type of ruled surface given by

$$f(t,\theta) = (t\cos\theta, t\sin\theta, z(\theta))$$

= $(0,0, z(\theta)) + t(\cos\theta, \sin\theta, 0)$

Compute its first and second fundamental forms as well as the Gauss and mean curvatures.

25. Let $\gamma(t): I \to S$ be a regular curve on a surface S, with ν being the normal to the surface. Show that

$$\kappa_n = \frac{\mathrm{II}(\dot{\gamma}, \dot{\gamma})}{\mathrm{I}(\dot{\gamma}, \dot{\gamma})}, \, \kappa_g = \frac{\mathrm{det}(\dot{\gamma}, \ddot{\gamma}, \nu)}{\left(\mathrm{I}(\dot{\gamma}, \dot{\gamma})\right)^{3/2}}$$

- 26. Show that the principal curvatures at a point $p \in S$ are equal if and only if at p the mean and Gauss curvatures are related by $H^2 = K$.
- 27. Compute the matrix representation of the Weingarten map for a Monge patch f(x, y) = (x, y, f(x, y)) with respect to the basis $\frac{\partial f}{\partial x}, \frac{\partial f}{\partial y}$.
- 28. Prove that if $\alpha(s)$ is an oval (a closed planar curve with positive curvature and no self intersections), then the unit tangent field e_1 is parallel to e''_1 at four or more points.
- 29. Prove that the concept of a vertex for a planar curve does not depend on the parametrization.
- 30. Let c(t) be a closed Frenet curve in \mathbb{R}^3 . Show that if its curvature is $\leq R^{-1}$, then its length is $\geq 2\pi R$.
- 31. Let $c(t): I \to \mathbb{R}^3$ be a regular curve with speed $\frac{ds}{dt} = \left|\frac{dc}{dt}\right|$, where s is the arclength parameter. Prove that

$$\kappa = \frac{\sqrt{\frac{d^2c}{dt^2} \cdot \frac{d^2c}{dt^2} - \left(\frac{d^2s}{dt^2}\right)^2}}{\left(\frac{ds}{dt}\right)^2}$$

32. Let $c(t) : I \to \mathbb{R}^3$ be a regular curve such that its unit tangent field $e_1(t)$ is also regular. Let s be the arclength parameter for c and θ the arclength parameter for e_1 . Show that

$$\kappa = \frac{d\theta}{ds}$$

and

$$\det\left(e_1, \frac{de_1}{d\theta}, \frac{d^2e_1}{d\theta^2}\right) = \frac{\tau}{\kappa}.$$

33. Let c(t) be a regular curve in \mathbb{R}^3 with $\kappa > 0$. Prove that c is planar if and only if the triple product

$$\left[\frac{dc}{dt}, \frac{d^2c}{dt^2}, \frac{d^3c}{dt^3}\right] \equiv 0$$

34. Let c(s) = (x(s), y(s)) be a planar unit speed curve. Show that the signed curvature can be computed by

$$\kappa = \det \left[c', c'' \right]$$

35. Let c(s) be a unit speed curve in \mathbb{R}^3 Prove that

$$\det\left[c', c'', c'''\right] = \kappa^2 \tau.$$

It is also possible to find formulas for

$$\det\left[c^{\prime\prime},c^{\prime\prime\prime},c^{\prime\prime\prime\prime}\right]$$

etc.

36. Let $c(t) : I \to \mathbb{R}^3$ be a regular curve with positive curvature. Show that the unit tangent $e_1(t)$ is a regular and that, if θ is an arclength parameter for e_1 , then

$$\begin{array}{rcl} \displaystyle \frac{dc}{d\theta} & = & \displaystyle \frac{1}{\kappa}e_1 \\ \displaystyle \frac{de_1}{d\theta} & = & e_2 \\ \displaystyle \frac{de_2}{d\theta} & = & -e_1 + \frac{\tau}{\kappa}e_3 \\ \displaystyle \frac{de_3}{d\theta} & = & -\frac{\tau}{\kappa}e_2 \end{array}$$

37. Let $c(t): I \to \mathbb{R}^3$ be a regular curve with positive curvature. Show that c lies in a plane if and only if the torsion vanishes.

38. Let $\gamma(\theta)$ be a simple closed planar curve with $\kappa > 0$ parametrized by θ , where θ is defined as the arclength parameter of the unit tangent field e_1 . Further assume that the width

$$w = \langle e_2(\theta), (\gamma(\theta + \pi) - \gamma(\theta)) \rangle$$

is constant. Show that:

$$w = \frac{1}{\kappa(\theta)} + \frac{1}{\kappa(\theta + \pi)}.$$

Start by establishing the facts:

$$\frac{d\gamma}{d\theta} = \frac{1}{\kappa}e_1$$
$$\frac{de_1}{d\theta} = e_2$$
$$\frac{de_2}{d\theta} = -e_1$$
$$(\theta + \pi) = -e_1(\theta)$$

39. Let $\alpha : (a, b) \to \mathbb{R}^3$ be a unit speed curve with $\kappa (s) \neq 0$ for all $s \in (a, b)$. Define

 e_1

$$f(s,t) = \alpha(s) + t\alpha'(s)$$

Prove that f defines a parametrized surface as long as $t \neq 0$. Compute the first and second fundamental forms and show that the Gauss curvature K vanishes.

- 40. For a surface of revolution $f(t, \theta) = (r(t)\cos(\theta), r(t)\sin(\theta), z(t))$ compute the first and second fundamental forms and the principal curvatures.
- 41. Let f(u, v) be a parametrized surface. A tangent vector is a principal direction if it is an eigenvector for the Weingarten map. Show that $\frac{\partial f}{\partial u}$ and $\frac{\partial f}{\partial v}$ are the principal directions if $g_{uv} = 0 = h_{uv}$, and that the principal curvatures are given by

$$\frac{h_{uu}}{g_{uu}}, \ \frac{h_{vv}}{g_{vv}}.$$

42. Let $\alpha(u)$ be a unit speed curve in the x, y plane \mathbb{R}^2 . Show that

$$\sigma\left(u,v\right) = \left(\alpha\left(u\right),v\right)$$

yields a parametrized surface. Compute its first and second fundamental forms and principal curvatures. Compute its Gauss curvature.

43. Consider a surface given by F(x, y) = C, i.e., it is given by a function that doesn't depend on the third coordinate z. Compute the normal to this surface and show that its Gauss curvature vanishes.

- 44. For a regular curve $\gamma(u): I \to \mathbb{R}^3 \{(0,0,0)\}$ show that $f(u,v) = v\gamma(u)$ defines a surface for v > 0 provided γ and $\dot{\gamma}$ are linearly independent (this a generalized cone.) Compute its first fundamental form. Show that it admits Cartesian coordinates by rewriting the surface as $f(r,\theta) = r\delta(\theta)$ for a suitable unit speed curve $\delta(\theta)$. Hint: δ is the curve gotten by intersecting the generalized cone with the unit sphere.
- 45. Let f be a parametrization such that $g_{uu} = 1$ and $g_{uv} = 0$. Prove that the u curves are unit speed with acceleration that is perpendicular to the surface. The u curves are given by $\gamma(u) = f(u, v)$ where v is fixed.
- 46. Given a surface of revolution $\sigma_1(r,\theta) = (r\cos\theta, r\sin\theta, z_1(r))$ show that there is a function $z_2(r)$ so that σ_1 becomes conformal to the cylinder $\sigma_2(r,\theta) = (\cos\theta, \sin\theta, z_2(r)).$
- 47. Given a surface of revolution $\sigma_1(r,\theta) = (r\cos\theta, r\sin\theta, z_1(r))$ show that there a function $z_2(r)$ so that σ_1 becomes equiareal to the cylinder $\sigma_2(r,\theta) = (\cos\theta, \sin\theta, z_2(r))$.
- 48. Compute the mean curvature of the Enneper surface:

$$f(u,v) = \left(u - \frac{1}{3}u^3 + uv^2, -v + \frac{1}{3}v^3 - vu^2, u^2 - v^2\right)$$

Scherk minimal surface:

$$f(u, v) = \left(u, v, \log \frac{\cos v}{\cos u}\right)$$

and Catalan surface:

$$f(u,v) = \left(u - \sin u \cosh v, 1 - \cos u \cosh v, 4 \sin \frac{u}{2} \sinh \frac{v}{2}\right)$$

- 49. Show that a generalized cylinder is minimal if and only if it is planar.
- 50. Show that a generalized cone is minimal if and only if it is planar.
- 51. Show that a surface given by z = f(x) + g(y) is a minimal if and only if

$$\frac{\frac{d^2f}{dx^2}}{1+\left(\frac{df}{dx}\right)^2} + \frac{\frac{d^2g}{dy^2}}{1+\left(\frac{dg}{dy}\right)^2} = 0$$

- 52. Show that the surface given by $\sin z = \sinh x \sinh y$ is a minimal surface.
- 53. Show that the surface defined by

$$x\sin\frac{z}{a} = y\cos\frac{z}{a}$$

is a minimal surface.

54. Let $f(u,v): U \to \mathbb{R}^3$ be a parametrized surface and $f^{\epsilon}(u,v) = f(u,v) + \epsilon \nu(u,v)$ the parallel surface. If f is minimal, then the principal curvatures for f^{ϵ} satisfy that

$$\frac{1}{\kappa_1^{\epsilon}} + \frac{1}{\kappa_2^{\epsilon}} = \text{constant.}$$

- 55. Let $f(u, v) : U \to \mathbb{R}^3$ be a parametrized surface such that f and its Gauss map $\nu(u, v) : U \to S^2$ are conformally equivalent. Show that either f is minimal or parametrizing part of a sphere. Hint: Show that the surface is umbilic at any point where the mean curvature is not zero. Then use our characterization of surfaces which are totally umbilic.
- 56. Let $f(u, v): U \to \mathbb{R}^3$ be a parametrized surface. Show that

$$\frac{\partial \nu}{\partial u} \times \frac{\partial \nu}{\partial v} = K \frac{\partial f}{\partial u} \times \frac{\partial f}{\partial v}$$