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CHAPTER 1

Preliminaries

1.1. Vectors-Matrices

Given a basis e, f for a two dimensional vector space we expand vectors using
matrix multiplication

v = vee+ vff =
⇥
e f

⇤  ve

vf

�

and the matrix representation [L] for a linear map/transformation L can be found
from

⇥
L (e) L (f)

⇤
=

⇥
e f

⇤
[L]

=
⇥
e f

⇤  Le

e

Le

f

Lf

e

Lf

f

�

Next we relate matrix multiplication and the dot product in R3. We think of vectors
as being columns or 3⇥ 1 matrices. Keeping that in mind and using transposition
of matrices we immediately obtain:

XtY = X · Y,
Xt

⇥
X2 Y2

⇤
=

⇥
X ·X2 X · Y2

⇤

⇥
X1 Y1

⇤
t

X =


X1 ·X
Y1 ·X

�

⇥
X1 Y1

⇤
t

⇥
X2 Y2

⇤
=


X1 ·X2 X1 · Y2

Y1 ·X2 Y1 · Y2

�
,

⇥
X1 Y1 Z1

⇤
t

⇥
X2 Y2 Z2

⇤
=

2

4
X1 ·X2 X1 · Y2 X1 · Z2

Y1 ·X2 Y1 · Y2 Y1 · Z2

Z1 ·X2 Z1 · Y2 Z1 · Z2

3

5

These formulas can be used to calculate the coefficients of a vector with respect
to a general basis. Recall first that if E1, E2 is an orthonormal basis for R2, then

X = (X · E1)E1 + (X · E2)E2

=
⇥
E1 E2

⇤ ⇥
E1 E2

⇤
t

X

So the coefficients for X are simply the dot products with the basis vectors. More
generally we have

Theorem 1.1.1. Let U.V be a basis for R2, then

X =
⇥
U V

⇤ ⇣⇥
U V

⇤
t

⇥
U V

⇤⌘�1 ⇥
U V

⇤
t

X

=
⇥
U V

⇤ ⇣⇥
U V

⇤
t

⇥
U V

⇤⌘�1


U ·X
V ·X

�
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Proof. First write
X =

⇥
U V

⇤  Xu

Xv

�

The goal is to find a formula for the coefficients Xu, Xv in terms of the dot products
X · U,X · V. To that end we notice


U ·X
V ·X

�
=

⇥
U V

⇤
t

X

=
⇥
U V

⇤
t

⇥
U V

⇤  Xu

Xv

�

Showing directly that


Xu

Xv

�
=
⇣⇥

U V
⇤
t

⇥
U V

⇤⌘�1


U ·X
V ·X

�

and consequently

X =
⇥
U V

⇤ ⇣⇥
U V

⇤
t

⇥
U V

⇤⌘�1


U ·X
V ·X

�

⇤

There is a similar formula in R3 which is a bit longer. In practice we shall only
need it in the case where the third basis vector is perpendicular to the first two.
Also note that if U, V are orthonormal then

⇥
U V

⇤
t

⇥
U V

⇤
=


1 0
0 1

�

and we recover the standard formula for the expansion of a vector in an orthonormal
basis.

Finally we mention the triple product formula

det
⇥
X Y Z

⇤
= X · (Y ⇥ Z)

= Xt (Y ⇥ Z)

1.2. Vector Calculus

1.2.1. Chain Rule.
d (V � c)

dt
=
h

@V

@x

@V

@y

@V

@z

i dc
dt

�

1.2.2. Directional Derivatives. If h is a function on R3 and X = (P,Q,R)
then

D
X

h = P
@h

@x
+Q

@h

@y
+R

@h

@z

= (rh) ·X
= [rh]

t

[X]

=
h

@h

@x

@h

@y

@h

@z

i
[X]

and for a vector field V we get

D
X

V =
h

@V

@x

@V

@y

@V

@z

i
[X] .
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We can also calculate directional derivatives by selecting any curve such that ċ (0) =
X. Along the curve the chain rule says:

d (V � c)
dt

=
h

@V

@x

@V

@y

@V

@z

i dc
dt

�
= D

ċ

V

Thus
D

X

V =
d (V � c)

dt
(0)



CHAPTER 2

Curve Theory

2.1. Curves

Discuss, parametrized curves, integral curves of a vector field, orthogonal curves,
integral curves to second order system, implicitly given curves (level sets, intersec-
tions of levels sets (use cross product as vector field), as orthogonal curves.

Geometry of curves is a way of measuring that does not take in to account how
a given curve is parametrized or even placed in Euclidean space. On the other hand
it is very hard to define geometric quantities without referring to a parametrization.
Thus the goal will first be to see if some sort of canonical parametrization might exist
and secondly to also show that our measurements can be defined using whatever
parametrization the curve comes with.

Imagine traveling in a car or flying an airplane. You can keep track of time and
or the odometer and for each value of the time and/or odometer reading do a GPS
measurement of where you are. This will give you a curve that is parametrized
by time or distance traveled. The goal of curve theory is to decided what further
measurements are needed to retrace the precise path traveled. Clearly one must
also measure how one turns and that becomes the important thing to describe
mathematically

2.2. Arclength and Linear Motion

The arclength is the distance traveled along the curve. This means that change
in arclength measures how fast the curve moves. Specifically if there is no change
in arclength, then the curve is stationary, i.e., you stopped. More precisely, if the
distance traveled is denoted by s, then relative change to the general parameter is
the speed

ds

dt
=

����
d�

dt

���� = |�̇|

Thus s is the antiderivative of speed and is only defined up to an additive constant.
This means that we should define the length of a curve on [a, b] as follows

L (�)
b

a

=

ˆ
b

a

|�̇| dt = s (b)� s (a)

This is easily shown to be independent of the parameter t as long as the reparametriza-
tion is in the same direction. One also easily checks that a curve on [a, b] is sta-
tionary if and only if its speed vanishes on [a, b]. We usually suppress the interval
and instead simply write L (�).

To see that arclength really is related to our usual concept of distance we have

Theorem 2.2.1. The straight line is the shortest curve between any two points
in Euclidean space.

6
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Proof. We shall give two almost identical proofs. Without loss of generality
we assume that we have a curve c (t) : [a, b] ! Rk where c (a) = 0, and c (b) = p.
We wish to show that L (c) � |p| . To that end we select a unit vector field X which
is also a gradient field X = rf. Two natural choices are possible: For the first
simply let f (x) = x · p

|p| , for the second f (x) = |x| . In the first case the gradient
is simply a parallel field and defined everywhere, in the second case we obtain the
radial field which is not defined at the origin. When using the second field we need
to restrict the domain of the curve to [a0, b] such that c (a0) = 0 but c (t) 6= 0 for
t > a0. This is clearly possible as the set of points where c (t) = 0 is a closed subset
of [a, b] , so a0 is just the maximum value where c vanishes.

This allows us to perform the following calculation using Cauchy-Schwarz, the
chain rule, and the fundamental theorem of calculus. When we are in the second
case the integrals are possibly improper at t = a0, but clearly turn out to be
perfectly well defined since the integrand has a continuous limit as t approaches a0

L (c) =

ˆ
b

a0

|ċ| dt

=

ˆ
b

a0

|ċ| |rf | dt

�
ˆ

b

a0

|ċ ·rf | dt

=

ˆ
b

a0

����
d (f � c)

dt

���� dt

�

�����

ˆ
b

a0

d (f � c)
dt

dt

�����

= |f (c (b))� f (c (a0))|
= |f (x)� f (0)|
= |f (x)|
= |p|

We can even go backwards and check what happens when L (c) = |p| . It appears
that we must have equality in two places where we had inequality. Thus we have
d(f�c)

dt

� 0 everywhere and ċ is proportional to rf everywhere. This implies that c
is a possibly singular reparametrization of the straight line from 0 to p.

Might also just try to use the constant unit vector in the direction of p. ⇤

Next discuss linear motion and characterize it as curves whose tangents are
all parallel to each other. Use both parameteric solution and equation solution
(perpendicular to n� 1 vectors)

2.3. Curvature

Arclength measures how far the curve is from being stationary. Next we can
consider the unit tangent vector. If it is stationary the the curve is a straight line so
the degree to which the unit tangent is stationary is a measure of how fast it change
and how far the curve is from being a line. If the unit tangent is also regular then
it to can be reparametrized by arclength. We let ✓ be the arclength parameter.
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The relative change between the arclength parameters for the unit tangent and the
curve is by definition the curvature

 =
d✓

ds

and with a general parametrization we see that it is related to the part of the accel-
eration that is orthogonal to the unit tangent vector. Note this ratio is nonnegative
as ✓ increases with s.

 =
d✓

ds

=
d✓

dt

dt

ds

=

����
dT

dt

���� |�̇|
�1

=

����
d

dt

�̇

|�̇|

���� |�̇|
�1

=

�����
�̈

|�̇|2
� �̇ (�̈ · �̇)

|�̇|4

�����

=
1

|�̇|2

������̈ � (�̈ · �̇) �̇
|�̇|2

�����

=
1

|�̇|2
|�̈ � (�̈ ·T)T|

Further note that when the unit tangent vector is regular it too has a unit
tangent vector denoted N satisfying

dT

d✓
= N

This vector is in fact perpendicular to T as

0 =
d |T|2

d✓
= 2

✓
T · dT

d✓

◆
= 2 (T ·N)

It is called the unit normal to the curve.
In terms of the arclength parameter for � we obtain

dT

ds
= N

or equivalently

 =

✓
dT

ds
·N

◆
= �

✓
T · dN

ds

◆

Note that
�̇ = (�̇ ·T)T = |�̇|T

and
�̈ = (�̈ ·T)T+ (�̈ ·N)N = (�̈ ·T)T+  |�̇|2 N
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2.4. General Frames

We shall now consider the general problem of taking derivatives of a basis
U (t) , V (t) that depends on t, and viewed as a choice of basis at c (t) . Given U (t) ,
a natural choice for V (t) would be the unit vector orthogonal to U (t) . Also we
shall usually use U (t) = ċ (t) or U (t) = T (t) . The goal is to identify the matrix
[D] that appears in

d

dt

⇥
U V

⇤
=
⇥

d

dt

U d

dt

V
⇤
=
⇥
U V

⇤
[D]

We know a complicated formula

[D] =
⇣⇥

U V
⇤
t

⇥
U V

⇤⌘�1 ⇥
U V

⇤
t

⇥
d

dt

U d

dt

V
⇤

which simplifies to

Theorem 2.4.1. Let U (t) , V (t) be an orthonormal frame that depends on a
parameter t, then

d

dt

⇥
U V

⇤
=

⇥
U V

⇤  0 �
�� 0

�
,

� = U · d

dt
V = �V · d

dt
U

or
d

dt
U = �V,

d

dt
V = ��U

Proof. We use that
⇥
U V

⇤
t

⇥
U V

⇤
=


1 0
0 1

�

and the derivative of this
0 0
0 0

�
=

⇥
d

dt

U d

dt

V
⇤
t

⇥
U V

⇤
+
⇥
U V

⇤
t

⇥
d

dt

U d

dt

V
⇤

=

 �
d

dt

U
�
· U

�
d

dt

U
�
· V�

d

dt

V
�
· U

�
d

dt

V
�
· V

�
+


U · d

dt

U U · d

dt

V
V · d

dt

U V · d

dt

V

�

Showing that
✓

d

dt
U

◆
· U = 0 =

✓
d

dt
V

◆
· V,

✓
d

dt
V

◆
· U = �V · d

dt
U

Our formula for [D] then becomes

[D] =
⇥
U V

⇤
t

⇥
d

dt

U d

dt

V
⇤

=


U · d

dt

U U · d

dt

V
V · d

dt

U V · d

dt

V

�

=


0 �
�� 0

�
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⇤
Occasionally we need one more derivative

d2

dt2
⇥
U V

⇤
=

⇥
U V

⇤  ��2 d�

dt

�d�

dt

��2

�
,

d2U

dt2
= ��2U � d�

dt
V,

d2V

dt2
=

d�

dt
U � �2V.

2.5. Planar Curves

Signed curvature. Arclength and signed curvature determine the curve. char-
acterization of circular curves. rotation index with tangent/normal circular image.
convex curves. ovals. Isoperimetric.

2.6. Space Curves

Serret-Frenet. Observe that there are no relations between curvature and tor-
sion. Generalized helices and characterizations of planar and spherical curves.



CHAPTER 3

Local Surface Theory

3.1. Surfaces

We define a parametrized surface as a function � (u, v) : U ⇢ R2 ! R3 where
@�

@u

and @�

@v

are linearly independent. For parametrized surfaces we generally do not
worry about self intersections or other topological pathologies. This is just as with
curves and allows us a great deal of flexibility. When we need to worry about these
issues, or rather we wish to avoid them, then we resort to the more restrictive class
of surfaces that come from the next two general constructions.

A special case is the Monge patch.
Implicitly given surfaces as level sets.
A surface M ⇢ R3 is then a subset which is locally represented as a graph over

two coordinates. Note that a parametrized surface might not be a surface in this
sense if it intersects itself or otherwise gets arbitrarily close to itself.

The tangent space

T
p

M = span

⇢
@�

@u
,
@�

@v

�
,

and normal space
N

p

M = (T
p

M)
?

Proposition 3.1.1. Both tangent and normal spaces are subspaces that do not
depend on a choice of parametrization.

Proof. This would seem intuitively clear, just as with curves, where the tan-
gent line does not depend on parametrizations. For curves it boils down to the
simple fact that velocities for different parametrizations are proportional and hence
define the same tangent lines. With surfaces something similar happens, but it is
a bit more involved. Suppose we have two different parametrizations of the same
surface:

� (s, t) = � (u, v)

This tells us that the parameters are functions of each other

u = u (s, t) , v = v (s, t)

s = s (u, v) , t = t (u, v)

The chain rule then gives us
@�

@u
=

@�

@s

@s

@u
+

@�

@t

@t

@u
2 span

⇢
@�

@s
,
@�

@t

�

similarly
@�

@v
2 span

⇢
@�

@s
,
@�

@t

�

11
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and in the other direction
@�

@s
,
@�

@t
2 span

⇢
@�

@u
,
@�

@v

�

This shows that at a fixed point p on a surface the tangent space does not depend
on how the surface is parametrized. The normal space is then also well defined. ⇤

Note that the chain rule shows in matrix notation that
⇥

@�

@u

@�

@v

⇤
=

⇥
@�

@s

@�

@t

⇤  @s

@u

@s

@v

@t

@u

@t

@v

�

⇥
@�

@s

@�

@t

⇤
=

⇥
@�

@u

@�

@v

⇤  @u

@s

@u

@t

@v

@s

@v

@t

�

with 
@s

@u

@s

@v

@t

@u

@t

@v

��1

=


@u

@s

@u

@t

@v

@s

@v

@t

�

It is often useful to find coordinates suited to a particular situation. However
unlike for curves it isn’t possible to some parametrize a surface such that the coor-
dinate curves are unit speed and orthogonal to each other. But there is one general
construction we can do.

Theorem 3.1.2. Assume that we have linearly independent tangent vector fields
X,Y defined on a surface M. Then it is possible to find a parametrization � (u, v) in
a neighborhood of any point such that @�

@u

is proportional to X and @�

@v

is proportional
to Y.

Proof. The vector fields have integral curves forming a net on the surface.
Apparently the goal is to reparametrize the curves in this net in some fashion. The
difficulty lies in ensuring that the levels where u is constant correspond to the v-
curves, and vice versa. We proceed as with a classical construction of Cartesian
coordinates. Select a point p and let the u-axis be the integral curve for X through
p, similarly set the v-axis be the integral curve for Y through p. Both of these
curves retain the parametrizations that make them integral curves for X and Y.
Thus p will naturally correspond to (u, v) = (0, 0) . We now wish to assign (u, v)
coordinates to a point q near p. There are also unique integral curves for X and
Y through q. These will be our way of projecting onto the chosen axes and will
in this way yield the desired coordinates. Specifically u (q) is the parameter where
the integral curve for Y through q intersects the u-axis, and similarly with v (q) .
In general integral curves can intersect axes in several places or might not intersect
them at all. However, a continuity argument offers some justification when we
consider that the axes themselves are the proper integral curves for the qs that lie
on these axes and so q sufficiently close to both axes should have a well defined set
of coordinates. We also note that as the projection happens along integral curves
we have ensured that coordinate curves are simply reparametrizations of integral
curves. To completely justify this construction we need to know quite a bit about
the existence, uniqueness and smoothness of solutions to differential equations and
the inverse function theorem also comes in handy. ⇤

Exercise: A generalized cylinder is determined by a regular curve and a vector
that is not tangent to the curve. Construct a natural parametrization and show
that it gives a parametrized surface. Show that we can reconstruct the cone so that
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the curve lie in the plane perpendicular to the vector. What if the curve is given
by two equations and you also want the surface to be given by an equation?

Exercise: A generalized cone is generated by a regular curve and a point not
on the curve. Construct a natural parametrization and determine where it yields a
parametrized surface. Show that we can use a curve that lies on a sphere centered
at the vertex of the cone. What if the curve is given by two equations and you also
want the surface to be given by an equation?

Exercise: A ruled surface is given by a parametrization of the form

� (s, t) = ↵ (s) + t� (s)

It is evidently a surface that is a union of lines (rulers). Give conditions on ↵,�
and the parameter t that guarantee we get a parametrized surface. A special case
occurs when ↵ is unit speed and � = ↵0. These are also called tangent developables.

Exercise: A surface of revolution is determined by a planar regular curve
and a line that is never perpendicular to the tangent vectors of the curve. The
surface is generated by rotating the curve around the line. Construct a natural
parametrization and show that it is a parametrized surface. What if the planar
curve is given by an equation and you also want the surface to be given by an
equation?

Exercise: Many classical surfaces are of the form

F (x, y, z) = ax2 + by2 + cz2 + dx+ ey + fz + g = 0

Give conditions on the coefficients such that it is generates a surface (g = 0 takes
special care). Under what conditions does it become a surface of revolution around
the z-axis? Under what conditions does it become a cylinder or cone? Why are
these elliptic when abc > 0 and hyperbolic when abc < 0? When abc 6= 0 rewrite it
in the form

F (x, y, z) = a (x� x0)
2
+ b (y � y0)

2
+ c (z � z0)

2
+ h = 0

3.2. The Abstract Framework

As with curves, parametrized surfaces can have intersections and other nasty
complications that do not come up with the other three cases. Nevertheless it is
usually easier to develop formulas for parametrized surfaces.

For a parametrized surface � (u, v) we have the velocities of the coordinate
vector fields

@�

@u
,
@�

@v
While these can be normalized to be unit vectors we can’t guarantee that they
are orthogonal. Nor can we find parameters that make the coordinate fields or-
thonormal. We shall see that there are geometric obstructions to finding such
parametrizations.

Before discussing general surfaces it might be instructive to see what happens
if � (u, v) is simply a reparametrization of the plane. Thus @�

@u

, @�

@v

form a basis at
each point �. Taking partial derivatives of these fields give us

@

@u

⇥
@�

@u

@�

@v

⇤
=

h
@

2
�

@u

2
@

2
�

@u@v

i
=
⇥

@�

@u

@�

@v

⇤
[�

u

] ,

@

@v

⇥
@�

@u

@�

@v

⇤
=

h
@�

@v@u

@

2
�

@v

2

i
=
⇥

@�

@u

@�

@v

⇤
[�

v

]
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or in condensed form
@

@w

⇥
@�

@u

@�

@v

⇤
=
h

@

2
�

@w@u

@

2
�

@w@v

i
=
⇥

@�

@u

@�

@v

⇤
[�

w

] , w = u, v

The matrices [�
w

] tell us how the tangent fields change with respect to themselves.
A good example comes from considering polar coordinates � (r, ✓) = (r cos ✓, r sin ✓)

@�

@r
=


cos ✓
sin ✓

�
,
@�

@✓
=


�r sin ✓
r cos ✓

�

@2�

@r@✓
=

@2�

@✓@r
=


� sin ✓
cos ✓

�
,
@2�

@r2
= 0,

@2�

@✓2
=


�r cos ✓
�r sin ✓

�

so
@

@r

⇥
@�

@r

@�

@✓

⇤
=

h
@

2
�

@r@r

@

2
�

@r@✓

i
=
⇥

@�

@r

@�

@✓

⇤  0 0
0 1

r

�

@

@✓

⇥
@�

@r

@�

@✓

⇤
=

h
@

2
�

@✓@r

@

2
�

@✓@✓

i
=
⇥

@�

@r

@�

@✓

⇤  0 �r
1
r

0

�

[�
r

] =


0 0
0 1

r

�
,

[�
✓

] =


0 �r
1
r

0

�

The key is that only Cartesian coordinates have the property that its coordinate
fields are constant. When using general coordinates we are naturally forced to find
these quantities. To see why this is consider a curve c (t) = (r (t) cos ✓ (t) , r (t) sin ✓ (t))
in the plane. Its velocity is naturally given by

ċ = ṙ
@�

@r
+ ✓̇

@�

@✓

If we wish to calculate its acceleration then we must compute the derivatives of the
coordinate fields. This involves the chain rule as well as the formulas just developed

c̈ = r̈
@�

@r
+ ✓̈

@�

@✓
+ ṙ

d

dt

@�

@r
+ ✓̇

d

dt

@�

@✓

= r̈
@�

@r
+ ✓̈

@�

@✓
+ ṙ

✓
dr

dt

@

@r
+

d✓

dt

@

@✓

◆
@�

@r
+ ✓̇

✓
dr

dt

@

@r
+

d✓

dt

@

@✓

◆
@�

@✓

= r̈
@�

@r
+ ✓̈

@�

@✓
+ ṙ2

@2�

@r2
+ 2ṙ✓̇

@2�

@r@✓
+ ✓̇2

@2�

@✓2

= r̈
@�

@r
+ ✓̈

@�

@✓
+ 2ṙ✓̇

1

r

@�

@✓
� ✓̇2r

@�

@r

=
⇣
r̈ � r✓̇2

⌘ @�

@r
+

 
✓̈ +

2ṙ✓̇

r

!
@�

@✓

Note that r✓̇2 corresponds to the centrifugal force that you feel when forced to move
in a circle.

The term ✓̈ + 2ṙ✓̇
r

is related to Kepler’s second law under a central force field.
In this context this simply means that

✓̈ +
2ṙ✓̇

r
= 0
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if the force and hence acceleration is radial. This in turn implies that r2✓̇ is constant
as Kepler’s law states.

The general goal will be to develop a similar set of ideas for surfaces and in
addition to find other ways of calculating [�

w

] that depend on the geometry of the
tangent fields.

Before generalizing we make another rather startling observation. Taking one
more derivative we obtain

@2

@w2@w1

⇥
@�

@u

@�

@v

⇤
=

@

@w2

�⇥
@�

@u

@�

@v

⇤
[�

w1 ]
�

=

✓
@

@w2

⇥
@�

@u

@�

@v

⇤◆
[�

w1 ] +
⇥

@�

@u

@�

@v

⇤ @�
w1

@w2

�

=
⇥

@�

@u

@�

@v

⇤
[�

w2 ] [�w1 ] +
⇥

@�

@u

@�

@v

⇤ @�
w1

@w2

�

=
⇥

@�

@u

@�

@v

⇤✓
[�

w2 ] [�w1 ] +


@�

w1

@w2

�◆

Switching the order of the derivatives should not change the outcome,
@2

@w1@w2

⇥
@�

@u

@�

@v

⇤
=
⇥

@�

@u

@�

@v

⇤✓
[�

w1 ] [�w2 ] +


@�

w2

@w1

�◆

but it does look different when we use w1 = u and w2 = v. Therefore we can
conclude that

[�
v

] [�
u

] +


@�

u

@v

�
= [�

u

] [�
v

] +


@�

v

@u

�

or 
@�

v

@u

�
�

@�

u

@v

�
+ [�

u

] [�
v

]� [�
v

] [�
u

] = 0.

For polar coordinates this can be verified directly:

@�

r

@✓

�
�

@�

✓

@r

�
= 0�


0 �1

� 1
r

2 0

�
=


0 1
1
r

2 0

�

[�
r

] [�
✓

]� [�
✓

] [�
r

] =


0 0
0 1

r

� 
0 �r
1
r

0

�
�


0 �r
1
r

0

� 
0 0
0 1

r

�

=


0 1
1
r

2 0

�

This means that the two matrices of functions [�
u

] , [�
v

] have some nontrivial
relations between them that are not evident from the definition.

For a surface x (u, v) in R3 we add to the tangent vectors the normal

n (u, v) =
@�

@u

⇥ @�

@v��@�
@u

⇥ @�

@v

��

in order to get a basis. While n does depend on the parametrizations we note that
as it is normal to a plane in R3 there are in fact only two choices ±n, just as with
planar curves.

This means we shall consider frames
⇥

@�

@u

@�

@v

n
⇤

and derivatives of such
frames

@

@w

⇥
@�

@u

@�

@v

n
⇤
=
h

@

2
�

@w@u

@

2
�

@w@v

@n

@w

i
=
⇥

@�

@u

@�

@v

n
⇤
[D

w

]
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where w can be either u or v.
The entries of D

w

are divided up into parts. The first depends only on tan-
gential information, the first two rows and columns, and corresponds to the [�

w

]
that we defined in the plane using general coordinates. The second depends on
normal information, the third row and column. Since n is a unit vector the 33
entry actually vanishes:

0 =
@ |n|2

@w
= 2n · @n

@w

showing that @n

@w

lies in the tangent space and hence does not have a normal com-
ponent.

As before we have
@2

@w1@w2

⇥
@�

@u

@�

@v

n
⇤
=

@2

@w2@w1

⇥
@�

@u

@�

@v

n
⇤

In particular,

[D
u

] [D
v

] +


@D

v

@u

�
= [D

v

] [D
u

] +


@D

u

@v

�

or 
@D

v

@u

�
�

@D

u

@v

�
+ [D

u

] [D
v

]� [D
v

] [D
u

] = 0

As we shall see, other interesting features emerge when we try to restrict attention
to the tangential and normal parts of these matrices.

Elie Cartan developed an approach that uses orthonormal bases, but he clearly
had to give up on the idea of using coordinate vector fields. Thus he chose an
orthonormal frame E1, E2, E3 along part of the surface with the property that
E3 = n is normal to the surface, and consequently E1, E2 form an orthonormal
basis for the tangent space. The goal is again to take derivatives. For that purpose
we can still use parameters

@

@w

⇥
E1 E2 E3

⇤
=
⇥

@E1
@w

@E2
@w

@E3
@w

⇤
=
⇥
E1 E2 E3

⇤
[D

w

]

The first observation is that [D
w

] is skew-symmetric since we used an orthonormal
basis:

⇥
E1 E2 E3

⇤
t

⇥
E1 E2 E3

⇤
=

2

4
1 0 0
0 1 0
0 0 1

3

5

so

0 =
@

@w

⇣⇥
E1 E2 E3

⇤
t

⇥
E1 E2 E3

⇤⌘

=

✓
@

@w

⇥
E1 E2 E3

⇤◆t ⇥
E1 E2 E3

⇤

+
⇥
E1 E2 E3

⇤
t

@

@w

⇥
E1 E2 E3

⇤

=
�⇥

E1 E2 E3

⇤
[D

w

]
�
t

⇥
E1 E2 E3

⇤

+
⇥
E1 E2 E3

⇤
t

⇥
E1 E2 E3

⇤
[D

w

]

= [D
w

]
t

+ [D
w

]
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In particular, there will only be 3 entries to sort out. This is a significant reduction
from what we had to deal with above. What is more, the entries can easily be
found by computing the dot products

E
i

· @Ej

@w

This is also in sharp contrast to what happens in the above situation as we shall
see. Taking one more derivative will again yield a formula


@D

w2

@w1

�
�

@D

w1

@w2

�
= [D

w2 ] [Dw1 ]� [D
w1 ] [Dw2 ]

where both sides are skew symmetric.
Given the simplicity of using orthonormal frames it is perhaps puzzling why

one would bother developing the more cumbersome approach that uses coordinate
fields. The answer lies, as with curves, in the unfortunate fact that it is often
easier to find coordinate fields than orthonormal bases that are easy to work with.
Monge patches are prime examples. For specific examples and many theoretical
developments, however, Cartan’s approach has many advantages.

3.3. The First Fundamental Form

Let � (u, v) : U ! R3 be a parametrized surface. At each point of this surface
we get a basis

@�

@u
(u, v) ,

@�

@v
(u, v) ,

n (u, v) =
@�

@u

⇥ @�

@v��@�
@u

⇥ @�

@v

��

These vectors are again parametrized by u, v. The first two vectors are tangent to
the surface and give us an unnormalized version of the tangent vector for a curve,
while the third is the normal and is naturally normalized just as the normal vector
is for a curve. One of the issues that make surface theory more difficult than curve
theory is that there is no canonical parametrization along the lines of the arclength
parametrization for curves.

The first fundamental form is the symmetric positive definite form that comes
from the matrix

[I] =
⇥

@�

@u

@�

@v

⇤
t

⇥
@�

@u

@�

@v

⇤

=


@�

@u

· @�

@u

@�

@u

· @�

@v

@�

@v

· @�

@u

@�

@v

· @�

@v

�

=


g
uu

g
uv

g
vu

g
vv

�

For a curve the analogous term would simply be the square of the speed
✓
d�

dt

◆
t

d�

dt
=

d�

dt
· d�
dt

.

This form dictates how one computes dot products of vectors tangent to the surface
assuming they are expanded according to the basis @�

@u

, @�

@v
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X = Xu

@�

@u
+Xv

@�

@v
=
⇥

@�

@u

@�

@v

⇤  Xu

Xv

�

Y = Y u

@�

@u
+ Y v

@�

@v
=
⇥

@�

@u

@�

@v

⇤  Y u

Y v

�

I (X,Y ) =
⇥
Xu Xv

⇤  g
uu

g
uv

g
vu

g
vv

� 
Y u

Y v

�

=
⇥
Xu Xv

⇤ ⇥
@�

@u

@�

@v

⇤
t

⇥
@�

@u

@�

@v

⇤  Y u

Y v

�

=

✓⇥
@x

@u

@x

@v

⇤  Xu

Xv

�◆
t

✓⇥
@�

@u

@�

@v

⇤  Y u

Y v

�◆

= XtY

= X · Y
In particular, we see that while the metric coefficients g

w1w2 depend on our parametriza-
tion. The dot product I (X,Y ) of two tangent vectors remains the same if we change
parameters. Note that I stands for the bilinear form I (X,Y ) which does not depend
on parametrizations, while [I] is the matrix representation for a fixed parametriza-
tion.

Our first surprising observation is that the normalization factor
��@�
@u

⇥ @�

@v

�� can
be computed from [I] .

Lemma 3.3.1. We have
����
@�

@u
⇥ @�

@v

����
2

= det [I] = g
uu

g
vv

� (g
uv

)
2

Proof. The proof is a bit more general. Fix two vectors m,n 2 R3. The
quantity |m⇥ n| represents the area of the parallelogram with sides m and n. This
area can also be calculated by the height⇥base formula. If m is the base then we
have to find h |m| . The height can be calculated by the Pythagorean theorem if we
know the projection onto m. The projection of n onto m is

(n ·m)m

|m|2

So we have

h2 +

�����
(n ·m)m

|m|2

�����

2

= |n|2

Isolating h2 and multiplying my |m|2 yields

|m⇥ n|2 = h2 |m|2

= |m|2
0

@|n|2 �

�����
(n ·m)m

|m|2

�����

2
1

A

= |m|2 |n|2 � |m|2 |(n ·m)|2 |m|2

|m|4

= (m ·m) (n · n)� (m · n)2
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This is what we wanted to prove. ⇤

The inverse

[I]
�1

=


g
uu

g
uv

g
vu

g
vv

��1

=


guu guv

gvu gvv

�

can be used to find the expansion of a tangent vector by computing its dots products
with the basis:

Proposition 3.3.2. If X 2 T
p

M, then

X =

✓
guu

✓
X · @�

@u

◆
+ guv

✓
X · @�

@v

◆◆
@�

@u
+

✓
gvu

✓
X · @�

@u

◆
+ gvv

✓
X · @�

@v

◆◆
@�

@v

=
⇥

@�

@u

@�

@v

⇤
[I]

�1 ⇥
@�

@u

@�

@v

⇤
t

X

and more generally for any Z 2 R3

Z =

✓
guu

✓
Z · @�

@u

◆
+ guv

✓
Z · @�

@v

◆◆
@�

@u
+

✓
gvu

✓
Z · @�

@u

◆
+ gvv

✓
Z · @�

@v

◆◆
@�

@v
+ (Z · n)n

=
⇥

@�

@u

@�

@v

⇤
[I]

�1 ⇥
@�

@u

@�

@v

⇤
t

Z + (Z · n)n

Proof. We already suspect that this formula works for X 2 T
p

M as we worked
with it in R2. Clearly a similar formula holds in R3 as well. Note that the operation

⇥
@�

@u

@�

@v

⇤
[I]

�1 ⇥
@�

@u

@�

@v

⇤
t

can be applied to any vector in R3. It simply projects the vector to a vector in the
tangent space. For a general vector Z 2 R3 we therefore have to split it up in the
tangential component and normal component

Z = X + (Z · n)n,
X = Z � (Z · n)n

and then apply our result to X. ⇤

Defining the gradient of a function is another important use of the first funda-
mental form as well as its inverse. Let f (u, v) be viewed as a function on the surface
� (u, v) . Our definition of the gradient should definitely be so that it conforms with
the chain rule for a curve c (t) = � (u (t) , v (t)) . Thus on one hand we want

d (f � c)
dt

= rf · ċ

=
⇥
(rf)

u

(rf)
v

⇤
[I]


du

dt

dv

dt

�

while the chain rule also dictates

d (f � c)
dt

=
⇥

@f

@u

@f

@v

⇤  du

dt

dv

dt

�

Thus
⇥
(rf)

u

(rf)
v

⇤
=
⇥

@f

@u

@f

@v

⇤
[I]

�1
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or

rf =
⇥

@�

@u

@�

@v

⇤  (rf)
u

(rf)
v

�

=
⇥

@�

@u

@�

@v

⇤ ⇣⇥
@f

@u

@f

@v

⇤
[I]

�1
⌘
t

=
⇥

@�

@u

@�

@v

⇤
[I]

�1 ⇥
@f

@u

@f

@v

⇤
t

=

✓
guu

@f

@u
+ guv

@f

@v

◆
@�

@u
+

✓
gvu

@f

@u
+ gvv

@f

@v

◆
@�

@v

In particular, we see that changing coordinates changes the gradient in such a way
that it isn’t simply the vector corresponding to the partial derivatives! The other
nice feature is that we now have a concept of the gradient that gives a vector field
independently of parametrizations. The defining equation

d (f � c)
dt

= rf · ċ = I (rf, ċ)

gives an implicit definition of rf that makes sense without reference to parametriza-
tions of the surface.

Exercise: If we have a parametrization where

[I] =


1 0
0 g

vv

�

then the coordinate function f (u, v) = u has

ru =
@�

@u
.

Exercise: Show that it is always possible to find an orthogonal parametriza-
tion, i.e., g

uv

vanishes.
Exercise: Show that if

@g
uu

@v
=

@g
vv

@u
= g

uv

= 0

then we can reparametrize u and v separately, i.e., u = u (s) and v = v (t) , in such
a way that we have Cartesian coordinates:

g
ss

= g
tt

= 1,

g
st

= 0

Exercise: Show that if
@2�

@u@v
= 0

then

� (u, v) = F (u) +G (v)

and conclude that we we are in the situation of the previous exercise.
Discuss Cartesian, equiareal, and isothermal parameterizations as substitutes

for arclength parameter.
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3.4. The Gauss Formulas

With all of this in mind we are now going to compute the partial derivatives
of our basis in both the u and v directions. Since these derivatives might not be
tangential we get a formula that looks like

@2�

@w1@w2
=
⇥

@�

@u

@�

@v

⇤
[I]

�1 ⇥
@�

@u

@�

@v

⇤
t

@2�

@w1@w2
+

✓
@2�

@w1@w2
· n
◆
n

The goal here and in the next section is to show that the tangential part of this
formula

�
w1w2 =

⇥
@�

@u

@�

@v

⇤
[I]

�1 ⇥
@�

@u

@�

@v

⇤
t

@2�

@w1@w2

can be computed directly form the first fundamental form and without knowledge
of the second derivatives @

2
�

@w1@w2
. Note that this is similar to what we did for a

reparametrization of the plane.
To accomplish this we need some more notation:

�
w1w2w =

@2�

@w1@w2
· @�
@w

L
w1w2 =

@2�

@w1@w2
· n

The first line defines the Christoffel symbols of the first kind. The second line the
second fundamental form

IIn (X,Y ) =
⇥
Xu Xv

⇤
[IIn]


Y u

Y v

�

=
⇥
Xu Xv

⇤  L
uu

L
uv

L
vu

L
vv

� 
Y u

Y v

�

The superscript n refers to the choice of normal and is usually suppressed since there
are only two choices for the normal ±n. This also tells us that nIIn is independent
of the normal.

To further simplify expressions we also need to do the appropriate multipli-
cation with gw4w5 to find the coefficients also called the Christoffel symbols of the
second kind :

�w

w1w2
= gwu�

w1w2u + gwv�
w1w2v,

�u

w1w2

�v

w1w2

�
=


guu guv

gvu gvv

� 
�
w1w2u

�
w1w2v

�

= [I]
�1 ⇥

@�

@u

@�

@v

⇤
t

@2�

@w1@w2

This now gives us the tangential component as

�
w1w2 =

⇥
@�

@u

@�

@v

⇤
[I]

�1 ⇥
@�

@u

@�

@v

⇤
t

@2�

@w1@w2

= �u

w1w2

@�

@u
+ �v

w1w2

@�

@v

The second derivatives of � (u, v) can now be expressed as follows in terms of
the Christoffel symbols of the second kind and the second fundamental form. These
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are often called the Gauss formulas:

@2�

@u2
= �u

uu

@�

@u
+ �v

uu

@�

@v
+ L

uu

n

@2�

@u@v
= �u

uv

@�

@u
+ �v

uv

@�

@v
+ L

uv

n =
@2�

@v@u
@2�

@v2
= �u

vv

@�

@u
+ �v

vv

@�

@v
+ L

vv

n

or
@2�

@w1@w2
= �u

w1w2

@�

@u
+ �v

w1w2

@�

@v
+ L

w1w2n

or
@

@w

⇥
@�

@u

@�

@v

⇤
=
⇥

@�

@u

@�

@v

n
⇤
2

4
�u

wu

�u

wv

�v

wu

�v

wv

L
wu

L
wv

3

5

This means that we have introduced notation for the first two columns in [D
w

] .
We shall wait a bit to deal with the last column.

As we shall see, and indeed already saw when considering polar coordinates in
the plane, these formulas are important for defining accelerations of curves. They
are however also important for giving a proper definition of the Hessian or second
derivative matrix of a function on a surface. This will be explored in an exercise
later.

3.5. Calculating Christoffel Symbols

Next we seek formulas for the Christoffel symbols that involve only the first
fundamental form. This shows that they can be computed knowing only the first
derivatives of � (u, v) despite the fact that they are defined using the second deriva-
tives!

Proposition 3.5.1. We have that

�
uuu

=
1

2

@g
uu

@u

�
uvu

=
1

2

@g
uu

@v
= �

vuu

�
vvv

=
1

2

@g
vv

@v

�
uvv

=
1

2

@g
vv

@u
= �

vuv

�
uuv

=
@g

uv

@u
� 1

2

@g
uu

@v

�
vvu

=
@g

uv

@v
� 1

2

@g
vv

@u

Proof. We select to prove only two of these as the proofs are all similar. We
use the product rule just as we did when computing derivatives of dot products for
the Frenet-Serret formulas. Note that we use the first calculation to finish off the
second calculation.

�
uvu

=
@2�

@u@v
· @�
@u

=

✓
@

@v

✓
@�

@u

◆◆
· @�
@u

=
1

2

@

@v

✓
@�

@u
· @�
@u

◆
=

1

2

@g
uu

@v
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�
uuv

=
@2�

@u@u
· @�
@v

=

✓
@

@u

✓
@�

@u

◆◆
· @�
@v

=
@

@u

✓
@�

@u
· @�
@v

◆
�
✓
@�

@u
· @

@u

@�

@v

◆

=
@g

uv

@u
� @�

@u
· @2�

@u@v

=
@g

uv

@u
� 1

2

@g
uu

@v

⇤

There is a unified formula for all of these equations. While it unifies it also
complicates and is less useful for actual calculations:

�
w1w2w =

1

2

✓
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w2w

@w1
+

@g
w1w

@w2
� @g

w1w2

@w
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The product rule for derivatives also tells us that

@g
w1w2

@w
= �

ww2w1 + �
ww1w2

Note that this formula is now also a direct consequence of our new formulas for the
Christoffel symbols in terms of the derivatives of the metric coefficients.

The proposition can also be used to find the Christoffel symbols of the second
kind. For example

�u

uv

= guu�
uvu

+ guv�
uvv

=
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uu

@v
+ guv
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vv
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While this can’t be made simpler as such, it is possible to be a bit more efficient
when calculations are done. Specifically we often do calculations in orthogonal
coordinates, i.e., g

uv

⌘ 0. In such coordinates
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and
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We often have more specific information. This could be that the metric coeffi-
cients only depend on one of the parameters, or that g

uu

= 1. In such circumstances
it is quite manageable to calculate the Christoffel symbols. What is more, it is al-
ways possible to find parametrizations where g

uu

⌘ 1 and g
uv

⌘ 0 as we shall
see.

3.6. Generalized and Abstract Surfaces

It is possible to work with generalized surfaces into Euclidean spaces of arbitrary
dimension: � (u, v) : U ! Rk for any k � 2. What changes is that we no longer have
a normal vector n. In fact for k = 2 we could just let n be (0, 0, 1) after letting R2

be the (x, y) coordinates in space. While for k � 4 we get a whole family of normal
vectors, not unlike what happened for space curves. What all of these surfaces do
have in common is that we can define the first fundamental form and with it also
the Christoffel symbols of the first and second kind using the formulas in terms
of derivatives of g. This leads us to the possibility of an abstract definition of a
surface that is independent of a particular map into some coordinate space Rk.

One of the simplest examples of a generalized surface is the flat torus in R4. It
is parametrized by

� (u, v) = (cosu, sinu, cos v, sin v)

and its first fundamental form is

I =


1 0
0 1

�

just as we have for Cartesian coordinates in the plane. This is why it is called the
flat torus. It is in fact not possible to have a flat torus in R3.

An abstract parametrized surface consists of a domain U ⇢ R2 and a first
fundamental form

I =


g
uu

g
uv

g
uv

g
vv

�

that defines inner products of vectors X,Y with the same base point p 2 U

I (X,Y ) =
⇥
Xu Xv

⇤  g
uu

g
uv

g
vu

g
vv

� 
Y u

Y v

�

where
X = (Xu, Xv) , Y = (Y u, Y v)
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are the representations of the vectors using the standard (u, v) coordinates on U.
Note the first fundamental form consists of three functions and so gives an inner
product that varies from point to point. For this to give us an inner product we
also have to make sure that it is positive definite:

0 < I (X,X)

=
⇥
Xu Xv

⇤  g
uu

g
uv

g
uv

g
vv

� 
Xu

Xv

�

= XuXug
uu

+ 2XuXvg
uv

+XvXvg
vv

Proposition 3.6.1. I is positive definite if and only if g
uu

+ g
vv

, and g
uu

g
vv

�
(g

uv

)
2 are positive.

Proof. If I is positive definite, then we see that g
uu

and g
vv

are positive by
letting X = (1, 0) and (0, 1) resp. Next let X =

�p
g
vv

,±p
g
uu

�
to get

0 < I (X,X) = 2g
uu

g
vv

± 2
p
g
uu

p
g
vv

g
uv

Thus we have
±g

uv

<
p
g
uu

p
g
vv

showing that
g
uu

g
vv

> (g
uv

)
2
.

To check that I is positive definite we have to use that it is symmetric. The
characteristic polynomial is

�2 � (g
uu

+ g
vv

)�+ g
uu

g
vv

� (g
uv

)
2

The minimum of this upward pointing parabola is obtained at

� =
1

2
(g

uu

+ g
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)

and has the value

g
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g
vv

� (g
uv

)
2 � 1

4
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uu

+ g
vv

)
2
= �1

4
(g

uu

� g
vv

)
2 � (g

uv

)
2
< 0

Thus there are two real roots. The spectral theorem for symmetric matrices could
also have been invoked at this point to establish that the eigenvalues are both real.
It is now easy to see that [I] is positive definite if its eigenvalues are positive. Two
real numbers have to be positive if their sum and product are both positive. In
this case the sum of the eigenvalues is the trace g

uu

+ g
vv

while the product is the
determinant g

uu

g
vv

� (g
uv

)
2 so our assumptions guarantee that the eigenvalues are

positive. ⇤

There is an interesting example of an abstract surface on the upper half plane
defined by H = {(u, v) : v > 0} , where the metric coefficients are

[I] =


g
uu

g
uv

g
vu

g
vv

�
=

1

v2


1 0
0 1

�

One can show that for each point p 2 H, there is a small neighborhood U containing
p and � (u, v) : U ! R3 such that

⇥
@�

@u

@�

@v

⇤
t

⇥
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@v

⇤
=


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· @�

@u

@�
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@�

@v

· @�
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�
=
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v2


1 0
0 1

�
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In other words we can locally represent the abstract surface as a surface in space.
However, a very difficult theorem of Hilbert shows that one cannot represent the
entire surface in space, i.e., there is no function � (u, v) : H ! R3 defined on the
entire domain such that

⇥
@�

@u

@�

@v

⇤
t

⇥
@�

@u

@�

@v

⇤
=


@�
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@v

@�

@v

· @�

@u

@�

@v

· @�

@v

�
=

1

v2


1 0
0 1

�

Janet-Burstin-Cartan showed that if the metric coefficients of an abstract sur-
face are analytic, then one can always locally represent the abstract surface in R3.
Nash showed that any abstract surface can be represented by a map � (u, v) : U !
Rk on the entire domain, but only at the expense of making k very large. Based
in part on Nash’s work Greene and Gromov independently showed that one can
always locally represent an abstract surface in R5.



CHAPTER 4

Curves on Surfaces

4.1. Acceleration and Geodesics

We’ll now consider curves on a parametrized surface � (u, v) : U ! R3. The
curve is parametrized in U as (u (t) , v (t)) and becomes a space curve c (t) =
� (u (t) , v (t)) that lies on our parametrized surface.

The velocity is

ċ =
dc

dt
=

d�

dt
=

@�

@u

du

dt
+

@�

@v

dv

dt
=
⇥

@�

@u

@�

@v

⇤  du

dt

dv

dt

�

Next we calculate the acceleration as if it were a space curve, but using the velocity
representation we just gave. Recall that we can decompose any vector into normal
and tangential components. For the acceleration this is

c̈ =
⇥

@�

@u

@�

@v

⇤
[I]
⇥

@�

@u

@�

@v

⇤
t

c̈+ (c̈ · n)n

The goal is to calculate each of these components in terms of du

dt

, dv

dt

and d

2
u

dt

2 ,
d

2
v

dt

2 .
This will lead us to another surprising result.

Theorem 4.1.1. The acceleration can be calculated as

c̈ =
⇥
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@�

@v

n
⇤
2

4
d

2
u

dt

2 + �u (ċ, ċ)
d

2
v
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2 + �v (ċ, ċ)
II (ċ, ċ)
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d2u

dt2
+ �u (ċ, ċ)
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d2v
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+ �v (ċ, ċ)

◆
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+ nII (ċ, ċ) ,

where

�w (ċ, ċ) =
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⇥
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Proof. We start from the formula for the velocity and take derivatives. This
clearly requires us to be able to calculate derivatives of the tangent fields @�

@u

, @�

@v

.
Fortunately the Gauss formulas tell us how that is done. This leads us to the
acceleration as follows
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which after the chain rule
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27
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becomes
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⇥
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The Gauss formulas help us with the last two terms
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which after further rearranging allows us to conclude
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Alternately the whole calculation could have been done using summations
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⇤

Note that we have shown

Theorem 4.1.2. [Meusnier] The normal component of the acceleration satisfies

(c̈ · n)n = c̈II = nII (ċ, ċ)

In particular two curves with the same velocity at a point have the same normal
acceleration components.

The tangential component is more complicated

⇥
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@v

⇤
[I]
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⇤
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c̈ = c̈I =
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dt2
+ �u (ċ, ċ)

◆
+
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@v

✓
d2v

dt2
+ �v (ċ, ċ)

◆

But it seems to be a more genuine acceleration as it includes second derivatives. It
actually tells us what acceleration we feel on the surface. Note that the tangential
acceleration only depends on the first fundamental form.

We say that c is a geodesic on the surface if the tangential part of the acceler-
ation vanishes c̈I = 0, or specifically

d2u

dt2
+ �u (ċ, ċ) = 0,

d2v

dt2
+ �v (ċ, ċ) = 0.

This is equivalent to saying that c̈ is normal to the surface or that c̈ = nII (ċ, ċ) .

Proposition 4.1.3. A geodesic has constant speed.
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Proof. Let c (t) be a geodesic. We compute the derivative of the square of
the speed:

d

dt
I (ċ, ċ) =

d

dt
(ċ · ċ) = 2c̈ · ċ = 2II (ċ, ċ)n · ċ = 0

since n and ċ are perpendicular. Thus c has constant speed. ⇤

Note that we used the second fundamental form to give a simple proof of this
result. It is desirable and indeed possible to give a proof that only refers to the first
fundamental form. The key lies in showing that we have a product rule for I (ċ, ċ)
that works just inside the surface. Since

I
�
c̈I, ċ

�
= c̈ · ċ

this is fairly obvious. The goal would be to do the calculation using only the first
fundamental form and that takes quite a bit more work.

Next we address existence of geodesics.

Theorem 4.1.4. Given a point p = � (u0, v0) and a tangent vector V =
V u

@�

@u

(u0, v0)+V v

@�

@v

(u0, v0) 2 T
p

M there is a unique geodesic c (t) = � (u (t) , v (t))
defined on some small interval t 2 (�", ") with the initial values

c (0) = p,

ċ (0) = V.

Proof. The existence and uniqueness part is a very general statement about
solutions to differential equations. In this case we note that in the (u, v) parameters
we must solve a system of second order equations
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with the initial values

(u (0) , v (0)) = (u0, v0) ,

(u̇ (0) , v̇ (0)) = (V u, V v) .

As long as � is sufficiently smooth there is a unique solution to such a system of
equations given the initial values. The domain (�", ") on which such a solution
exists is quite hard to determine. It’ll depend on the domain of parameters U , the
initial values, and finally on �. ⇤

This theorem allows us to find all geodesics on spheres and in the plane without
calculation.

In the plane straight lines c (t) = p+ vt are clearly geodesics. And since these
solve all possible initial problems there are no other geodesics.

On S2 we claim that the great circles

c (t) = p cos (|v| t) + v

|v| sin (|v| t)

p 2 S2,

p · v = 0
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are geodesics. Note that this is a curve on S2, and that c (0) = p, ċ (0) = v. Next
we see that the acceleration

c̈ (t) = �p |v|2 cos (|v| t)� v |v| sin (|v| t) = � |v|2 c (t)

computed in R3 is normal to the sphere. Thus c̈I = 0. This means that we have
also solved all initial value problems on the sphere.

Exercise: Let c (s) be a unit speed curve on a surface with normal n. Show
that it is a geodesic if and only if

[c0, c00, n] = 0

Exercise: Let c (s) be a unit speed curve on a surface with normal n. Define
T as the usual tangent to the curve and

S = n⇥ T

as the normal to the curve in the surface. Show that
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for functions 
g

,
n

, ⌧
g

. They are called geodesic curvature, normal curvature, and
geodesic torsion respectively. Further show that S and c̈I are proportional and that


g

= I
�
S, c̈I

�
= S · dT

ds
,


n

= II (ċ, ċ) = n · dT
ds

,

⌧
g

= II (S, ċ) = n · dS
ds

.

Exercise: Show that the geodesic curvature can be computed as


g

=
@

@u

�
T · @�

@v

�
� @

@v

�
T · @�

@u

�
p

det [I]

Exercise: Define the Hessian of a function on a surface abstractly by

Hessf (X,Y ) = I (D
X

rf, Y )

Show that the entries in the matrix [Hessf ] defined by

Hessf (X,Y ) =
⇥
Xu Xv

⇤
[Hessf ]


Y u

Y v

�

are given as
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w1w2
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�

Further relate these entries to the dot products

@rf

@w1
· @�

@w2
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4.2. Unparametrized Geodesics

It is often simpler to find the unparametrized form of the geodesics, i.e., in
a given parametrization they are easier to find as functions u (v) or v (u) . We
start with a tricky characterization showing that one can characterize geodesics
without referring to the arclength parameter. The idea is that a regular curve can
be reparametrized to be a geodesic if and only if its tangential acceleration c̈I is
tangent to the curve.

Lemma 4.2.1. A regular curve c (t) = � (u (t) , v (t)) can be reparametrized as
a geodesic if and only if
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Proof. Let s correspond to a reparametrization of the curve. When switching
from t to s we note that the left hand side becomes
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with a similar formula for the right hand side. Here the first term

ds

dt

d2s

dt2
dv

ds

du

ds

is the same on both sides, so we have shown that the equation is actually indepen-
dent of parametrizations. In other words if it holds for one parametrization it holds
for all reparametrizations.

If c is a geodesic then the formula clearly holds for the arclength parameter.
Conversely if the equation holds for some parameter then it also holds for the

arclength parameter. Being parametrized by arclength gives us the equation

I
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#
= 0

Thus we have two equations
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◆
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uv
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dt
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vv

dv

dt
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d2v

dt2
+ �v (ċ, ċ)
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= 0
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Since

det


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�du
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g
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+
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g
uu
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uv
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◆

= |ċ|2 = 1

the only possible solution is
d2u

dt2
+ �u (ċ, ċ) = 0 =

d2v

dt2
+ �v (ċ, ċ) ,

showing that c is a geodesic. ⇤
Depending on our parametrization (u, v) geodesics can be pictured in many

ways. We’ll study a few cases where geodesics take on some familiar shapes.
Consider the sphere where great circles are described by

ax+ by + cz = 0,

x2 + y2 + z2 = 1

If we use the parametrization 1p
1+s

2+t

2 (s, t, 1) , or in other words x

z

= s, y

z

= t then
these equations simply become straight lines in (s, t) coordinates:

as+ bt+ c = 0

Or we could use
�
u, v,

p
1� u2 � v2

�
and note that the equations become

�
a2 + c2

�
u2 + 2abuv +

�
b2 + c2

�
v2 = c2

which are the equations of ellipses whose axes go through the origin and are in-
scribed as well as tangent to the unit circle. This is how you draw great circles on
the sphere! The first fundamental form is given by

[I] =

"
1 + u

2

1�u

2�v

2
uv

1�u

2�v

2

uv

1�u

2�v

2 1 + v

2

1�u

2�v

2

#

Here is an intrinsic metric on the (u, v) plane where we have simply switched
signs from above

[I] =

"
1� u

2

1+u

2+v

2 � uv

1+u

2+v

2

� uv

1+u

2+v

2 1� v

2

1+u

2+v

2

#

Using the parameter independent approach to geodesics one can show that they
turn out to be hyperbolas whose axes go through the origin

�
a2 � c2

�
u2 + 2abuv +

�
b2 � c2

�
v2 = c2

This metric can also be reparametrized to have its geodesics be straight lines. The
later reparametrization is:

s =
up

1 + u2 + v2

t =
vp

1 + u2 + v2

and the geodesics given by
as+ bt+ c = 0.
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We shall later explicitly find the geodesics on the upper half plane using the equa-
tions developed here.

Exercise: Show that geodesics satisfy a second order equation of the type

d2v

du2
= A

✓
dv

du

◆3

+B

✓
dv

du

◆2

+ C
dv

du
+D

and identify the functions A,B,C,D with the appropriate Christoffel symbols.

4.3. Shortest Curves

The goal is to show that the shortest curves are geodesics, and conversely that
sufficiently short geodesics are minimal in length. For the latter using geodesic
coordinates makes an argument that is similar to the Euclidean version using a
unit gradient field.



CHAPTER 5

The Second Fundamental Form

5.1. Invariance Issues

We offer a geometric approach to show that the second fundamental form is,
like the first fundamental form, defined in such a way that selecting a different
parametrization will not affect it.

The key observation is that if we have a surface M and a point p 2 M, then
the tangent space T

p

M is defined independently of our parametrizations. Corre-
spondingly the normal space N

p

M = (T
p

M)
? of vectors in R3 perpendicular to

the tangent space is also defined independently of parametrizations. Therefore, if
we have a vector Z in Euclidean space then its projection onto both the tangent
space and the normal space are also independently defined.

Consider a curve c (t) on the surface. We know that the velocity ċ and accelera-
tion c̈ can be calculated without reference to parametrizations. This means that the
projections of c̈ onto the tangent space, c̈I, and onto the normal space, nIIn (ċ, ċ) ,
can also be computed without reference to parametrizations. This shows that tan-
gential and normal accelerations are well defined.

This also takes care of nIIn (X,Y ) if we use two important observations. The
first is called polarization, the idea is that symmetric bilinear forms have the prop-
erty:

nIIn (X,Y ) =
1

2
(nIIn (X + Y,X + Y )� nIIn (X,X)� nIIn (Y, Y ))

Thus it suffices to show that nIIn (Z,Z) is well defined. But this follows from
knowing that nIIn (ċ, ċ) is invariant and that any tangent vector is the velocity of
some curve.

5.2. The Weingarten Map and Equations

There is a similar set of equations for the entries in the second fundamental
form that also lead us to the partial derivatives of n (u, v) . Together these are also
known as the Weingarten equations. But first we need to introduce the Weingarten
map. It is related to the second fundamental form in the same way the Christoffel
symbols of the second kind are related to the symbols of the first kind. Its matrix
or the entries of its matrix are

Lw2
w1

= gw2uL
uw1 + gw2vL

vw1 ,

[L] = [I]
�1

[II] ,


Lu

u

Lu

v

Lv

u

Lv

v

�
=


guu guv

gvu gvv

� 
L
uu

L
uv

L
vu

L
vv

�
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When using matrix language we must be careful in our definitions as [I]
�1

[II] and
[II] [I]

�1 are generally not the same. The abstract Weingarten map L will be a
self-adjoint map with respect to the first fundamental form

I (L (X) , Y ) = I (X,L (Y ))

but this does not guarantee that its matrix representation [L] is symmetric. This
will only be the case if we are lucky enough to have used an orthonormal basis.

Proposition 5.2.1. We have

I (L (X) , Y ) = II (X,Y )

In particular L is self-adjoint as II is symmetric.

Proof. We have

II (X,Y ) =
⇥
Xu Xv

⇤
[II]


Y u

Y v

�
,

I (L (X) , Y ) =
⇥
Xu Xv

⇤
[L]

t

[I]


Y u

Y v

�

and by definition
[L] = [I]

�1
[II]

so
[L]

t

= [II] [I]
�1

as [I] and [II] are symmetric. This shows that I (L (X) , Y ) = II (X,Y ) . ⇤
Next we find a new formula for L.

Proposition 5.2.2. [Weingarten Equations]

L
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Proof. The strategy is just as with Christoffel symbols, but works out a bit
more easily

L
w1w2 =

@2�

@w1@w2
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@
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were we used that n is perpendicular to @�

@w2
.
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For the second set of equations we note
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But n is a unit vector field so

n · @n
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=
1

2

@
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|n|2 = 0

showing that @n
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is a tangent vector. In particular
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The Weingarten equations can also be combined into one equation
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= �Lu

w
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@u
� Lv
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@v
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✓
@�

@w

◆
.

The Gauss formulas and Weingarten equations together tell us how the deriva-
tives of our basis @�

@u

, @�

@v

, n relate back to the basis. They can be collected as
follows:

Corollary 5.2.3. [Gauss and Weingarten Formulas]
@
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5.3. The Gauss Curvature and Map

One of the interesting features of the Weingarten map is that its trace 2H =
Lu

u

+ Lv

v

and determinant K = Lu

u

Lv

v

� Lv

u

Lu

v

yield functions on the surface that
are independent of the chosen parametrization. Clearly the entries themselves do
depend on parametrizations. This means that if we have two parametrizations
around a point p 2 M, then the calculation of H and K at p will not depend on what
parametrization we use! H is called the mean curvature and K the Gauss curvature.
We saw that for a fixed choice of normal the second fundamental form is defined
independently of the parameters. This will clearly also be true of the Weingarten
map. The next theorem is therefore obvious. Nevertheless it is instructive to offer
a less inspired proof.

Theorem 5.3.1. The mean and Gauss curvatures do not depend on the parametriza-
tions.

Proof. The key to proving this is to first realize that we know that the trace
and determinant of a matrix do not depend on the basis that is used to represent
the matrix, second we need to see that the Weingarten map changes according to
the change of basis rules when we change parametrizations. In these calculations
we assume that the normal vector field is fixed rather than given as a formula that
depends on the tangent fields. There are only two choices for the normal field ±n,
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and II as well as L will also change sign if we change sign for n. Note that this sign
change does affect H, but not K!

The Weingarten map is calculated by
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Changing parametrizations is done using the chain rule which in matrix form
looks like
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This in turn gives us
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and
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Note that we have in fact shown that the linear map L : T
p

M ! T
p

M does not
depend on the parametrizations we use.

We can further find a very interesting formula for the Gauss curvature

Proposition 5.3.2. [Gauss]
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Proof. Simply use the Weingarten equations to calculate
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Note that the denominator is already computed in terms of the first fundamen-
tal form ����
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⇥ @�

@v

����
2

= g
uu

g
vv

� (g
uv

)
2

The numerator is actually very similar in nature as it is simply the corresponding
expression for the so called Gauss map n (u, v) : U ! S2 (1) ⇢ R2 for the surface,
i.e., computed from the first fundamental form of n (u, v). This map is our analog
of the tangent spherical image. Note that for the unit sphere the unit normal at
n is ±n. Thus

�
@n

@u

⇥ @n

@v

�
· n represents the oriented area for the parallelogram

whose sides are @n

@u

, @n

@v

. Recall from curve theory that the tangent spherical image
was also related to curvature in a similar way. Here the formulas are a bit more
complicated as we use arbitrary parameters.

One classically defines the third fundamental form III as the first fundamental
form for n
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This certainly makes sense, but n might not be a genuine parametrization if the
Gauss curvature vanishes. Note however that n is not just the normal to the surface,
but also to the unit sphere at n

@n

@u
⇥ @n

@v
=

����
@n

@u
⇥ @n

@v

����n

This is part of what we just established.
The three fundamental forms and two curvatures are related by a very interest-

ing formula which also shows that the third fundamental form is almost redundant.

Theorem 5.3.3. We have

III� 2HII +KI = 0

Proof. We first reduce this statement to the Cayley-Hamilton theorem for
the linear map L. This relies on showing

I (L (X) , Y ) = II (X,Y ) ,

I
�
L2 (X) , Y

�
= III (X,Y )

and then proving that any 2⇥ 2 matrix satisfies:

L2 � (tr (L))L+ det (L) I = 0

where I is the identity matrix. The last step can be done by a straightforward
calculation.

We already saw that I (L (X) , Y ) = II (X,Y ) as that followed directly from
[II] = [I] [L]. We similarly have
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showing that I
�
L2 (X) , Y

�
= III (X,Y ) . ⇤

In a related vein we mention Gauss’ amazing discovery that the Gauss curvature
can be computed knowing only the first fundamental form. Given the definition of
K this is certainly a big surprise. A different proof that uses our abstract framework
will be given in a later section. Here we use a more direct approach.

Theorem 5.3.4. [Theorema Egregium] The Gauss curvature can be computed
knowing only the first fundamental form.

Proof. We start with the observation that

K = detL = det [I]
�1
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So we concentrate on
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Which then reduces us to consider
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Here each entry in the matrix is a triple product and hence a determinant of a 3⇥3
matrix
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With that observation and recalling that a matrix and its transpose have the same
determinant we can calculate the products that appear in our 2⇥ 2 determinant
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and similarly
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Since we need to subtract these quantities we are finally reduced to check the
difference
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✓
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⇤

Exercise: Compute the mean and Gauss curvatures of the generalized cones,
cylinders, and tangent developables. It turns out that these are essentially the only
surfaces in space with vanishing Gauss curvature.

5.4. Principal Curvatures

The principal curvatures at a point p on a surface are the eigenvalues of the
Weingarten map associated to that point, and the principal directions are the cor-
responding eigenvectors. The fact that L is self-adjoint with respect to the first
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fundamental form guarantees that we can always find an orthonormal set of princi-
pal directions, and that the principal curvatures are real. This is a nice and general
theorem from linear algebra, variously called diagonalization of symmetric matri-
ces or the spectral theorem. Since the Weingarten map is a linear map on a two
dimensional vector space we can give a direct proof.

Theorem 5.4.1. For a fixed point p 2 M, we can find orthonormal principal
directions E1, E2 2 T

p

M

L (E1) = 1E1,

L (E2) = 2E2.

Moreover 1,2 are both real.

Proof. The characteristic polynomial for L looks like
�2 � 2H�+K = 0.

The roots of this polynomial are real if and only if the discriminant is nonnegative:
4H2 � 4K � 0, or

H2 � K.

If we select an orthonormal basis for T
p

M (it doesn’t have to be related to a
parametrization), the the matrix representation for L is symmetric

[L] =


a b
b d

�

and so

H =
a+ d

2
,

K = ad� b2.

This means we need to show that

ad� b2 
✓
a+ d

2

◆2

, or

�b2  a2 + d2

4
So the principal curvatures really are real. If they are also equal, then all vectors are
eigenvectors and so we can certainly find an orthonormal basis that diagonalizes L.
If the principal curvatures are not equal, then the corresponding principal directions
are forced to be orthogonal:

1I (E1, E2) = I (L (E1) , E2) = I (E1, L (E2)) = 2I (E1, E2) , or
(1 � 2) I (E1, E2) = 0.

⇤
This also makes it possible to calculate the second fundamental form in general

directions.

Theorem 5.4.2. [Euler] If X 2 T
p

M , and the principal curvatures are 1,2,
then

II (X,X) =
�
1 cos

2 ✓ + 2 sin
2 ✓
�
|X|2

where ✓ is the angle between X and the principal direction corresponding to 1.
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Proof. Simply select an orthonormal basis E1, E2 or principal directions and
use that

X = |X| (cos ✓E1 + sin ✓E2) ,

II (E1, E1) = 1,

II (E2, E2) = 2,

II (E1, E2) = 0 = II (E2, E1) .

⇤
As an important corollary we get a nice characterization of the principal cur-

vatures.

Corollary 5.4.3. Assume that the principal curvatures are ordered 1 � 2,
then

max
|X|=1

II (X,X) = 1,

min
|X|=1

II (X,X) = 2.

....

Theorem 5.4.4. If a surface � has the property that 1 = 2 =  for some
function , then  is constant and the surface is part of a plane or sphere.

Proof. Since the principal curvatures agree at all points it follows that

� @n

@w
= L

✓
@�

@w

◆
= 

@�

@w

By letting w = u, v and the taking partial derivatives of this equation we obtain

� @2n

@u@v
=

@

@u

@�

@v
+ 

@2�

@u@v

� @2n

@v@u
=

@

@v

@�

@u
+ 

@2�

@v@u
As partial derivatives commute it follows

@

@u

@�

@v
=

@

@v

@�

@u

Using that @�

@u

, @�

@v

are linearly independent we see that @

@u

= @

@v

= 0 showing that
 is constant. Returning to the equation

� @n

@w
= 

@�

@w
we see that

@ (n+ �)

@w
= 0

This implies that n+� is constant. When  = 0 this shows that n is constant and
consequently the surface lies in the plane orthogonal to n. When  does not vanish
we can assume that  = 1

R

after possibly switching the direction of the normal. We
then obtain that

Rn+ � = c0

for some c0 2 R3. This shows that

|� � c0|2 = R2
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and thus � lies on the sphere of radius R centered at c0. ⇤
The height function that measures the distance from a point on the surface to

the tangent space T
p

M is given by
f (�) = (� � p) · n (p)

its partial derivatives in some parametrization are
@f

@w
=

@�

@w
· n (p) ,

@2f

@w1@w2
=

@2�

@w1@w2
· n (p)

So f has a critical point at p, and the second derivatives matrix there is simply [II] .
The second derivative test then tells us something about how the surface is placed
in relation to T

p

M. Specifically we see that if both principal curvatures have the
same sign, or K > 0, then the surface must locally be on one side of the tangent
plane, while if the principal curvatures have opposite signs, or K < 0, then the
surface lies on both sides.

Theorem 5.4.5. A parametrized surface all of whose principal curvatures are
� " > 0 is convex on regions of a fixed size depending on " and the domain.

Proof. The important observation is that critical points for the height func-
tion are isolated, and, unlike the curve situation, the complement is connected!
Also critical points are max or min by second derivative test. Probably need a
domain B (0, R) ⇢ R2 where the metric in polar coordinates has the form

[I] =


1 0
0 ⇢2 (r, ✓)

�

and then restrict to B (0, "R) . ⇤
Exercise: Show that the principal curvatures are constant if and only if the

Gauss and mean curvatures are constant.

5.5. Ruled Surfaces

A ruled surface is parameterized by selecting a curve ↵ (u) and then considering
the surface one gets by selecting a line through each of the points on the curve. If
the directions of those lines are given by X (u) then the surface is parametrized by
� (u, v) = ↵ (u)+vX (u). We can without loss of generality assume that X is a unit
field. The parametrization might not give a surface for all parameter values. The
condition for obtaining a parametrized surface is that @�

@u

= d↵

du

+ v dX

du

and @�

@v

= X
are linearly independent.

When ↵ (u) = c0 is a fixed point, then we obtain a generalized cone with vertex
c0. An example of a cone that is not rotationally symmetric is the elliptic cone

x2

a2
+

y2

b2
= z2

When X = X0 is a fixed vector then we obtain a generalized cylinder.
A tangent developable is a ruled surface where X and d↵

du

are always parallel.
Such a surface can always be parametrized by � (u, v) = ↵ (u) + v d↵

du

. Thus we see
that this does not define a surface when v = 0 and when v 6= 0 we need to know
that d↵

du

and d

2
↵

du

2 are linearly independent, i.e., ↵ must have nonzero curvature.
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The elliptic hyperboloid

x2

a2
+

y2

b2
= z2 + 1

is an example of a surface that is ruled in two different ways, but which does not
have zero Gauss curvature. We can let

↵ (s) = (a cos (s) , b sin (s) , 0)

be the ellipse where z = 0. The fields generating the lines are given by

X =
d↵

ds
+ (0, 0,±1)

and it is not difficult to check that

� (s, t) = ↵ (s) + t

✓
d↵

ds
+ (0, 0,±1)

◆

are both rulings of the elliptic hyperboloid.

Proposition 5.5.1. Ruled surfaces have nonpositive Gauss curvature and the
Gauss curvature vanishes if and only if

✓
d↵

du
⇥X

◆
· dX
du

= 0.

In particular, generalized cylinders, generalized cones, and tangent developables
have vanishing Gauss curvature.

Proof. Since @

2
�

@v

2 = 0 we see that h
vv

= 0 and so

K =
�h2

uv

g
uu

g
vv

� g2
uv

 0

Moreover, K vanishes precisely when @

2
�

@u@v

= dX

du

is perpendicular to the normal.
Since the normal is given by

n =

�
d↵

du

+ v dX

du

�
⇥X���d↵

du

+ v dX

du

�
⇥X

��

this translates to

0 =

✓✓
d↵

du
+ v

dX

du

◆
⇥X

◆
· dX
du

=

✓
d↵

du
⇥X

◆
· dX
du

which is what we wanted to prove. ⇤

Conversely we can show that surfaces with zero Gauss curvature are forced to
be ruled.

Lemma 5.5.2. A surface with vanishing Gauss curvature and no umbilics is a
ruled surface.
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Proof. Since the surface has no umbilics we can find a parametrization � (u, v)
where g

uv

= h
uv

= 0. Using that the Gauss curvature vanishes further allows us to
assume that

�@n

@u
= L

✓
@�

@u

◆
= 0,

�@n

@v
= L

✓
@�

@v

◆
= 

@�

@v
,  6= 0

In particular,
@2n

@u@v
= 0

This shows that
@2�

@u2
· @�
@v

= �1 @
2�

@u2
· L

✓
@�

@v

◆

= �1 @
2�

@u2
· @n
@v

= �1 @

@u

✓
@�

@u
· @n
@v

◆
� �1 @�

@u
· @2n

@u@v

= 0

By assumption we also have
@2�

@u2
· n = 0

Thus @

2
�

@u

2 must be parallel to @�

@u

, but this shows that the curvature of the u curves
on the surface have zero curvature as curves in R3 and must therefore be lines. ⇤

The next results shows that ruled surfaces admit a standard set of parameters
as long as we are at points where X isn’t stationary.

Proposition 5.5.3. In a neighborhood of points where dX

du

6= 0 it is possible to
rewrite the ruled surface as

� (s, t) = c (s) + tX (s)

where � is the arclength parameter for the unit field X (u) and

c (s) = ↵ (s)�
✓
d↵

ds
· dX
ds

◆
X (s)

t = v +
d↵

ds
· dX
ds

Moreover, in this parametrization we have that dc

ds

? dX

ds

.

Proof. First note that the two formulas

� (u, v) = ↵ (u) + vX (u)

and
� (s, t) = c (s) + tX (s)

really do parametrize the same surface as the lines in the ruling have the same
directions and the new curve c lines on the surface defined by � (u, v) = ↵ (u) +
vX (u).
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Becaouse dX

du

6= 0 we know that there is an arclength parameter s for X. As X
is a unit field we also have that X ? dX

ds

. Thus X and dX

ds

are orthonormal. This
gives us

dc

ds
· dX
ds

=

✓
d↵

ds
� d

ds

✓
d↵

ds
· dX
ds

◆
X (s)�

✓
d↵

ds
· dX
ds

◆
dX

ds

◆
· dX
ds

=
d↵

ds
· dX
ds

�
✓
d↵

ds
· dX
ds

◆
dX

ds
· dX
ds

=
d↵

ds
· dX
ds

�
✓
d↵

ds
· dX
ds

◆

= 0

⇤

Theorem 5.5.4. If a surface has vanishing Gauss curvature, then it is a gen-
eralized cylinder, generalized cone or a tangent developable at almost all points of
the surface.

Proof. We can assume that the surface is ruled, i.e., � (u, v) = ↵ (u)+ vX (u)
and we know that the Gauss curvature vanishes precisely when

✓
d↵

du
⇥X

◆
· dX
du

= 0.

If dX

du

= 0 on an interval, then the surface is a generalized cylinder. So we can
assume that dX

du

6= 0 and that we use a standard parametrization. We still have
✓
dc

ds
⇥X

◆
· dX
ds

= 0

but now X and dX

ds

are in fact orthonormal. So we must have that dc

ds

is a linear
combination of X and dX

ds

. However, we also know that dc

ds

? dX

ds

so it follows that

dc

ds
=

✓
dc

ds
·X

◆
X

This means that when dc

ds

6= 0 then X is tangent to c and so we have a tangent
developable. If on the other hand dc

ds

= 0 on an interval then the surface must be
a generalized cone on that interval.

This means that the surface is divided into regions each of which can be identi-
fied with our three basic types of ruled surfaces and then glued together along lines
that go through parameters values where either dX

du

= 0 or dc

ds

= 0. ⇤

We can prove a similar result for ruled minimal surfaces.

Theorem 5.5.5. Any ruled surface that is minimal is planar or a helicoid at
almost all points of the surface.

Proof. We assume that we have a parametrization � (u, v) = c (u) + vX (u).
If dX

du

= 0 on some interval, then we have a generalized cylinder and it is not hard
to show that a generalized cylinder can only be minimal if it is planar. We can now
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assume that we have standard parameters for the ruled surface, i.e., |X| =
��dX
du

�� = 1

and dc

du

· dX

du

= 0 for all u. The mean curvature is given by the general formula

H =
h
uu

g
vv

� 2h
uv

g
uv

+ h
vv

g
uu

2 (g
uu

g
vv

� g2
uv

)

In our case we have

g
uu

=

����
dc

du

����
2

+ v2

g
uv

=
dc

du
·X

g
vv

= 1

n =

�
dc

du

+ v dX

du

�
⇥X��� dc

du

+ v dX

du

�
⇥X

��

h
uu

= �
✓
d2c

du2
+ v

d2X

du2

◆
· n

h
uv

= �dX

du
· n

h
vv

= 0

so we see that H = 0 precisely when

�2

✓
dc

du
·X

◆✓
dX

du
· n
◆

= �
✓
d2c

du2
+ v

d2X

du2

◆
· n

which can be simplified to

2

✓
dc

du
·X

◆✓
dX

du
·
✓✓

dc

du
+ v

dX

du

◆
⇥X

◆◆
=

✓
d2c

du2
+ v

d2X

du2

◆
·
✓✓

dc

du
+ v

dX

du

◆
⇥X

◆

The left hand side is further simplified to

2

✓
dc

du
·X

◆✓
dX

du
·
✓✓

dc

du
+ v

dX

du

◆
⇥X

◆◆
= 2

✓
dc

du
·X

◆✓
dX

du
·
✓
dc

du
⇥X

◆◆

which shows that it is independent of v. The right hand side can now be expanded
in terms of v as follows
✓
d2c

du2
+ v

d2X

du2

◆
·
✓✓

dc

du
+ v

dX

du

◆
⇥X

◆
=

d2c

du2
·
✓
dc

du
⇥X

◆

+v

✓
d2c

du2
·
✓
dX

du
⇥X

◆
+

d2X

du2
·
✓
dc

du
⇥X

◆◆

+v2
d2X

du2
·
✓
dX

du
⇥X

◆

This leads us to 3 identities. From the v2 term we conclude

d2X

du2
2 span

⇢
X,

dX

du

�
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which shows that

d2X

du2
=

✓
d2X

du2
·X

◆
X +

✓
d2X

du2
· dX
du

◆
dX

du

= �
✓
dX

du
· dX
du

◆
X

= �X

This implies that the curve u 7! X (u) has curvature 1 and the Frenet frame is
T = dX

du

, N = d

2
X

du

2 = �X, and B = �dX

du

⇥X. Next note that dB

du

= 0 from this
formula. Thus X (u) is a planar curve with constant curvature 1 and thus a circle
of radius 1.

From the v term we obtain

0 =
d2c

du2
·
✓
dX

du
⇥X

◆
+

d2X

du2
·
✓
dc

du
⇥X

◆

=
d2c

du2
·
✓
dX

du
⇥X

◆
�X ·

✓
dc

du
⇥X

◆

=
d2c

du2
·
✓
dX

du
⇥X

◆

= � d2c

du2
·B

showing that
d2c

du2
2 span

⇢
X,

dX

du

�

In particular

dc

du
=

✓
dc

du
·X

◆
X +

✓
dc

du
· dX
du

◆
dX

du
+

✓
dc

du
·B

◆
B

where dc

du

·B is constant. In fact we claim that

dc

du
·X = 0,

dc

du
· dX
du

= 0

Here is last identity is a consequence of having standard parameters. The first
follows from comparing the terms that didn’t involve v from above

2

✓
dc

du
·X

◆✓
dX

du
·
✓
dc

du
⇥X

◆◆
=

d2c

du2
·
✓
dc

du
⇥X

◆

To simplify this note that

dc

du
⇥X =

✓✓
dc

du
·X

◆
X +

✓
dc

du
·B

◆
B

◆
⇥X

=

✓
dc

du
·B

◆
B ⇥X

=

✓
dc

du
·B

◆
dX

du
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Thus we obtain

2

✓
dc

du
·X

◆✓
dc

du
·B

◆
=

✓
dc

du
·B

◆✓
d2c

du2
· dX
du

◆

= �
✓
dc

du
·B

◆✓
dc

du
· d

2X

du2

◆

=

✓
dc

du
·B

◆✓
dc

du
·X

◆

This shows that either dc

du

· B = 0 or dc

du

· X = 0. In the first case c is in a plane
with normal B as well. But then the surface must be planar. In the latter case it
follows that

c (u) = c0 + uhB

where c0 is a fixed point and h = dc

du

·B. Since X (u) is a unit circle in a plane with
normal B we have shown that

c (u) + vX (u) = c0 + uhB + vX (u)

To obtain a more standard parametrization of the helicoid we can just assume that
B = (0, 0, 1) and X (u) = (cosu, sinu, 0)+m0 a unit circle in a plane perpendicular
to B. Then

c = c0 +m0 + (v cosu, v sinu, uh)

⇤



CHAPTER 6

Special Coordinate Representations

6.1. Special Coordinates

The simplest types of coordinates one can expect to obtain on a general surface
have first fundamental forms where only one entry is a general function. We’ll
mention some examples at the end of the section. We start by giving some special
examples.

6.1.1. Cartesian and Oblique Coordinates. Cartesian coordinates on a
surface is a parametrization where

[I] =


1 0
0 1

�

Oblique coordinates more generally come from a parametrization where

[I] =


a b
b d

�

for constants a, b, c with a, c > 0 and ad� b2 > 0.
Note that the Christoffel symbols all vanish if we have a parametrization where

the metric coefficients are constant. In particular, the rather nasty formula we
developed in the proof of Theorema Egregium shows that the Gauss curvature van-
ishes. This immediately tells us that Cartesian or oblique coordinates cannot exist
if the Gauss curvature doesn’t vanish. When we have defined geodesic coordinates
below we’ll also be able to show that surfaces with zero Gauss curvature admit
Cartesian coordinates.

6.1.2. Surfaces of Revolution. Many features of surfaces show themselves
for surfaces of revolution. While this is certainly a special class of surfaces it is
broad enough to give a rich family examples.

We consider
� (t, ✓) = (r (t) cos ✓, r (t) sin ✓, z (t)) .

It is often convenient to select or reparametrized (r, z) so that it is a unit speed
curve. In this case we use the parametrization

� (s, ✓) = (r (s) cos ✓, r (s) sin ✓, h (s)) ,

(r0)
2
+ (h0)

2
= 1

We get the unit sphere by using r = sin s and h = cos s.
We get a cone, cylinder or plane, by considering r = (↵t+ �) and h = �t.

When � = 0 this is simply polar coordinates in the �, y plane. When ↵ = 0 we get
a cylinder, while if both ↵ and � are nontrivial we get a cone. When ↵2 + �2 = 1
we have a parametrization by arclength.

52
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The basis is given by
@�

@t
=

⇣
ṙ cos ✓, ṙ sin ✓, ḣ

⌘
,

@�

@✓
= (�r sin ✓, r cos ✓, 0) ,

n =

⇣
�ḣ cos ✓,�ḣ sin ✓, ṙ

⌘

p
ḣ2 + ṙ2

and first fundamental form by

g
tt

= ḣ2 + ṙ2,

g
✓✓

= r2

g
t✓

= 0

Note that the cylinder has the same first fundamental form as the plane if
we use Cartesian coordinates in the plane. The cone also allows for Cartesian
coordinates, but they are less easy to construct directly. This is not so surprising
as we just saw that it took different types of coordinates for the cylinder and the
plane to recognize that they admitted Cartesian coordinates. Pictorially one can
put Cartesian coordinates on the cone by slicing it open along a meridian and the
unfolding it to be flat. Think of unfolding a lamp shade.

Taking a surface of revolution using the arclength parameter s, we see that
@n

@s
=

@

@s
(�h0 cos ✓,�h0 sin ✓, r0)

= (�h00 cos ✓,�h00 sin ✓, r00)

@n

@✓
=

@

@✓
(�h0 cos ✓,�h0 sin ✓, r0)

= (h0 sin ✓,�h0 cos ✓, 0)

The Weingarten map is now found by expanding these two vectors. For the last
equation this is simply

@n

@✓
= (h0 sin ✓,�h0 cos ✓, 0)

= �h0

r
(�r sin ✓, r cos ✓, 0)

= �h0

r

@�

@✓

Thus we have

Ls

✓

= L✓

s

= 0,

L✓

✓

=
h0

r

This leaves us with finding Ls

s

. Since @�

@s

is a unit vector this is simply

Ls

s

= �@n

@s
· @�
@s

= (h00 cos ✓, h00 sin ✓,�r00) · (r0 cos ✓, r0 sin ✓, h0)

= h00r0 � r00h0
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Thus

K = (h00r0 � r00h0)
h0

r

H =
h0

r
+ h00r0 � r00h0

In the case of cylinder, plane, and cone we note that K vanishes, but H only
vanishes when it is a plane. This means that we have a selection of surfaces all with
Cartesian coordinates with different H.

We can in general simplify the Gauss curvature by noting that

1 = (r0)
2
+ (h0)

2

0 =
⇣
(r0)

2
+ (h0)

2
⌘0

= 2r0r00 + 2h0h00

Thus yielding

K =

 
r00

(r0)
2

h0 � r00h0

!
h0

r

=
r00

r

⇣
� (r0)

2 � (h0)
2
⌘

= �r00

r

= �
@

2

@s

2

�p
g
rr

�
p
g
rr

This makes it particularly easy to calculate the Gauss curvature and also to con-
struct examples with a given curvature function. It also shows that the Gauss
curvature can be computed directly from the first fundamental form! For instance
if we want K = �1, then we can just use r (s) = exp (�s) for s > 0 and then adjust
h (s) for s 2 (0,1) such that

1 = (r0)
2
+ (h0)

2

If we introduce a new parameter t = exp (s) > 1, then we obtain a new parametriza-
tion of the same surface

� (t, ✓) = � (ln (t) , ✓)

= (exp (� ln t) cos ✓, exp (� ln t) sin ✓, h (ln t))

=

✓
1

t
cos ✓,

1

t
sin ✓, h (ln t)

◆
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To find the first fundamental form of this surface we have to calculate
d

dt
h (ln t) =

dh

ds

1

t

=

q
1� (r0)

2 1

t

=

q
1� (� exp (�s))

2 1

t

=
p

1� exp (�2 ln t)
1

t

=

r
1� 1

t2
1

t

Thus

I =


1
t

4 +
�
1� 1

t

2

�
1
t

2 0
0 1

t

2

�
=


1
t

2 0
0 1

t

2

�

This is exactly what the first fundamental form for the upper half plane looked like.
But the domains for the two are quite different. What we have achieved is a local
representation of part of the upper half plane.

Exercise: Show that geodesics on a surface of revolution satisfy Clairaut’s
condition: r sin! is constant, where ! is the angle the geodesic forms with the
meridians.

6.1.3. Monge Patches. This is more complicated than the previous case,
but that is only to be expected as all surfaces admit Monge patches. We consider
� (u, v) = (u, v, f (u, v)) . Thus

@�

@u
=

✓
1, 0,

@f

@u

◆
,

@�

@v
=

✓
0, 1,

@f

@v

◆

n = �

⇣
@f

@u

, @f

@v

,�1
⌘

r
1 +

⇣
@f

@u

⌘2
+
⇣

@f

@v

⌘2

g
uu

= 1 +

✓
@f

@u

◆2

,

g
vv

= 1 +

✓
@f

@v

◆2

,

g
uv

=
@f

@u

@f

@v
,

[I] =

2

64
1 +

⇣
@f

@u

⌘2
@f

@u

@f

@v

@f

@u

@f

@v

1 +
⇣

@f

@v

⌘2

3

75

det [I] = 1 +

✓
@f

@u

◆2

+

✓
@f

@v

◆2
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@2�

@w1@w2
=

✓
0, 0,

@2f

@w1@w2

◆

So we immediately get

�
w1w2w3 =

@2f

@w1@w2

@f

@w3

L
w1w2 =

@

2
f

@w1@w2r
1 +

⇣
@f

@u

⌘2
+
⇣

@f

@v

⌘2

The Gauss curvature is then the determinant of

L =


Lu

u

Lu

v

Lv

u

Lv

v

�
=


guu guv

gvu gvv

� 
L
uu

L
uv

L
vu

L
vv

�

K =
1

det [I]
det


L
uu

L
uv

L
vu

L
vv

�

=

@

2
f

@u

2
@

2
f

@v

2 �
⇣

@

2
f

@u@v

⌘2

det [I]
2

We note that

[I]
�1

=
1

det [I]

2

64
1 +

⇣
@f

@v

⌘2
�@f

@u

@f

@v

�@f

@u

@f

@v

1 +
⇣

@f

@u

⌘2

3

75 ,

[II] =
1p
det [I]

"
@

2
f

@u

2
@

2
f

@u@v

@

2
f

@u@v

@

2
f

@v

2

#

and the Weingarten map

[L] = [I]
�1

[II]

=
1

(det [I])
3
2

2

64
1 +

⇣
@f

@v

⌘2
�@f

@u

@f

@v

�@f

@u

@f

@v

1 +
⇣

@f

@u

⌘2

3

75

"
@

2
f

@u

2
@

2
f

@u@v

@

2
f

@u@v

@

2
f

@v

2

#

=
1

(det [I])
3
2

2

664

✓
1 +

⇣
@f

@v

⌘2
◆

@

2
f

@u

2 � @f

@u

@f

@v

@

2
f

@u@v

✓
1 +

⇣
@f

@v

⌘2
◆

@

2
f

@u@v

� @f

@u

@f

@v

@

2
f

@v

2

✓
1 +

⇣
@f

@u

⌘2
◆

@

2
f

@u@v

� @f

@u

@f

@v

@

2
f

@u

2

✓
1 +

⇣
@f

@u

⌘2
◆

@

2
f

@v

2 � @f

@u

@f

@v

@

2
f

@u@v

3

775

This gives us a general example where the Weingarten map might not be a sym-
metric matrix.

6.1.4. Surfaces Given by an Equation. This is again very general. Note
that any Monge patch (u, v, f (u, v)) also yields a function F (x, y, z) = z � f (x, y)
such that the zero level of F is precisely the Monge patch. This case is also com-
plicated by the fact that while the normal is easy to find, it is proportional to the
gradient of F, we don’t have a basis for the tangent space without resorting to a
Monge patch. This is troublesome, but not insurmountable as we can solve for the
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derivatives of F. Assume that near some point p we know @F

@z

6= 0, then we can use
x, y as coordinates. Our coordinates vector fields look like

@�

@u
=

✓
1, 0,

@f

@u

◆
,

@�

@v
=

✓
0, 1,

@f

@v

◆

where
@f

@w
= �

@F

@w

@F

@z

Thus we actually get some explicit formulas

@�

@u
=

 
1, 0,�

@F

@u

@F

@z

!
,

@�

@v
=

 
0, 1,�

@F

@v

@F

@z

!
.

We can however describe the second fundamental form without resorting to
coordinates. We consider a surface given by an equation

F (x, y, z, ) = C

The normal can be calculated directly as

n =
rF

|rF |
This shows first of all that we have a simple equation defining the tangent space at
each point p

T
p

M =
�
Y 2 R3 : Y ·rF (p) = 0

 

Next we make the claim that

II (X,Y ) = � 1

|rF | I (DX

rF, Y )

= � 1

|rF |Y ·D
X

rF

where D
X

is the directional derivative. We can only evaluate II on tangent vectors,
but Y ·D

X

rF clearly makes sense for all vectors. This has the advantage that we
can even use Cartesian coordinates in R3 for our tangent vectors. First we show
that

L (X) = �D
X

n

Select a parametrization � (u, v) such that
@�

@u

⇥ @�

@v��@�
@u

⇥ @�

@v

�� =
rF

|rF |

The Weingarten equations then tell us that

L

✓
@�

@w

◆
= � @n

@w
= �D @�

@w
n
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We can now return to the second fundamental form. Let Y be another tangent
vector then, Y ·rF = 0 so

�II (X,Y ) = �I (L (X) , Y )

= Y ·D
X

n

= Y ·
✓
D

X

1

|rF |

◆
rF + Y · 1

|rF |DX

rF

= Y · 1

|rF |DX

rF

Note that even when X is tangent it does not necessarily follow that D
X

rF is also
tangent to the surface.

To perform a calculation it is useful to know that

h
@rF

@x

@rF

@y

@rF

@z

i
=

2

64

@

2
F

@x

2
@

2
F

@x@y

@

2
F

@x@z

@

2
F

@y@x

@

2
F

@y

2
@

2
F

@y@z

@

2
F

@z@x

@

2
F

@z@y

@

2
F

@z

2

3

75

is the second derivative matrix of f.
Exercise: If c is a curve, then it is a curve on F = C if c (0) lies on the

surface and ċ ·rF vanishes. If c is regular and a curve on F = C, then it can be
reparametrized to be a geodesic if and only if the triple product [rF, ċ, c̈] vanishes.

6.1.5. Geodesic Coordinates. This is a parametrization having a first fun-
damental form that looks like:

I =


1 0
0 r2

�

This is as with surfaces of revolution, but now r can depend on both u and v. Using
a central v curve, we let the u curves be unit speed geodesics orthogonal to the
fixed v curve. They are also often call Fermi coordinates after the famous physicist
and seem to have been used in his thesis on general relativity. They were however
also used by Gauss. These coordinates will be used time and again to simplify
calculations in the proofs of several theorems. The v-curves are well defined as
the curves that appear when u is constant. At u = 0 the u and v curves are
perpendicular by construction, so by continuity they can’t be tangent as long as u
is sufficiently small. This shows that we can always find such parametrizations.

Exercise: Show that

�
uuu

= 0

�
uvu

= 0 = �
vuu

�
vvv

= r
@r

@v

�
uvv

= r
@r

@u
= �

vuv

�
uuv

= 0

�
vvu

= �r
@r

@u
,

�u

w1w2
= �

w1w2u

�v

w1w2
=

1

r2
�
w1w2v
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and

K = �
@

2
r

@u

2

r

6.1.6. Chebyshev Nets. These correspond to a parametrization where the
first fundamental form looks like:

I =


1 c
c 1

�

=


1 cos ✓

cos ✓ 1

�
,

✓ 2 (0,⇡)

These coordinates can be shown to exist even after describing the parameter curves
through a fixed point p. Real life interpretations that are generally brought up are
fishnet stockings or nonstretchable cloth tailored to the contours of the body. The
idea is to have a material where the fibers are not changed in length or stretched,
but are allowed to change their mutual angles.

Exercise: Chebyshev nets have the property that

@2�

@u@v
= 0

�
uvw

= �
uuu

= �
vvv

= 0,

�
uuv

= �@✓

@v
sin ✓

�
vvu

= �@✓

@u
sin ✓

@2✓

@u@v
= �K sin ✓

Exercise: Show that the geodesic curvature 
u

the u-coordinate curves in a
Chebyshev net satisfy


u

= �@✓

@u
,

Exercise: (Hazzidakis) Show that
p

det [I] = sin ✓, and integrating the Gauss
curvature over a coordinate rectangle yields:

�
ˆ
[a,b]⇥[c,d]

K sin ✓dudv = 2⇡ � ↵1 � ↵2 � ↵3 � ↵4

where the angles ↵
i

are the interior angles.

6.1.7. Isothermal Coordinates. These are also more generally known as
conformally flat coordinates and have a first fundamental form that looks like:

I =


�2 0
0 �2

�

The proof that these always exist is called the local uniformization theorem. It is not
a simple result, but the importance of these types of coordinates in the development
of both classical and modern surface theory cannot be understated. There is also
a global result which we will mention at a later point. Gauss was the first to work
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with such coordinates, and Riemann also heavily depended on their use. They have
the properties that

�
uuu

=
@ ln�

@u

�
uvu

=
@ ln�

@v
= �

vuu

�
vvv

=
@ ln�

@v

�
uvv

=
@ ln�

@u
= �

vuv

�
uuv

= �@ ln�

@v

�
vvu

= �@ ln�

@u
,

�w3
w1w2

=
1

�2
�
w1w2w3 ,

K = � 1

�2

✓
@2 ln�

@u2
+

@2 ln�

@v2

◆

Exercise: A particularly nice special case occurs when
�2 (u, v) = U2 (u) + V 2 (v)

These types of metrics are called Liouville metrics. Compute their Christoffel sym-
bols, Gauss curvature, and show that when geodesics are written as v (u) or u (v)
they they solve a separable differential equation. Show also that the geodesics have
the property that

U2 sin2 ! � V 2 cos2 !

is constant, where ! is the angle the geodesic forms with the u curves.



CHAPTER 7

Curvature

7.1. Constant Gauss Curvature

The goal will be to give a canonical local structure for surfaces with constant
Gauss curvature. Given the plethora of surfaces with constant Gauss curvature we
seek for the moment only canonical coordinates. Minding was the first person to give
the classification of the first fundamental form we obtain below. Riemann extended
this result to higher dimensions. We start by studying the case of vanishing Gauss
curvature.

Theorem 7.1.1. If a surface has zero Gauss curvature, then it admits Cartesian
coordinates.

Proof. We shall assume that we have geodesic coordinates along a unit speed
geodesic. Thus the v-curve described by u = 0 is a geodesic, and by definition of
geodesic coordinates all of the u-curves are unit speed geodesics.

Assuming K = 0, we immediately obtain

r (u, v) = r (0, v) + u
@r

@u
(0, v)

But

r (0, v) =

����
@�

@v

���� = 1

since the v-curve with u = 0 is unit speed. Next use that this curve is also a
geodesic. The explicit form in u, v parameters for the curve is simply c (v) = (0, v)
so all second derivatives vanish and the velocity is pointing in the v direction. Thus
the geodesic equations in particular tell us

0 = 0 +
⇥
0 1

⇤  �u

uu

�u

uv

�u

vu

�u

vv

� 
0
1

�

= �u

vv

(0, v)

= �
vvu

(0, v)

=
@r

@u
(0, v)

This shows that r = 1, and hence that we have Cartesian coordinates in a neigh-
borhood of a geodesic. ⇤

There are similar characterizations for spaces with constant positive or negative
curvature. These spaces don’t have Cartesian coordinates, but geodesic coordinates
near a geodesic are obviously completely determined by the curvature regardless of
how the metric might otherwise be viewed.
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To be more specific

r (0, v) =

����
@�

@v

���� = 1,

@r

@u
(0, v) = 0

as we just saw. Given these initial conditions the equation

K = �
@

2
r

@u

2

r

dictates how r changes as a function of u

r (u, v) =

(
cos

⇣p
Ku

⌘
K > 0

cosh
�p

�Ku
�

K < 0

7.2. The Gauss and Codazzi Equations

Recall the Gauss formulas and Weingarten equations in combined form:
@

@w2

⇥
@�

@u

@�

@v

n
⇤
=
⇥

@�

@u

@�

@v

n
⇤
[D

w2 ]

Taking one more derivative on both sides yields
@2

@w1@w2

⇥
@�

@u

@�

@v

n
⇤

=

✓
@

@w1

⇥
@�

@u

@�

@v

n
⇤◆

[D
w2 ]

+
⇥

@�

@u

@�

@v

n
⇤  @

@w1
D

w2

�

=
⇥

@�

@u

@�

@v

n
⇤
[D

w1 ] [Dw2 ]

+
⇥

@�

@u

@�

@v

n
⇤  @

@w1
D

w2

�

Now using that
@2

@w1@w2

⇥
@�

@u

@�

@v

n
⇤
=

@2

@w2@w1

⇥
@�

@u

@�

@v

n
⇤

we obtain after writing out the entries in the matrices
2

664

@�u
w2u

@w1

@�u
w2v

@w1
�@L

u
w2

@w1
@�v

w2u

@w1

@�v
w2v

@w1
�@L

v
w2

@w1
@Lw2u

@w1

@Lw2v

@w1
0

3

775+

2

4
�u

w1u
�u

w1v
�Lu

w1

�v

w1u
�v

w1v
�Lv

w1

L
w1u L

w1v 0

3

5

2

4
�u

w2u
�u

w2v
�Lu

w2

�v

w2u
�v

w2v
�Lv

w2

L
w2u L

w2v 0

3

5

=

2

664

@�u
w1u

@w2

@�u
w1v

@w2
�@L

u
w1

@w2
@�v

w1u

@w2

@�v
w1v

@w2
�@L

v
w1

@w2
@Lw1u

@w2

@Lw1v

@w2
0

3

775+

2

4
�u

w2u
�u

w2v
�Lu

w2

�v

w2u
�v

w2v
�Lv

w2

L
w2u L

w2v 0

3

5

2

4
�u

w1u
�u

w1v
�Lu

w1

�v

w1u
�v

w1v
�Lv

w1

L
w1u L

w1v 0

3

5

If we restrict attention to the the general terms of the entries in the first two columns
and rows using w3, w4 as indices instead of u, v we end up with

@�w4
w2w3

@w1
+
⇥
�w4
w1u

�w4
w1v

�Lw4
w1

⇤
2

4
�u

w2w3

�v

w2w3

L
w2w3

3

5 =
@�w4

w1w3

@w2
+
⇥
�w4
w2u

�w4
w2v

�Lw4
w2

⇤
2

4
�u

w1w3

�v

w1w3

L
w1w3

3

5
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which can further be rearranged by isolating �s on one side:
@�w4

w2w3

@w1
�
@�w4

w1w3

@w2
+
⇥
�w4
w1u

�w4
w1v

⇤  �u

w2w3

�v

w2w3

�
�
⇥
�w4
w2u

�w4
w2v

⇤  �u

w1w3

�v

w1w3

�
= Lw4

w1
L
w2w3�Lw4

w2
L
w1w3 ,

These are called the Gauss Equations.
The Riemann curvature tensor is defined as the left hand side of the Gauss

equations

Rw4
w1w2w3

=
@�w4

w2w3

@w1
�
@�w4

w1w3

@w2
+
⇥
�w4
w1u

�w4
w1v

⇤  �u

w2w3

�v

w2w3

�
�
⇥
�w4
w2u

�w4
w2v

⇤  �u

w1w3

�v

w1w3

�

It is clearly an object that can be calculated directly from the first fundamental
form, although it is certainly not always easy to do so. But there are some sym-
metries among the indices that show that there is essentially only one nontrivial
curvature on a surface. On the face of it each index has two possibilities so there
are potentially 16 different quantities! Here are some fairly obvious symmetries

Rw4
w1w2w3

= �Rw4
w2w1w3

,

In particular there are at least 8 curvatures that vanish

Rw4
www3

= 0

and up to a sign only 4 left to calculate

Ru

uvu

= �Ru

vuu

,

Rv

uvu

= �Rv

vuu

,

Ru

uvv

= �Ru

vuv

,

Rv

uvv

= �Rv

vuv

A slightly less obvious formula is the Bianchi identity

Rw4
w1w2w3

+Rw4
w3w1w2

+Rw4
w2w3w1

= 0

It too follows from the above definition, but with more calculations. Unfortunately
it doesn’t reduce our job of computing curvatures. The final reduction comes about
by constructing

R
w1w2w3w4 = Ru

w1w2w3
g
uw4 +Rv

w1w2w3
g
vw4

and showing that
R

w1w2w3w4 = �R
w1w2w4w3 .

This means that the only possibilities for nontrivial curvatures are

R
uvvu

= R
vuuv

= �R
uvuv

= �R
vuvu

.

All of the curvatures of both types turn out to be related to an old friend

Theorem 7.2.1. [Theorema Egregium] The Gauss curvature can be computed
knowing only the first fundamental form

K =
Ru

uvv

g
vv

=
Rv

vuu

g
uu

= �Rv

uvv

g
vu

= �Ru

vuu

g
vu

=
R

uvvu

det [I]
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Proof. We know that
K = Lu

u

Lv

v

� Lu

v

Lv

u

and 
Lu

u

Lu

v

Lv

u

Lv

v

�
=


guu guv

gvu gvv

� 
L
uu

L
uv

L
vu

L
vv

�

[L] = [I]
�1

[II]

Now let u = w1 = w4 and v = w2 = w3 in the Gauss equation. We take the strange
route of calculating so that we end up with second fundamental form terms. This
is because [II] is always symmetric, while [L] might not be symmetric. Thus several
steps are somewhat simplified.

Ru

uvv

= Lu

u

L
vv

� Lu

v

L
uv

= (guuL
uu

+ guvL
vu

)L
vv

� (guuL
uv

+ guvL
vv

)L
uv

= guu (L
uu

L
vv

� L
uv

L
uv

)

= guu det [II]

= guu det [I] detL

= g
vv

detL

= g
vv

K

The second equality follows by a similar calculation. For the third (and in a similar
way fourth) the Gauss equations can again be used to calculate

Rv

uvv

= Lv

u

L
vv

� Lv

v

L
uv

= (gvuL
uu

+ gvvL
vu

)L
vv

� (gvuL
uv

+ gvvL
vv

)L
uv

= gvu (L
uu

L
vv

� L
uv

L
uv

)

= �g
vu

K

Finally note that
R

uvvu

= Ru

uvv

g
uu

+Rv

uvv

g
vu

= Kg
vv

g
uu

+Rv

uvv

g
vu

= K (g
vv

g
uu

� g
uv

g
vu

)

= K det [I]

⇤
The other entries in the matrices above reduce to the Codazzi Equations

@L
w2w3

@w1
+
⇥
L
w1u L

w1v 0
⇤
2

4
�u

w2w3

�v

w2w3

L
w2w3

3

5 =
@L

w1w3

@w2
+
⇥
L
w2u L

w2v 0
⇤
2

4
�u

w1w3

�v

w1w3

L
w1w3

3

5

or rearranged
@L

w2w3

@w1
� @L

w1w3

@w2
=
⇥
L
w2u L

w2v

⇤  �u

w1w3

�v

w1w3

�
�
⇥
L
w1u L

w1v

⇤  �u

w2w3

�v

w2w3

�

Exercise: Show that all of the possibilities for the Gauss-Codazzi equations
can be reduced to the equations that result from:

@2

@u@v

⇥
@�

@u

@�

@v

n
⇤
=

@2

@v@u

⇥
@�

@u

@�

@v

n
⇤
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Seven of these nine equations definitely have the potential to be different. Show
further that these equations follow from the three equations:
@�u

vu

@u
� @�u

uu

@v
+
⇥
�u

uu

�u

uv

⇤  �u

vu

�v

vu

�
�
⇥
�u

vu

�u

vv

⇤  �u

uu

�v

uu

�
= Lu

u

L
vu

� Lu

v

L
uu

,

@�v

vu

@u
� @�v

uu

@v
+
⇥
�v

uu

�v

uv

⇤  �u

vu

�v

vu

�
�
⇥
�v

vu

�v

vv

⇤  �u

uu

�v

uu

�
= Lv

u

L
vu

� Lv

v

L
uu

@L
vu

@u
� @L

uu

@v
+
⇥
L
uu

L
uv

⇤  �u

vu

�v

vu

�
�
⇥
L
vu

L
vv

⇤  �u

uu

�v

uu

�
= 0

Exercise: Use the Codazzi equations to show that if the principal curvatures
1 = 2 are equal on some connected domain, then they are constant.

Exercise: If the principal curvatures 1 and 2 are not equal on some part of
the surface then we can construct an orthogonal parametrization where the tangent
fields are principal directions or said differently the coordinate curves are lines of
curvature:

L

✓
@�

@u

◆
= 1

@�

@u
,

L

✓
@�

@v

◆
= 2

@�

@v
.

Show that the Codazzi Equations can be written as
@1

@v
=

1

2
(2 � 1)

@ ln g
uu

@v
,

@2

@u
=

1

2
(1 � 2)

@ ln g
vv

@u
.

Exercise: (Hilbert) The goal is to show that if there is a point p on a surface
with positive Gauss curvature, where 1 has a maximum and 2 a minimum, then
the surface has constant principal curvatures. We assume otherwise, in particular
1 (p) > 2 (p) , and construct a coordinate system where the coordinate curves are
lines of curvature. At p we have

@1

@u
=

@1

@v
= 0,

@21

@v2
 0,

@2

@u
=

@2

@v
= 0,

@22

@u2
� 0.

Using the Codazzi equations from the previous exercise show that at p

@ ln g
uu

@v
= 0 =

@ ln g
vv

@u

and after differentiation also at p that
@2 ln g

uu

@v2
� 0,

@2 ln g
vv

@u2
� 0

Next show that at p

K = �1

2

✓
1

g
vv

@2 ln g
uu

@v2
+

1

g
uu

@2 ln g
vv

@u2

◆
 0

Exercise: Using the developments in the previous exercise show that a surface
with constant principal curvatures must be part of a plane, sphere, or right circular
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cylinder. Note that the two former cases happen when the principal curvatures are
equal.

Exercise: Show that if we have a parametrization � (u, v) where all geodesics
are straight lines

au+ bv + c = 0

then

�v

uu

= �u

vv

= 0,

�u

uu

= 2�v

uv

,

�v

vv

= 2�u

uv

Use the Gauss equations

g
vv

K = Ru

uvv

g
uu

K = Rv

vuu

g
vu

K = �Rv

uvv

g
vu

K = �Ru

vuu

together with the definitions of Rw4
w1w2w3

to show that

0 =
⇥

@K

@v

�@K

@u

⇤  g
uu

g
uv

g
vu

g
vv

�

and conclude that the Gauss curvature is constant.

7.3. Local Gauss-Bonnet

Inspired by the idea that the integral of the curvature of a planar curve is
related to how the tangent moves we try to prove a similar result on surfaces. First
we point out that we cannot expect the same theorem to hold. Consider the equator
on a sphere. This curve is a geodesic and so has no geodesic curvature, on the other
hand the tangent field clearly turns around 360 degrees. Another similar example
comes from a right circular cylinder where meridians are all geodesics and also have
tangents that turn 360 degrees.

Throughout this section we assume that a parametrized surface is given:

� (u, v) : (a
u

, b
u

)⇥ (a
v

, b
v

) ! R3

where the domain is a rectangle. The key is that the domain should not have any
holes in it. We further assume that we have a smaller domain

R ⇢ (a
u

, b
u

)⇥ (a
v

, b
v

)

that is bounded by a piecewise smooth curve

(u (s) , v (s)) : [0, L] ! (a
u

, b
u

)⇥ (a
v

, b
v

)

running counter clockwise in the plane and such that c (s) == � (u (s) , v (s)) is a
unit speed.

Integration of functions on the surface is done by defining a suitable integral
using the parametrization. To make this invariant under parametrizations we defineˆ

�(R)
fdA =

ˆ
R

f (u, v)
p
det [I]dudv =

ˆ
R

f (u, v)

����
@�

@u
⇥ @�

@v

���� dudv
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This ensures that if we use a different parametrization (s, t) where � (Q) = � (R) ,
then ˆ

R

f (u, v)

����
@�

@u
⇥ @�

@v

���� dudv =

ˆ
Q

f (s, t)

����
@�

@s
⇥ @�

@t

���� dsdt.

We start by calculating the geodesic curvature of c assuming further that the
parametrization gives a geodesic coordinate system

I =


1 0
0 r2

�

Lemma 7.3.1. Let ✓ be the angle between c and the u curves, then


g

=
d✓

ds
+

@r

@u

1

r
sin ✓.

Proof. We start by pointing out that the velocity is

dc

ds
=

du

ds

@�

@u
+

dv

ds

@�

@v

= cos ✓
@�

@u
+

1

r
sin ✓

@�

@v

The natural unit normal field to c in the surface is then given by

S = � sin ✓
@�

@u
+

1

r
cos ✓

@�

@v

Our geodesic curvature


g

= I
�
S, c̈I

�

= S ·
✓✓

d2u

ds2
+ �u

✓
dc

ds
,
dc

ds

◆◆
@�

@u
+

✓
d2v

ds2
+ �v

✓
dc

ds
,
dc

ds

◆◆
@�

@v

◆

= � sin ✓

✓
d2u

ds2
+ �u

✓
dc

ds
,
dc

ds

◆◆
+ r2

1

r
cos ✓

✓
d2v

ds2
+ �v

✓
dc

ds
,
dc

ds

◆◆

= � sin ✓

✓
d2u

ds2
+ �u

✓
dc

ds
,
dc

ds

◆◆
+ r cos ✓

✓
d2v

ds2
+ �v

✓
dc

ds
,
dc

ds

◆◆

We further have

d2u

ds2
=

d cos ✓

ds
= � sin ✓

d✓

ds
,

d2v

ds2
=

d 1
r

sin ✓

ds

=
�1

r2
dr

ds
sin ✓ +

1

r
cos ✓

d✓

ds

=
�1

r2

✓
@r

@u

du

ds
+

@r

@v

dv

ds

◆
sin ✓ +

1

r
cos ✓

d✓

ds

=
�1

r2
@r

@u
cos ✓ sin ✓ +

�1

r3
@r

@v
sin2 ✓ +

1

r
cos ✓

d✓

ds
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And the Christoffel symbols are not hard to compute

�u

✓
dc

ds
,
dc

ds

◆
= �u

vv

✓
dv

ds

◆2

= �r
@r

@u

1

r2
sin2 ✓

=
�1

r

@r

@u
sin2 ✓

�v

✓
dc

ds
,
dc

ds

◆
= 2�v

uv

du

ds

dv

ds
+ �v

uv

✓
dv

ds

◆2

=
2

r

@r

@u

du

ds

dv

ds
+

1

r

@r

@v

✓
dv

ds

◆2

=
2

r2
@r

@u
sin ✓ cos ✓ +

1

r3
@r

@v
sin2 ✓

Thus


g

= � sin ✓

✓
� sin ✓

d✓

ds
� 1

r

@r

@u
sin2 ✓

◆
+ r cos ✓

✓
1

r
cos ✓

d✓

ds
+

1

r2
@r

@u
sin ✓ cos ✓

◆

=
d✓

ds
+

1

r

@r

@u
sin3 ✓ +

1

r

@r

@u
sin ✓ cos2 ✓

=
d✓

ds
+

@r

@u

1

r
sin ✓

⇤

We can now prove the local Gauss-Bonnet theorem. It is stated in the way
that Gauss and Bonnet proved it. Gauss considered regions bounded by geodesics
thus eliminating the geodesic curvature, while Bonnet presented the version given
below.

Theorem 7.3.2. [Gauss-Bonnet] Assume as in the above Lemma that the
parametrization gives a geodesic coordinate system. Let ✓

i

be the exterior angles
at the points where c has vertices, then

ˆ
�(R)

KdA+

ˆ
L

0

g

ds = 2⇡ �
X

✓
i

Proof. ˆ
�(R)

KdA =

ˆ
R

K
p
det [I]dudv

= �
ˆ
R

@

2
r

@u

2

r
rdudv

= �
ˆ
R

@2r

@u2
dudv

The last integral can be turned into a line integral if we use Green’s theoremˆ
R

@2r

@u2
dudv =

ˆ
@R

@r

@u
dv
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This line integral can now be recognized as one of the terms in the formula for the
geodesic curvature

ˆ
@R

@r

@u
dv =

ˆ
L

0

@r

@u

dv

ds
ds

=

ˆ
L

0

@r

@u

1

r
sin ✓ds

=

ˆ
L

0

✓
k
g

� d✓

ds

◆
ds

=

ˆ
L

0

g

ds�
ˆ

L

0

d✓

ds
ds

Thus we obtainˆ
�(R)

KdA+

ˆ
L

0

g

ds = �
ˆ
R

@2r

@u2
dudv +

ˆ
@R

@r

@u
dv +

ˆ
L

0

d✓

ds
ds

=

ˆ
L

0

d✓

ds
ds

= 2⇡ �
X

✓
i

⇤

Clearly there are subtle things about the regions R we are allowed to use. Aside
from the topological restriction on R there is also an orientation choice (counter
clockwise) for @R in Green’s theorem. If we reverse that orientation there is a sign
change, and the geodesic curvature also changes sign when we run backwards.

We used rather special coordinates as well, but it is possible to extend the
proof to work for all coordinate systems. The same strategy even works, but is
complicated by the nasty formula we have for the Gauss curvature in general co-
ordinates. Using Cartan’s approach with selecting orthonormal frames rather than
special coordinates makes for a fairly simple proof that works within all coordinate
systems. This is exploited in an exercise below, but to keep things in line with what
we have already covered we still restrict attention to how this works in relation to
a parametrization.

Let us now return to our examples from above. Without geodesic curvature
and exterior angles we expect to end up with the formulaˆ

�(R)
KdA = 2⇡

But there has to be a region R bounding the closed geodesic. On the sphere we
can clearly use the upper hemisphere. As K = 1 we end up with the well known
fact that the upper hemisphere has area 2⇡. On the cylinder, however, there is
no reasonable region bounding the meridian despite the fact that we have a valid
geodesic coordinate system. The issue is that the bounding curve cannot be set up
to be a closed curve in a parametrization where there is a rectangle containing the
curve.

It is possible to modify the Gauss-Bonnet formula so that more general regions
can be used in the statement, but it requires topological information about the
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region R. This will be studied in detail later and also in some interesting cases in
the exercises below.

Another very important observation about our proof is that it only referred to
quantities related to the first fundamental form. In fact, the result holds without
further ado for generalized surfaces and abstract surfaces as well, again with the
proviso of working within coordinates and regions without holes.

It is, however, possible to also get the second fundamental form into the picture
if we recall that

K

����
@�

@u
⇥ @�

@v

���� =
✓
@n

@u
⇥ @n

@v

◆
· n = ±

����
@n

@u
⇥ @n

@v

����

then we see that
´
R

KdA also measures the signed area of the spherical image traced
by the normal vector, or the image of the Gauss map.

Exercise: Consider a surface of revolution and two meridians c1 and c2 on it.
These meridians bound a band or annular region � (R) . By subdividing the region
and using proper orientations and parametrizations on the curves show thatˆ

�(R)
KdA =

ˆ
c1


g

ds1 �
ˆ
c2


g

ds2.

Exercise: Generalize the previous exercise to regions that are bounded both
on the inside and outside by smooth (or even piecewise smooth) curves.

Exercise: Assume now that the parametrization is not geodesic. Create tan-
gent vector fields E1 and E2 forming an orthonormal basis for the tangent space
everywhere with the further property that E1 is proportional to the first tangent
field @�

@u

and

E1 ⇥ E2 = n =
@�

@u

⇥ @�

@v��@�
@u

⇥ @�

@v

�� .

First show that
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@w

⇥
E1 E2 n

⇤
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⇥
E1 E2 n

⇤
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] ,

[D
w

] =

2

4
0 ��

w

��
w1

�
w

0 ��
w2

�
w1 �

w2 0

3

5 ,

and identify the entries with dots products X · @Y

@w

where X,Y are elements of the
frame. Next, show that

@

@u
[D

v

]� @

@v
[D

u

] + [D
u

] [D
v

]� [D
v

] [D
u

] = 0,

Separating out the middle entry in the first row of that equation we get
@�

v

@u
� @�

u

@v
= �

u2�v1 � �
v2�u1

Using the Weingarten equations and letting [L] be the matrix of the Weingarten
map with respect to E1, E2 show that

[L]
⇥
E1 E2

⇤
t

⇥
@�

@u

@�

@v

⇤
=


�
u1 �

v1

�
u2 �

v2

�

and
K
p
det [I] = �

u1�v2 � �
u2�v1
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Thus
ˆ
�(R)

KdA = �
ˆ
R

✓
@�

v

@u
� @�

u

@v

◆
dudv

= �
ˆ
c

�
u

du+ �
v

dv

Finally prove the Gauss-Bonnet theorem by establishing
ˆ
c

�
u

du+ �
v

dv =

ˆ ✓
k
g

� d✓

ds

◆
ds

where ✓ is the angle with E1 or @�

@u

. To aid the last calculation show that

dc

ds
= cos ✓E1 + sin ✓E2,

S = � sin ✓E1 + cos ✓E2,

d2c

ds2
= S

d✓

ds
� sin ✓ (cos ✓�

u

+ sin ✓�
v

)E1

+cos ✓ (cos ✓�
u

+ sin ✓�
v

)E2 + ()n

where the coefficient in front of n is irrelevant for computing the inner product with
S and hence the geodesic curvature.

7.4. Symmetries

So far we’ve discussed how quantities remain invariant if we change parameters
at a given point. A symmetry is a transformation of a surface that shows that
our geometrically defined quantities are the same at different points p and q if the
symmetry moves p to q. Basic examples of symmetries are rotations around the z
axis for surfaces of revolution around the z axis, or mirror symmetries in meridians
on a surface of revolution. The sphere has an even larger number of symmetries as
it is a surface of revolution around any line through the origin. The plane also has
rotational and mirror symmetries, but in addition translations.

Some other examples we have seen that are less obvious came from geodesic
coordinates. There we saw that if we select geodesic coordinates around a geodesic
in a space of constant Gauss curvature K, then we always get the same answer.
This means that locally any space of constant Gauss curvature must look the same
everywhere, and even that any two spaces of the same constant Gauss curvature
are locally the same.

Symmetries are usually called isometries as they are defined as those maps that
preserve metric quantities, i.e., the first fundamental form. An alternate definition
more in spirit with the definition of a linear map is to see what it should do to
a geodesic. Linear maps preserve lines but not necessarily speed. Symmetries
preserve geodesics as well as their speeds. In other words if F : M ! M is a map
and c (t) : I ! M is a geodesic, then (F � c) (t) : I ! M should also be a geodesic
with the same speed as c. This condition is clearly not desirable as we could never
check whether a transformation is an isometry without first finding the geodesics.
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Let us check what it means for F to preserve the speed:
����
dc

dt

���� =

����
d (F � c)

dt

����

=

����DF

✓
dc

dt

◆����

The second line is the chain rule for derivatives. The first reduction we can make is
to substitute ċ = V with any tangent vector V. After squaring the norms we must
check that for all tangent vectors:

I (V, V ) = I (DF (V ) , DF (V )) .

To be specific we have to pass to a parametrization � (u, v) and then figure out how
F maps the parameters F (u, v) = (Fu (u, v) , F v (u, v)) . DF is then the matrix of
first derivatives
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This comes down to checking that
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or in other words that DF preserves the first fundamental form when mapping from
p to q.

This is still a bit of a mouthful, but no further reductions are possible. The
nice result is that any transformation that preserves the first fundamental form
as just described will also preserve geodesics. Thus preserving speeds of curves is
enough to tell us that geodesics are also preserved. Moreover, checking that speeds
are preserved comes down to checking a matrix identity.

Theorem 7.4.1. A symmetry maps geodesics to geodesics and preserves Gauss
curvature.

Proof. Let c (t) be a geodesic and F a symmetry. The geodesic equation
depends only on the first fundamental form. By definition symmetries preserve the
first fundamental form, thus F (c (t)) must also be a geodesic.

Next assume that F is a symmetry such that F (p) = q. Again F preserves the
first fundamental form so the Gauss curvatures must again be the same. ⇤
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It is possible to construct symmetries that do not preserve the second funda-
mental form. The simplest example is to image a flat tarp or blanket, here all points
have vanishing second fundamental form and also there are symmetries between all
points. Now lift one side of the tarp. Part of it will still be flat on the ground,
while the part that’s lifted off the ground is curved. The first fundamental form
has not changed but the curved part will now have nonzero entries in the second
fundamental form.

In order to actually find the set of all symmetries we’d have to somehow solve
the equation above. This is not always possible. But as with geodesics there are
some uniqueness results that will help.

Theorem 7.4.2. If F and G are symmetries that satisfy F (p) = G (p) and
DF (p) = DG (p) then F = G in a neighborhood of p.

Proof. We just saw that symmetries preserve geodesics. So if c (t) is a geodesic
with c (0) = p, then F (c (t)) and G (c (t)) are both geodesics. Moreover they have
the same initial values

F (c (0)) = F (p) ,

G (c (0)) = G (p) ,

d

dt
F (c (t)) |

t=0 = DF (ċ (0)) ,

d

dt
G (c (t)) |

t=0 = DG (ċ (0)) .

This means that F (c (t)) = G (c (t)) . By varying the initial velocity of ċ (0) we can
reach all points in a neighborhood of p. ⇤

Often the best method for finding symmetries is to make educated guesses based
on what the metric looks like. One general guide line for creating symmetries is the
observation that if the first fundamental form doesn’t depend on a specific variable
such as v, then translations in that variable will be symmetries. This is exemplified
by surfaces of revolution where the metric doesn’t depend on ✓. Translations in ✓
are the same as rotations by a fixed angle and we know that such transformations
are symmetries. Note that reflections in such a parameter where v is mapped to
v0 � v will also be symmetries in such a case.

Here is a slightly more surprising relationship between geodesics and symme-
tries.

Theorem 7.4.3. Let F be a nontrivial symmetry and c (t) a unit speed curve
such that F (c (t)) = c (t) for all t, then c (t) is a geodesic.

Proof. Since F is a symmetry and it preserves c we must also have that it
preserves its velocity and tangential acceleration

DF (ċ (t)) = ċ (t) ,

DF
�
c̈I (t)

�
= c̈I (t) .

As c is unit speed we have ċ · c̈I = 0. If c̈I (t) 6= 0, then DF preserves c (t) as well as
the basis ċ (t) , c̈I (t) for the tangent space at c (t) . By the uniqueness result above
this shows that F is the identity map as that map is always a symmetry that fixes
any point and basis. But this contradicts that F is nontrivial. ⇤
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Note that circles in the plane are preserved by rotations, but they are not fixed,
nor are they geodesics. The picture we should have in mind for such symmetries
and geodesics is a mirror symmetry in a line in the plane, or a mirror symmetry in
a great circle on the sphere.

There are some further surprises along these lines.

Theorem 7.4.4. If all geodesics are preserved by nontrivial symmetries, then
the space has constant Gauss curvature. Conversely, if the space has constant Gauss
curvature, then all geodesics are fixed by symmetries.

Below we shall construct constant Gauss curvature spaces, and show that the
symmetries and geodesics have these properties. More generally one will have to
show that locally all constant Gauss curvature spaces can be accounted for knowing
only these examples.

For now lets us discuss the symmetries of the plane and sphere.....

7.5. The Upper Half Plane

A particularly interesting case to study is the upper half plane where we don’t
have much intuition about what might happen. This section is devoted to calcu-
lating the symmetries, geodesics, and curvature of this space. Recall that this is an
assignment of a first fundamental form

I =


1
v

2 0
0 1

v

2

�

to the tangent space at each point p = (u, v) 2 H = {(u, v) : v > 0} . We saw that
it was possible to construct a surface of revolution

� (t, ✓) =

✓
1

t
cos (✓) ,

1

t
sin (✓) , h (t)

◆
,

ḣ =

r
1� 1

t2
1

t

whose first fundamental form is

I =


1
t

2 0
0 1

t

2

�
.

This might give us a local picture of the upper half plane but it doesn’t really help
that much.

Below we shall find the symmetries and geodesics by solving the equations we
have for these objects. As we shall see, even in a case where the metric is relatively
simple, this is a very difficult task.

7.5.1. The Symmetries of H. Our first observation is that the first funda-
mental form doesn’t depend on u, so the transformations

F : H ! H

F (u, v) = (u+ u0, v)
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must be symmetries. Let us check what it means for a general transformation
F (u, v) = (Fu (u, v) , F v (u, v)) to be a symmetry. Let p = (u, v) and q = F (u, v)


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In particular, we see that the translations F (u, v) = (u+ u0, v) really are symme-
tries. Could there be symmetries where F only depends on what happens to v?
We can check an even more general situation: F (u, v) = (u, f (u, v)) where the
equations reduce to

✓
@f

@v
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✓
f (u, v)

v
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= 1 +
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@f

@u

◆2

,

@f
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So first we note that @f

@v

± 0 from the first equation, the second then implies that
@f

@u

= 0, which then from the first equation gives us that f (u, v) = v is the only
possibility. Next let’s try F (u, v) = (g (u) , f (v)) . This reduces to

✓
df

dv

◆2

=

✓
f (v)

v

◆2

=

✓
dg

du

◆2

So all transformations of the form F (u, v) = c (u, v) where c > 0 is constant
are also symmetries. Note that these maps are only similarities in the Euclidean
metric, but have now become genuine symmetries. This might give the idea to
check maps of the form F (u, v) = h (u, v) (u, v) . This is still a bit general so we
make the reasonable assumption that h doesn’t depend on the direction of (u, v) ,
i.e., F (u, v) = h

�
u2 + v2

�
(u, v) . Then
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�
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Since we just studied the case where h0 = 0, we can assume that h0 6= 0, the last
equation then reduces to

h =
�
u2 + v2

�
h0
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showing that
h =

r

u2 + v2

for some constant r > 0. It is then an easy matter to check that the equations in
the first line also hold. Note that this map preserves the circle of radius r centered
at (0, 0) and switches points inside the circle with points outside the circle. It is
called an inversion and is a type of mirror symmetry on the upper half plane. Note
that the regular mirror symmetries in vertical lines are also symmetries of H. Note
that both mirror symmetries and inversions are their own inverses:

F � F (u, v) = F
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(u, v)

= (u, v) .

Between these three types of symmetries we can find all of the symmetries of
the half plane. There are two key observations to be made. First, for any pair
p, q 2 H we have to find a symmetry that takes p to q. This can be done using
translations and scalings. Second, for any p 2 H and direction v 2 T

p

H we have to
find a symmetry that fixes p and whose differential is a reflections in v. This can
be done with inversions or mirror symmetries in vertical lines should v be vertical.

7.5.2. The Geodesics of H. The fact that the metric is relatively simple
allows us to compute the Christoffel symbols without much trouble
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The geodesic equations then become
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We’ll try to find these geodesics as graphs over the u axis. Thus we should
first address what geodesics might not be such graphs. This corresponds to having
points where du

dt

= 0. In fact if we assume that du

dt

⌘ 0, then the first equation is
definitely solved while the second equation becomes
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This shows that vertical lines, if parametrized appropriately will become geodesics.
This also means that no other geodesics can have vertical tangents. In particular, we
should be able to graph them as functions: v (u) . The geodesic equation simplifies
to
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As this equation does not depend explicitly on u we are allowed to assume that
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so
dv

du
= ±

r
r2

v2
� 1

= ±
p
r2 � v2

v2

Even though this is a separable equation and the integrals involved can be computed
it is still a mess to sort out. The answer however is fairly simple:

v =

q
r2 � (u� u0)

2
.

In other words the geodesics are either vertical lines or semicircles whose center is
on the u axis. As these are precisely the curves that are fixed by mirror symmetries
in vertical lines or inversions this should not be a big surprise.

7.5.3. Curvature of H. Having just computed the Christoffel symbols
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it is now also possible to calculate the Riemannian curvature tensor
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7.5.4. Conformal Picture. Triangles and angle sum. Parallel lines.



CHAPTER 8

Global Theory

8.1. Global Stuff

Closed surfaces must have positive curvature somewhere. Convex surfaces.
Constant mean curvature and/or Gauss curvature. Gauss-Bonnet. Hilbert.

8.2. Riemannian Geometry

As with abstract surfaces we simply define what the dot products of the tangent
fields should be:
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The notation @�

@u

i for the tangent field that corresponds to the velocity of the ui

curves is borrowed from our view of what happens on a surface.
We have the very general formula for how vectors are expanded
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provided we know how to compute dot products of the basis vectors and dots
products of V with the basis vectors.

The key now is to note that we have a way of defining Christoffel symbols in
relation to the tangent fields when we know the dot products of those tangent fields:
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So if we wish to define second partials, i.e., partials of the tangent fields we start
by declaring
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79
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and then use
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Note that we still have
@2�

@ui@uj

=
@2�

@uj@ui

since the Christoffel symbols are symmetric in these indices.
This will allow us to define acceleration and hence geodesics. It’ll also allow

us to show that curves that minimize are geodesics, as well as showing that short
geodesics must be minimal.

To define curvature we collect the Gauss formulas
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When we used a frame in R3 we got this to vanish, but that was due to the inclusion
of the second fundamental form terms. Recall that when we restricted attention to
terms that only involved �s then we got something that was related to the Gauss
curvature. This time we don’t have a Gauss curvature, but we can define the
Riemann curvature as the k, l entry in this expression:
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This expression shows how certain third order partials might not commute since
we have
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But recall that since second order partials do commute we have
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=
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So we see that third order partials commute if and only if the Riemann curvature
vanishes. One can in turn show that
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Theorem 8.2.1. [Riemann] The Riemann curvature vanishes if and only if
there are Cartesian coordinates around any point.

Proof. The easy direction is to assume that Cartesian coordinates exist. Cer-
tainly this shows that the curvatures vanish when we use Cartesian coordinates, but
this does not guarantee that they also vanish in some arbitrary coordinate system.
For that we need to figure out how the curvature terms change when we change
coordinates. A long tedious calculation shows that if the new coordinates are called
vi and the curvature in these coordinates R̃l

ijk

, then
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ijk

=
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.

Thus we see that if the all curvatures vanish in one coordinate system, then they
vanish in all coordinate systems. ⇤


