120A Hwk 4

October 20, 2011

Homework problems due on Wednesday Oct 26, 2011.

1. Let $\gamma(\theta)$ be a simple closed planar curve with $\kappa > 0$ parametrized by θ , where θ is defined as the arclength parameter of the unit tanget field e_1 . Further assume that the width

$$w = \langle e_2(\theta), (\gamma(\theta + \pi) - \gamma(\theta)) \rangle$$

is constant. Show that:

$$w = \frac{1}{\kappa(\theta)} + \frac{1}{\kappa(\theta + \pi)}.$$

Start by establishing the facts:

$$\frac{d\gamma}{d\theta} = \frac{1}{\kappa}e_1$$
$$\frac{de_1}{d\theta} = e_2$$
$$\frac{de_2}{d\theta} = -e_1$$
$$(\theta + \pi) = -e_1(\theta)$$

2. Let $\alpha(s)$ unit speed curve with $\kappa > 0$. Let θ be the arclength parameter for $\frac{d\alpha}{ds}$. Show that the curvature satisfies:

 e_1

$$\kappa = \frac{d\theta}{ds}$$

- 3. Prove that if $\alpha(s)$ is an oval (a closed planar curve with positive curvature and no self intersections), then the unit tangent field e_1 is parallel to e''_1 at four or more points.
- 4. Prove that the concept of a vertex for a planar curve does not depend on the parametrization.
- 5. Let c(t) be a closed Frenet curve in \mathbb{R}^3 . Show that if its curvature is $\leq R^{-1}$, then its length is $\geq 2\pi R$.