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Alternatively (informal). H is a minor of G if we can find pairwise
disjoint connected subsets of V(G) to map to the vertices in H, and
connect them by edges as dictated by H.

Minor. H is a minor of G if there is a series of edge deletions, edge
contractions and vertex deletions in G that yields H.
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Hadwiger number of a graph G. The largest h such that Kh (the
clique on h vertices) is a minor of G.

Can be trivially solved in time nO(n).

Open question. Can it be solved in time 2O(n)?
(Asked in several venues.)
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Graph Minor problem. Given two graphs G and H, is H a minor of G?

The Graph Minor project is the inspiration behind Parameterized
Complexity, and central to other research areas as well.
Survey. LSZ: Efficient Graph Minors Theory and Parameterized Algorithms for
(Planar) Disjoint Paths. Treewidth, Kernels and Algorithms, 2020.
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Graph Minor problem. Given two graphs G and H, is H a minor of G?

On general graphs.・FPT, that is, solvable in time f(h)nO(1). [RS’95]
・Unless the ETH fails, not solvable in time no(n) where n=h.
[CFGKMPS’16]. Tight.

We consider the case where H is a clique.
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I. Subgraph Isomorphism problem. Given two graphs G and H, does
G contain a subgraph isomorphic to H?

On general graphs.・W[1]-hard (unlikely to be solved in f(h)nO(1)).
・Can be solved in time nO(h).
・Unless the ETH fails, cannot be solved in time no(n) where n=h.
[CFGKMPS’16]
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I. Subgraph Isomorphism problem. Given two graphs G and H, does
G contain a subgraph isomorphic to H?

When H is a clique.・W[1]-hard.
・Can be solved in time 2O(n).



HG

II. Graph Homomorphism problem. Given two graphs G and H,
does there exist a homomorphism from G to H?
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II. Graph Homomorphism problem. Given two graphs G and H,
does there exist a homomorphism from G to H?

On general graphs.・para-NP-hard (NP-hard even when h=3).
・Can be solved in time hO(n).
・Unless the ETH fails, cannot be solved in time ho(n) where n=h.
[CFGKMPS’16]
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II. Graph Homomorphism problem. Given two graphs G and H,
does there exist a homomorphism from G to H?

When H is a clique.・Equivalent to h-Coloring.
・para-NP-hard (NP-hard even when h=3).
・Can be solved in time 2O(n). [BHK’09, L’76]
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II. Graph Homomorphism problem. Given two graphs G and H,
does there exist a homomorphism from G to H?

When G is a clique.・Equivalent to Subgraph Isomorphism where
we swap the roles of G and H.

・Can be solved in time 2O(h).



HG

III. Topological Graph Minor problem. Given two graphs G and H, is
H a topological minor of G?
• Only contract edges incident to at least one degree-2 vertex.

Alternatively, the connected subsets are singletons, and pairwise
vertex disjoint paths map to edges.

• Perhaps the closest relative to the Graph Minor problem.
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III. Topological Graph Minor problem. Given two graphs G and H, is
H a topological minor of G?

On general graphs.・FPT. [GKMW’11]
・Can be solved in time nO(n).
・Unless the ETH fails, cannot be solved in time no(n) where n=h.
[CFGKMPS’16]
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III. Topological Graph Minor problem. Given two graphs G and H, is
H a topological minor of G?

When H is a clique.・FPT. [GKMW’11]
・Can be solved in time 2O(n). [LW’09]
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Theorem. Unless the ETH fails, the Hadwiger Number problem
cannot be solved in time no(n).
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Solves the open question in the beginning of this presentation.



Corollary. Unless the ETH fails, the Clique Contraction problem (can we
contract at most k edges in a given graph G to obtain a clique) cannot be
solved in time no(n).
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FPT? No No Yes Yes

2O(n)? Yes Yes Yes No

Solves an open question by [CFGKMPS’16].
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contract at most t edges in G to obtain a graph in F? 



F-Contraction. Given a graph G and non-negative integer t, can we 
contract at most t edges in G to obtain a graph in F? 

Consequences of our approach. Unless the ETH fails, none of the 
following problems can be solved in time no(n):
• Clique Contraction.
• Chordal Graph Contraction.
• Interval Graph Contraction.
• Proper Interval Graph Contraction.
• Threshold Graph Contraction.
• Perfect Graph Contraction.
• Trivially Perfect Graph Contraction.
• Split Graph Contraction.
• Perfect Split Graph Contraction.
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Cross Matching
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Contraction, Threshold Contraction, 

Trivially Perfect Contraction
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List Subgraph Isomorphism problem. Given two graphs G and H
where n=h, as well as a list of vertices in H for each vertex in G,
does G contain a subgraph isomorphic to H where each vertex in G
is mapped to a vertex in its list?
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properly colored, and for every vertex v in G, all vertices (in H) in
the list of v have the same color as v.



List Subgraph Isomorphism problem. Given two graphs G and H
where n=h, as well as a list of vertices in H for each vertex in G,
does G contain a subgraph isomorphic to H where each vertex in G
is mapped to a vertex in its list?

[CFGKMPS’16]. Unless the ETH fails, List Subgraph Isomorphism
cannot be solved in time no(n).

Properly Colored List Subgraph Isomorphism problem. G and H are
properly colored, and for every vertex v in G, all vertices (in H) in
the list of v have the same color as v.

Our refinement. Unless the ETH fails, Properly Colored List
Subgraph Isomorphism cannot be solved in time no(n).
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Properly Colored List Subgraph Isomorphism

Cross Matching

Noisy Structured Clique Contraction
special case: Clique Contraction

Hadwiger Number Split Contraction, 
Complete Split Contraction

Perfect Contraction Non-Trivial Chordal Contraction
special cases: Chordal Contraction, 

Interval Contraction, Proper Interval 
Contraction, Threshold Contraction, 

Trivially Perfect Contraction



Cross Matching problem. Given a graph L with a partition (A,B) of
its vertex set, does there exist a perfect matching between A and B
whose contraction in G yields a clique?



Cross Matching problem. Given a graph L with a partition (A,B) of
its vertex set, does there exist a perfect matching between A and B
whose contraction in G yields a clique?

Relation to List Subgraph Isomorphism?
Think of the following construction of L:

Lemma 3.1. Unless the ETH is false, there does not exist an algorithm that solves Prop-Col-

LSI in time n
o(n)

where n = |V (G)|.

TODO

4 Lower Bound for the Cross Matching Problem

In this section, towards the proof of a lower bound for Clique Contraction, we prove a lower
bound for an intermediate problem called Cross Matching that somewhat resembles Clique

Contraction, and which is defined as follows.

Cross Matching

Input: A graph G with a partition (A,B) of V (G) where |A| = |B|.
Question: Does there exist a perfect matching M in G such that every edge in M has one
endpoint in A and the other in B, and G/M is a clique?

Our objective is to prove the following statement.

Lemma 4.1. Unless the ETH is false, there does not exist an algorithm that solves Cross

Matching in time n
o(n)

where n = |A|.

Proof. Targeting a contradiction, suppose that there exists an algorithm, denoted by Matchin-

gAlg, that solves Cross Matching in time no(n). We will show that this implies the existence of
an algorithm, denoted by LSIAlg, that solves Prop-Col LSI in time no(n), thereby contradicting
Lemma 3.1 and hence completing the proof.

We define the execution of LSIAlg as follows. Given an instance (G,H, cG, cH , `) of Prop-
Col LSI, LSIAlg constructs an instance (L,A,B) of Cross Matching as follows (see Fig. ?):

• V (L) = V (G) [ V (H).

• E(L) = E(G) [ E(H) [ {{u, v} : u 2 V (G), v 2 L(u)}.

• A = V (G) and B = V (H).

Then, LSIAlg calls MatchingAlg with (L,A,B) as input, and returns the answer of this call.
Denote n = |V (G)|. First, note that by construction, |A| = |B| = n. Thus, because

MatchingAlg runs in time n
o(n), so does LSIAlg.

For the correctness of the algorithm, first suppose that (G,H, cG, cH , `) is a Yes-instance of
Prop-Col LSI. This means that there exists a bijective function ' : V (G) ! V (H) such that
(i) for every {u, v} 2 E(G), {'(u),'(v)} 2 E(H), and (ii) for every u 2 V (G), '(u) 2 L(u).
Having ' at hand, we will show that (L,A,B) is a Yes-instance, which will imply that the call
to MatchingAlg with (L,A,B) as input returns Yes, and hence LSIAlg returns Yes.

Based on ', we define a subset M ✓ E(L) as follows: M = {{u,'(u)} : u 2 B}. Notice that
the containment of M in E(L) follows from the definition of E(L) and Condition (ii) above.
Moreover, by the definition of A, B and because ' is bijective, it further follows that M is a
perfect matching in L such that every edge in M has one endpoint in A and the other in B.
Thus, to conclude that (L,A,B) is a Yes-instance, it remains to argue that L/M is a clique. To
this end, we consider two arbitrary vertices x and y of L/M , and prove that they are adjacent
in L/M . Necessarily x is a vertex that replaced two vertices u 2 A and v 2 B such that
{u, v} 2 M , and y is a vertex that replaced two vertices u0 2 A \ {u} and v

0 2 B \ {v} such that
{u0, v0} 2 M . By the definition of contraction, to show that x and y are adjacent in L/M , it
su�ces to show that u and v are adjacent in L or u0 and v

0 are adjacent in L (or both). To this
end, suppose that u and v are not adjacent in L, else we are done. By the definition of E(L),
this means that {u, v} /2 E(G) and hence {u, v} 2 E(G). By Condition (i) above, we derive
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an algorithm, denoted by LSIAlg, that solves Prop-Col LSI in time no(n), thereby contradicting
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Denote n = |V (G)|. First, note that by construction, |A| = |B| = n. Thus, because

MatchingAlg runs in time n
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For the correctness of the algorithm, first suppose that (G,H, cG, cH , `) is a Yes-instance of
Prop-Col LSI. This means that there exists a bijective function ' : V (G) ! V (H) such that
(i) for every {u, v} 2 E(G), {'(u),'(v)} 2 E(H), and (ii) for every u 2 V (G), '(u) 2 L(u).
Having ' at hand, we will show that (L,A,B) is a Yes-instance, which will imply that the call
to MatchingAlg with (L,A,B) as input returns Yes, and hence LSIAlg returns Yes.

Based on ', we define a subset M ✓ E(L) as follows: M = {{u,'(u)} : u 2 B}. Notice that
the containment of M in E(L) follows from the definition of E(L) and Condition (ii) above.
Moreover, by the definition of A, B and because ' is bijective, it further follows that M is a
perfect matching in L such that every edge in M has one endpoint in A and the other in B.
Thus, to conclude that (L,A,B) is a Yes-instance, it remains to argue that L/M is a clique. To
this end, we consider two arbitrary vertices x and y of L/M , and prove that they are adjacent
in L/M . Necessarily x is a vertex that replaced two vertices u 2 A and v 2 B such that
{u, v} 2 M , and y is a vertex that replaced two vertices u0 2 A \ {u} and v
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4 Lower Bound for the Cross Matching Problem

In this section, towards the proof of a lower bound for Clique Contraction, we prove a lower
bound for an intermediate problem called Cross Matching that somewhat resembles Clique

Contraction, and which is defined as follows.

Cross Matching

Input: A graph G with a partition (A,B) of V (G) where |A| = |B|.
Question: Does there exist a perfect matching M in G such that every edge in M has one
endpoint in A and the other in B, and G/M is a clique?

Our objective is to prove the following statement.

Lemma 4.1. Unless the ETH is false, there does not exist an algorithm that solves Cross

Matching in time n
o(n)

where n = |A|.

Proof. Targeting a contradiction, suppose that there exists an algorithm, denoted by Matchin-

gAlg, that solves Cross Matching in time no(n). We will show that this implies the existence of
an algorithm, denoted by LSIAlg, that solves Prop-Col LSI in time no(n), thereby contradicting
Lemma 3.1 and hence completing the proof.

We define the execution of LSIAlg as follows. Given an instance (G,H, cG, cH , `) of Prop-
Col LSI, LSIAlg constructs an instance (L,A,B) of Cross Matching as follows (see Fig. ?):

• V (L) = V (G) [ V (H).

• E(L) = E(G) [ E(H) [ {{u, v} : u 2 V (G), v 2 L(u)}.

• A = V (G) and B = V (H).

Then, LSIAlg calls MatchingAlg with (L,A,B) as input, and returns the answer of this call.
Denote n = |V (G)|. First, note that by construction, |A| = |B| = n. Thus, because

MatchingAlg runs in time n
o(n), so does LSIAlg.

For the correctness of the algorithm, first suppose that (G,H, cG, cH , `) is a Yes-instance of
Prop-Col LSI. This means that there exists a bijective function ' : V (G) ! V (H) such that
(i) for every {u, v} 2 E(G), {'(u),'(v)} 2 E(H), and (ii) for every u 2 V (G), '(u) 2 L(u).
Having ' at hand, we will show that (L,A,B) is a Yes-instance, which will imply that the call
to MatchingAlg with (L,A,B) as input returns Yes, and hence LSIAlg returns Yes.

Based on ', we define a subset M ✓ E(L) as follows: M = {{u,'(u)} : u 2 B}. Notice that
the containment of M in E(L) follows from the definition of E(L) and Condition (ii) above.
Moreover, by the definition of A, B and because ' is bijective, it further follows that M is a
perfect matching in L such that every edge in M has one endpoint in A and the other in B.
Thus, to conclude that (L,A,B) is a Yes-instance, it remains to argue that L/M is a clique. To
this end, we consider two arbitrary vertices x and y of L/M , and prove that they are adjacent
in L/M . Necessarily x is a vertex that replaced two vertices u 2 A and v 2 B such that
{u, v} 2 M , and y is a vertex that replaced two vertices u0 2 A \ {u} and v

0 2 B \ {v} such that
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TODO

4 Lower Bound for the Cross Matching Problem

In this section, towards the proof of a lower bound for Clique Contraction, we prove a lower
bound for an intermediate problem called Cross Matching that somewhat resembles Clique

Contraction, and which is defined as follows.

Cross Matching

Input: A graph G with a partition (A,B) of V (G) where |A| = |B|.
Question: Does there exist a perfect matching M in G such that every edge in M has one
endpoint in A and the other in B, and G/M is a clique?

Our objective is to prove the following statement.

Lemma 4.1. Unless the ETH is false, there does not exist an algorithm that solves Cross

Matching in time n
o(n)

where n = |A|.

Proof. Targeting a contradiction, suppose that there exists an algorithm, denoted by Matchin-

gAlg, that solves Cross Matching in time no(n). We will show that this implies the existence of
an algorithm, denoted by LSIAlg, that solves Prop-Col LSI in time no(n), thereby contradicting
Lemma 3.1 and hence completing the proof.

We define the execution of LSIAlg as follows. Given an instance (G,H, cG, cH , `) of Prop-
Col LSI, LSIAlg constructs an instance (L,A,B) of Cross Matching as follows (see Fig. ?):

• V (L) = V (G) [ V (H).

• E(L) = E(G) [ E(H) [ {{u, v} : u 2 V (G), v 2 L(u)}.

• A = V (G) and B = V (H).

Then, LSIAlg calls MatchingAlg with (L,A,B) as input, and returns the answer of this call.
Denote n = |V (G)|. First, note that by construction, |A| = |B| = n. Thus, because

MatchingAlg runs in time n
o(n), so does LSIAlg.

For the correctness of the algorithm, first suppose that (G,H, cG, cH , `) is a Yes-instance of
Prop-Col LSI. This means that there exists a bijective function ' : V (G) ! V (H) such that
(i) for every {u, v} 2 E(G), {'(u),'(v)} 2 E(H), and (ii) for every u 2 V (G), '(u) 2 L(u).
Having ' at hand, we will show that (L,A,B) is a Yes-instance, which will imply that the call
to MatchingAlg with (L,A,B) as input returns Yes, and hence LSIAlg returns Yes.

Based on ', we define a subset M ✓ E(L) as follows: M = {{u,'(u)} : u 2 B}. Notice that
the containment of M in E(L) follows from the definition of E(L) and Condition (ii) above.
Moreover, by the definition of A, B and because ' is bijective, it further follows that M is a
perfect matching in L such that every edge in M has one endpoint in A and the other in B.
Thus, to conclude that (L,A,B) is a Yes-instance, it remains to argue that L/M is a clique. To
this end, we consider two arbitrary vertices x and y of L/M , and prove that they are adjacent
in L/M . Necessarily x is a vertex that replaced two vertices u 2 A and v 2 B such that
{u, v} 2 M , and y is a vertex that replaced two vertices u0 2 A \ {u} and v

0 2 B \ {v} such that
{u0, v0} 2 M . By the definition of contraction, to show that x and y are adjacent in L/M , it
su�ces to show that u and v are adjacent in L or u0 and v

0 are adjacent in L (or both). To this
end, suppose that u and v are not adjacent in L, else we are done. By the definition of E(L),
this means that {u, v} /2 E(G) and hence {u, v} 2 E(G). By Condition (i) above, we derive
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Lemma 3.1. Unless the ETH is false, there does not exist an algorithm that solves Prop-Col-
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TODO

4 Lower Bound for the Cross Matching Problem

In this section, towards the proof of a lower bound for Clique Contraction, we prove a lower
bound for an intermediate problem called Cross Matching that somewhat resembles Clique

Contraction, and which is defined as follows.

Cross Matching

Input: A graph G with a partition (A,B) of V (G) where |A| = |B|.
Question: Does there exist a perfect matching M in G such that every edge in M has one
endpoint in A and the other in B, and G/M is a clique?

Our objective is to prove the following statement.

Lemma 4.1. Unless the ETH is false, there does not exist an algorithm that solves Cross

Matching in time n
o(n)

where n = |A|.

Proof. Targeting a contradiction, suppose that there exists an algorithm, denoted by Matchin-

gAlg, that solves Cross Matching in time no(n). We will show that this implies the existence of
an algorithm, denoted by LSIAlg, that solves Prop-Col LSI in time no(n), thereby contradicting
Lemma 3.1 and hence completing the proof.

We define the execution of LSIAlg as follows. Given an instance (G,H, cG, cH , `) of Prop-
Col LSI, LSIAlg constructs an instance (L,A,B) of Cross Matching as follows (see Fig. ?):

• V (L) = V (G) [ V (H).

• E(L) = E(G) [ E(H) [ {{u, v} : u 2 V (G), v 2 L(u)}.

• A = V (G) and B = V (H).

Then, LSIAlg calls MatchingAlg with (L,A,B) as input, and returns the answer of this call.
Denote n = |V (G)|. First, note that by construction, |A| = |B| = n. Thus, because
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Having ' at hand, we will show that (L,A,B) is a Yes-instance, which will imply that the call
to MatchingAlg with (L,A,B) as input returns Yes, and hence LSIAlg returns Yes.

Based on ', we define a subset M ✓ E(L) as follows: M = {{u,'(u)} : u 2 B}. Notice that
the containment of M in E(L) follows from the definition of E(L) and Condition (ii) above.
Moreover, by the definition of A, B and because ' is bijective, it further follows that M is a
perfect matching in L such that every edge in M has one endpoint in A and the other in B.
Thus, to conclude that (L,A,B) is a Yes-instance, it remains to argue that L/M is a clique. To
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su�ces to show that u and v are adjacent in L or u0 and v

0 are adjacent in L (or both). To this
end, suppose that u and v are not adjacent in L, else we are done. By the definition of E(L),
this means that {u, v} /2 E(G) and hence {u, v} 2 E(G). By Condition (i) above, we derive
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4 Lower Bound for the Cross Matching Problem

In this section, towards the proof of a lower bound for Clique Contraction, we prove a lower
bound for an intermediate problem called Cross Matching that somewhat resembles Clique

Contraction, and which is defined as follows.

Cross Matching

Input: A graph G with a partition (A,B) of V (G) where |A| = |B|.
Question: Does there exist a perfect matching M in G such that every edge in M has one
endpoint in A and the other in B, and G/M is a clique?

Our objective is to prove the following statement.

Lemma 4.1. Unless the ETH is false, there does not exist an algorithm that solves Cross

Matching in time n
o(n)

where n = |A|.

Proof. Targeting a contradiction, suppose that there exists an algorithm, denoted by Matchin-

gAlg, that solves Cross Matching in time no(n). We will show that this implies the existence of
an algorithm, denoted by LSIAlg, that solves Prop-Col LSI in time no(n), thereby contradicting
Lemma 3.1 and hence completing the proof.

We define the execution of LSIAlg as follows. Given an instance (G,H, cG, cH , `) of Prop-
Col LSI, LSIAlg constructs an instance (L,A,B) of Cross Matching as follows (see Fig. ?):

• V (L) = V (G) [ V (H).

• E(L) = E(G) [ E(H) [ {{u, v} : u 2 V (G), v 2 L(u)}.

• A = V (G) and B = V (H).

Then, LSIAlg calls MatchingAlg with (L,A,B) as input, and returns the answer of this call.
Denote n = |V (G)|. First, note that by construction, |A| = |B| = n. Thus, because

MatchingAlg runs in time n
o(n), so does LSIAlg.

For the correctness of the algorithm, first suppose that (G,H, cG, cH , `) is a Yes-instance of
Prop-Col LSI. This means that there exists a bijective function ' : V (G) ! V (H) such that
(i) for every {u, v} 2 E(G), {'(u),'(v)} 2 E(H), and (ii) for every u 2 V (G), '(u) 2 L(u).
Having ' at hand, we will show that (L,A,B) is a Yes-instance, which will imply that the call
to MatchingAlg with (L,A,B) as input returns Yes, and hence LSIAlg returns Yes.

Based on ', we define a subset M ✓ E(L) as follows: M = {{u,'(u)} : u 2 B}. Notice that
the containment of M in E(L) follows from the definition of E(L) and Condition (ii) above.
Moreover, by the definition of A, B and because ' is bijective, it further follows that M is a
perfect matching in L such that every edge in M has one endpoint in A and the other in B.
Thus, to conclude that (L,A,B) is a Yes-instance, it remains to argue that L/M is a clique. To
this end, we consider two arbitrary vertices x and y of L/M , and prove that they are adjacent
in L/M . Necessarily x is a vertex that replaced two vertices u 2 A and v 2 B such that
{u, v} 2 M , and y is a vertex that replaced two vertices u0 2 A \ {u} and v

0 2 B \ {v} such that
{u0, v0} 2 M . By the definition of contraction, to show that x and y are adjacent in L/M , it
su�ces to show that u and v are adjacent in L or u0 and v

0 are adjacent in L (or both). To this
end, suppose that u and v are not adjacent in L, else we are done. By the definition of E(L),
this means that {u, v} /2 E(G) and hence {u, v} 2 E(G). By Condition (i) above, we derive
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Cross Matching problem. Given a graph L with a partition (A,B) of
its vertex set, does there exist a perfect matching between A and B
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Relation to List Subgraph Isomorphism?
Think of the following construction of L:
• A perfect matching between A and B can

be thought of as a mapping of G to H.
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bound for an intermediate problem called Cross Matching that somewhat resembles Clique

Contraction, and which is defined as follows.

Cross Matching

Input: A graph G with a partition (A,B) of V (G) where |A| = |B|.
Question: Does there exist a perfect matching M in G such that every edge in M has one
endpoint in A and the other in B, and G/M is a clique?

Our objective is to prove the following statement.

Lemma 4.1. Unless the ETH is false, there does not exist an algorithm that solves Cross

Matching in time n
o(n)

where n = |A|.

Proof. Targeting a contradiction, suppose that there exists an algorithm, denoted by Matchin-

gAlg, that solves Cross Matching in time no(n). We will show that this implies the existence of
an algorithm, denoted by LSIAlg, that solves Prop-Col LSI in time no(n), thereby contradicting
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Having ' at hand, we will show that (L,A,B) is a Yes-instance, which will imply that the call
to MatchingAlg with (L,A,B) as input returns Yes, and hence LSIAlg returns Yes.

Based on ', we define a subset M ✓ E(L) as follows: M = {{u,'(u)} : u 2 B}. Notice that
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Moreover, by the definition of A, B and because ' is bijective, it further follows that M is a
perfect matching in L such that every edge in M has one endpoint in A and the other in B.
Thus, to conclude that (L,A,B) is a Yes-instance, it remains to argue that L/M is a clique. To
this end, we consider two arbitrary vertices x and y of L/M , and prove that they are adjacent
in L/M . Necessarily x is a vertex that replaced two vertices u 2 A and v 2 B such that
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Denote n = |V (G)|. First, note that by construction, |A| = |B| = n. Thus, because
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For the correctness of the algorithm, first suppose that (G,H, cG, cH , `) is a Yes-instance of
Prop-Col LSI. This means that there exists a bijective function ' : V (G) ! V (H) such that
(i) for every {u, v} 2 E(G), {'(u),'(v)} 2 E(H), and (ii) for every u 2 V (G), '(u) 2 L(u).
Having ' at hand, we will show that (L,A,B) is a Yes-instance, which will imply that the call
to MatchingAlg with (L,A,B) as input returns Yes, and hence LSIAlg returns Yes.

Based on ', we define a subset M ✓ E(L) as follows: M = {{u,'(u)} : u 2 B}. Notice that
the containment of M in E(L) follows from the definition of E(L) and Condition (ii) above.
Moreover, by the definition of A, B and because ' is bijective, it further follows that M is a
perfect matching in L such that every edge in M has one endpoint in A and the other in B.
Thus, to conclude that (L,A,B) is a Yes-instance, it remains to argue that L/M is a clique. To
this end, we consider two arbitrary vertices x and y of L/M , and prove that they are adjacent
in L/M . Necessarily x is a vertex that replaced two vertices u 2 A and v 2 B such that
{u, v} 2 M , and y is a vertex that replaced two vertices u0 2 A \ {u} and v

0 2 B \ {v} such that
{u0, v0} 2 M . By the definition of contraction, to show that x and y are adjacent in L/M , it
su�ces to show that u and v are adjacent in L or u0 and v

0 are adjacent in L (or both). To this
end, suppose that u and v are not adjacent in L, else we are done. By the definition of E(L),
this means that {u, v} /2 E(G) and hence {u, v} 2 E(G). By Condition (i) above, we derive
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4 Lower Bound for the Cross Matching Problem

In this section, towards the proof of a lower bound for Clique Contraction, we prove a lower
bound for an intermediate problem called Cross Matching that somewhat resembles Clique

Contraction, and which is defined as follows.

Cross Matching

Input: A graph G with a partition (A,B) of V (G) where |A| = |B|.
Question: Does there exist a perfect matching M in G such that every edge in M has one
endpoint in A and the other in B, and G/M is a clique?

Our objective is to prove the following statement.

Lemma 4.1. Unless the ETH is false, there does not exist an algorithm that solves Cross
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where n = |A|.

Proof. Targeting a contradiction, suppose that there exists an algorithm, denoted by Matchin-

gAlg, that solves Cross Matching in time no(n). We will show that this implies the existence of
an algorithm, denoted by LSIAlg, that solves Prop-Col LSI in time no(n), thereby contradicting
Lemma 3.1 and hence completing the proof.

We define the execution of LSIAlg as follows. Given an instance (G,H, cG, cH , `) of Prop-
Col LSI, LSIAlg constructs an instance (L,A,B) of Cross Matching as follows (see Fig. ?):

• V (L) = V (G) [ V (H).

• E(L) = E(G) [ E(H) [ {{u, v} : u 2 V (G), v 2 L(u)}.

• A = V (G) and B = V (H).

Then, LSIAlg calls MatchingAlg with (L,A,B) as input, and returns the answer of this call.
Denote n = |V (G)|. First, note that by construction, |A| = |B| = n. Thus, because

MatchingAlg runs in time n
o(n), so does LSIAlg.

For the correctness of the algorithm, first suppose that (G,H, cG, cH , `) is a Yes-instance of
Prop-Col LSI. This means that there exists a bijective function ' : V (G) ! V (H) such that
(i) for every {u, v} 2 E(G), {'(u),'(v)} 2 E(H), and (ii) for every u 2 V (G), '(u) 2 L(u).
Having ' at hand, we will show that (L,A,B) is a Yes-instance, which will imply that the call
to MatchingAlg with (L,A,B) as input returns Yes, and hence LSIAlg returns Yes.

Based on ', we define a subset M ✓ E(L) as follows: M = {{u,'(u)} : u 2 B}. Notice that
the containment of M in E(L) follows from the definition of E(L) and Condition (ii) above.
Moreover, by the definition of A, B and because ' is bijective, it further follows that M is a
perfect matching in L such that every edge in M has one endpoint in A and the other in B.
Thus, to conclude that (L,A,B) is a Yes-instance, it remains to argue that L/M is a clique. To
this end, we consider two arbitrary vertices x and y of L/M , and prove that they are adjacent
in L/M . Necessarily x is a vertex that replaced two vertices u 2 A and v 2 B such that
{u, v} 2 M , and y is a vertex that replaced two vertices u0 2 A \ {u} and v

0 2 B \ {v} such that
{u0, v0} 2 M . By the definition of contraction, to show that x and y are adjacent in L/M , it
su�ces to show that u and v are adjacent in L or u0 and v

0 are adjacent in L (or both). To this
end, suppose that u and v are not adjacent in L, else we are done. By the definition of E(L),
this means that {u, v} /2 E(G) and hence {u, v} 2 E(G). By Condition (i) above, we derive

2

Lemma 3.1. Unless the ETH is false, there does not exist an algorithm that solves Prop-Col-

LSI in time n
o(n)

where n = |V (G)|.

TODO

4 Lower Bound for the Cross Matching Problem

In this section, towards the proof of a lower bound for Clique Contraction, we prove a lower
bound for an intermediate problem called Cross Matching that somewhat resembles Clique

Contraction, and which is defined as follows.

Cross Matching

Input: A graph G with a partition (A,B) of V (G) where |A| = |B|.
Question: Does there exist a perfect matching M in G such that every edge in M has one
endpoint in A and the other in B, and G/M is a clique?

Our objective is to prove the following statement.

Lemma 4.1. Unless the ETH is false, there does not exist an algorithm that solves Cross

Matching in time n
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where n = |A|.

Proof. Targeting a contradiction, suppose that there exists an algorithm, denoted by Matchin-

gAlg, that solves Cross Matching in time no(n). We will show that this implies the existence of
an algorithm, denoted by LSIAlg, that solves Prop-Col LSI in time no(n), thereby contradicting
Lemma 3.1 and hence completing the proof.

We define the execution of LSIAlg as follows. Given an instance (G,H, cG, cH , `) of Prop-
Col LSI, LSIAlg constructs an instance (L,A,B) of Cross Matching as follows (see Fig. ?):

• V (L) = V (G) [ V (H).

• E(L) = E(G) [ E(H) [ {{u, v} : u 2 V (G), v 2 L(u)}.

• A = V (G) and B = V (H).

Then, LSIAlg calls MatchingAlg with (L,A,B) as input, and returns the answer of this call.
Denote n = |V (G)|. First, note that by construction, |A| = |B| = n. Thus, because

MatchingAlg runs in time n
o(n), so does LSIAlg.

For the correctness of the algorithm, first suppose that (G,H, cG, cH , `) is a Yes-instance of
Prop-Col LSI. This means that there exists a bijective function ' : V (G) ! V (H) such that
(i) for every {u, v} 2 E(G), {'(u),'(v)} 2 E(H), and (ii) for every u 2 V (G), '(u) 2 L(u).
Having ' at hand, we will show that (L,A,B) is a Yes-instance, which will imply that the call
to MatchingAlg with (L,A,B) as input returns Yes, and hence LSIAlg returns Yes.

Based on ', we define a subset M ✓ E(L) as follows: M = {{u,'(u)} : u 2 B}. Notice that
the containment of M in E(L) follows from the definition of E(L) and Condition (ii) above.
Moreover, by the definition of A, B and because ' is bijective, it further follows that M is a
perfect matching in L such that every edge in M has one endpoint in A and the other in B.
Thus, to conclude that (L,A,B) is a Yes-instance, it remains to argue that L/M is a clique. To
this end, we consider two arbitrary vertices x and y of L/M , and prove that they are adjacent
in L/M . Necessarily x is a vertex that replaced two vertices u 2 A and v 2 B such that
{u, v} 2 M , and y is a vertex that replaced two vertices u0 2 A \ {u} and v

0 2 B \ {v} such that
{u0, v0} 2 M . By the definition of contraction, to show that x and y are adjacent in L/M , it
su�ces to show that u and v are adjacent in L or u0 and v

0 are adjacent in L (or both). To this
end, suppose that u and v are not adjacent in L, else we are done. By the definition of E(L),
this means that {u, v} /2 E(G) and hence {u, v} 2 E(G). By Condition (i) above, we derive
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In this section, towards the proof of a lower bound for Clique Contraction, we prove a lower
bound for an intermediate problem called Cross Matching that somewhat resembles Clique

Contraction, and which is defined as follows.
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Having ' at hand, we will show that (L,A,B) is a Yes-instance, which will imply that the call
to MatchingAlg with (L,A,B) as input returns Yes, and hence LSIAlg returns Yes.

Based on ', we define a subset M ✓ E(L) as follows: M = {{u,'(u)} : u 2 B}. Notice that
the containment of M in E(L) follows from the definition of E(L) and Condition (ii) above.
Moreover, by the definition of A, B and because ' is bijective, it further follows that M is a
perfect matching in L such that every edge in M has one endpoint in A and the other in B.
Thus, to conclude that (L,A,B) is a Yes-instance, it remains to argue that L/M is a clique. To
this end, we consider two arbitrary vertices x and y of L/M , and prove that they are adjacent
in L/M . Necessarily x is a vertex that replaced two vertices u 2 A and v 2 B such that
{u, v} 2 M , and y is a vertex that replaced two vertices u0 2 A \ {u} and v

0 2 B \ {v} such that
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In this section, towards the proof of a lower bound for Clique Contraction, we prove a lower
bound for an intermediate problem called Cross Matching that somewhat resembles Clique

Contraction, and which is defined as follows.
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Question: Does there exist a perfect matching M in G such that every edge in M has one
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Our objective is to prove the following statement.

Lemma 4.1. Unless the ETH is false, there does not exist an algorithm that solves Cross

Matching in time n
o(n)

where n = |A|.

Proof. Targeting a contradiction, suppose that there exists an algorithm, denoted by Matchin-

gAlg, that solves Cross Matching in time no(n). We will show that this implies the existence of
an algorithm, denoted by LSIAlg, that solves Prop-Col LSI in time no(n), thereby contradicting
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We define the execution of LSIAlg as follows. Given an instance (G,H, cG, cH , `) of Prop-
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• E(L) = E(G) [ E(H) [ {{u, v} : u 2 V (G), v 2 L(u)}.
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For the correctness of the algorithm, first suppose that (G,H, cG, cH , `) is a Yes-instance of
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(i) for every {u, v} 2 E(G), {'(u),'(v)} 2 E(H), and (ii) for every u 2 V (G), '(u) 2 L(u).
Having ' at hand, we will show that (L,A,B) is a Yes-instance, which will imply that the call
to MatchingAlg with (L,A,B) as input returns Yes, and hence LSIAlg returns Yes.

Based on ', we define a subset M ✓ E(L) as follows: M = {{u,'(u)} : u 2 B}. Notice that
the containment of M in E(L) follows from the definition of E(L) and Condition (ii) above.
Moreover, by the definition of A, B and because ' is bijective, it further follows that M is a
perfect matching in L such that every edge in M has one endpoint in A and the other in B.
Thus, to conclude that (L,A,B) is a Yes-instance, it remains to argue that L/M is a clique. To
this end, we consider two arbitrary vertices x and y of L/M , and prove that they are adjacent
in L/M . Necessarily x is a vertex that replaced two vertices u 2 A and v 2 B such that
{u, v} 2 M , and y is a vertex that replaced two vertices u0 2 A \ {u} and v

0 2 B \ {v} such that
{u0, v0} 2 M . By the definition of contraction, to show that x and y are adjacent in L/M , it
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0 are adjacent in L (or both). To this
end, suppose that u and v are not adjacent in L, else we are done. By the definition of E(L),
this means that {u, v} /2 E(G) and hence {u, v} 2 E(G). By Condition (i) above, we derive

2
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its vertex set, does there exist a perfect matching between A and B
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Relation to List Subgraph Isomorphism?
Think of the following construction of L:
• A perfect matching between A and B can
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In this section, towards the proof of a lower bound for Clique Contraction, we prove a lower
bound for an intermediate problem called Cross Matching that somewhat resembles Clique

Contraction, and which is defined as follows.
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Input: A graph G with a partition (A,B) of V (G) where |A| = |B|.
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endpoint in A and the other in B, and G/M is a clique?

Our objective is to prove the following statement.

Lemma 4.1. Unless the ETH is false, there does not exist an algorithm that solves Cross

Matching in time n
o(n)

where n = |A|.

Proof. Targeting a contradiction, suppose that there exists an algorithm, denoted by Matchin-

gAlg, that solves Cross Matching in time no(n). We will show that this implies the existence of
an algorithm, denoted by LSIAlg, that solves Prop-Col LSI in time no(n), thereby contradicting
Lemma 3.1 and hence completing the proof.

We define the execution of LSIAlg as follows. Given an instance (G,H, cG, cH , `) of Prop-
Col LSI, LSIAlg constructs an instance (L,A,B) of Cross Matching as follows (see Fig. ?):

• V (L) = V (G) [ V (H).

• E(L) = E(G) [ E(H) [ {{u, v} : u 2 V (G), v 2 L(u)}.

• A = V (G) and B = V (H).

Then, LSIAlg calls MatchingAlg with (L,A,B) as input, and returns the answer of this call.
Denote n = |V (G)|. First, note that by construction, |A| = |B| = n. Thus, because

MatchingAlg runs in time n
o(n), so does LSIAlg.

For the correctness of the algorithm, first suppose that (G,H, cG, cH , `) is a Yes-instance of
Prop-Col LSI. This means that there exists a bijective function ' : V (G) ! V (H) such that
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Having ' at hand, we will show that (L,A,B) is a Yes-instance, which will imply that the call
to MatchingAlg with (L,A,B) as input returns Yes, and hence LSIAlg returns Yes.

Based on ', we define a subset M ✓ E(L) as follows: M = {{u,'(u)} : u 2 B}. Notice that
the containment of M in E(L) follows from the definition of E(L) and Condition (ii) above.
Moreover, by the definition of A, B and because ' is bijective, it further follows that M is a
perfect matching in L such that every edge in M has one endpoint in A and the other in B.
Thus, to conclude that (L,A,B) is a Yes-instance, it remains to argue that L/M is a clique. To
this end, we consider two arbitrary vertices x and y of L/M , and prove that they are adjacent
in L/M . Necessarily x is a vertex that replaced two vertices u 2 A and v 2 B such that
{u, v} 2 M , and y is a vertex that replaced two vertices u0 2 A \ {u} and v

0 2 B \ {v} such that
{u0, v0} 2 M . By the definition of contraction, to show that x and y are adjacent in L/M , it
su�ces to show that u and v are adjacent in L or u0 and v

0 are adjacent in L (or both). To this
end, suppose that u and v are not adjacent in L, else we are done. By the definition of E(L),
this means that {u, v} /2 E(G) and hence {u, v} 2 E(G). By Condition (i) above, we derive
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Denote n = |V (G)|. First, note that by construction, |A| = |B| = n. Thus, because

MatchingAlg runs in time n
o(n), so does LSIAlg.

For the correctness of the algorithm, first suppose that (G,H, cG, cH , `) is a Yes-instance of
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(i) for every {u, v} 2 E(G), {'(u),'(v)} 2 E(H), and (ii) for every u 2 V (G), '(u) 2 L(u).
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Based on ', we define a subset M ✓ E(L) as follows: M = {{u,'(u)} : u 2 B}. Notice that
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this end, we consider two arbitrary vertices x and y of L/M , and prove that they are adjacent
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Moreover, by the definition of A, B and because ' is bijective, it further follows that M is a
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Moreover, by the definition of A, B and because ' is bijective, it further follows that M is a
perfect matching in L such that every edge in M has one endpoint in A and the other in B.
Thus, to conclude that (L,A,B) is a Yes-instance, it remains to argue that L/M is a clique. To
this end, we consider two arbitrary vertices x and y of L/M , and prove that they are adjacent
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Moreover, by the definition of A, B and because ' is bijective, it further follows that M is a
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Denote n = |V (G)|. First, note that by construction, |A| = |B| = n. Thus, because
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Based on ', we define a subset M ✓ E(L) as follows: M = {{u,'(u)} : u 2 B}. Notice that
the containment of M in E(L) follows from the definition of E(L) and Condition (ii) above.
Moreover, by the definition of A, B and because ' is bijective, it further follows that M is a
perfect matching in L such that every edge in M has one endpoint in A and the other in B.
Thus, to conclude that (L,A,B) is a Yes-instance, it remains to argue that L/M is a clique. To
this end, we consider two arbitrary vertices x and y of L/M , and prove that they are adjacent
in L/M . Necessarily x is a vertex that replaced two vertices u 2 A and v 2 B such that
{u, v} 2 M , and y is a vertex that replaced two vertices u0 2 A \ {u} and v
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su�ces to show that u and v are adjacent in L or u0 and v
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end, suppose that u and v are not adjacent in L, else we are done. By the definition of E(L),
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the containment of M in E(L) follows from the definition of E(L) and Condition (ii) above.
Moreover, by the definition of A, B and because ' is bijective, it further follows that M is a
perfect matching in L such that every edge in M has one endpoint in A and the other in B.
Thus, to conclude that (L,A,B) is a Yes-instance, it remains to argue that L/M is a clique. To
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Based on ', we define a subset M ✓ E(L) as follows: M = {{u,'(u)} : u 2 B}. Notice that
the containment of M in E(L) follows from the definition of E(L) and Condition (ii) above.
Moreover, by the definition of A, B and because ' is bijective, it further follows that M is a
perfect matching in L such that every edge in M has one endpoint in A and the other in B.
Thus, to conclude that (L,A,B) is a Yes-instance, it remains to argue that L/M is a clique. To
this end, we consider two arbitrary vertices x and y of L/M , and prove that they are adjacent
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Having ' at hand, we will show that (L,A,B) is a Yes-instance, which will imply that the call
to MatchingAlg with (L,A,B) as input returns Yes, and hence LSIAlg returns Yes.

Based on ', we define a subset M ✓ E(L) as follows: M = {{u,'(u)} : u 2 B}. Notice that
the containment of M in E(L) follows from the definition of E(L) and Condition (ii) above.
Moreover, by the definition of A, B and because ' is bijective, it further follows that M is a
perfect matching in L such that every edge in M has one endpoint in A and the other in B.
Thus, to conclude that (L,A,B) is a Yes-instance, it remains to argue that L/M is a clique. To
this end, we consider two arbitrary vertices x and y of L/M , and prove that they are adjacent
in L/M . Necessarily x is a vertex that replaced two vertices u 2 A and v 2 B such that
{u, v} 2 M , and y is a vertex that replaced two vertices u0 2 A \ {u} and v
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{u0, v0} 2 M . By the definition of contraction, to show that x and y are adjacent in L/M , it
su�ces to show that u and v are adjacent in L or u0 and v
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end, suppose that u and v are not adjacent in L, else we are done. By the definition of E(L),
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4 Lower Bound for the Cross Matching Problem

In this section, towards the proof of a lower bound for Clique Contraction, we prove a lower
bound for an intermediate problem called Cross Matching that somewhat resembles Clique
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Question: Does there exist a perfect matching M in G such that every edge in M has one
endpoint in A and the other in B, and G/M is a clique?

Our objective is to prove the following statement.
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Proof. Targeting a contradiction, suppose that there exists an algorithm, denoted by Matchin-

gAlg, that solves Cross Matching in time no(n). We will show that this implies the existence of
an algorithm, denoted by LSIAlg, that solves Prop-Col LSI in time no(n), thereby contradicting
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We define the execution of LSIAlg as follows. Given an instance (G,H, cG, cH , `) of Prop-
Col LSI, LSIAlg constructs an instance (L,A,B) of Cross Matching as follows (see Fig. ?):
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Denote n = |V (G)|. First, note that by construction, |A| = |B| = n. Thus, because
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Having ' at hand, we will show that (L,A,B) is a Yes-instance, which will imply that the call
to MatchingAlg with (L,A,B) as input returns Yes, and hence LSIAlg returns Yes.
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Moreover, by the definition of A, B and because ' is bijective, it further follows that M is a
perfect matching in L such that every edge in M has one endpoint in A and the other in B.
Thus, to conclude that (L,A,B) is a Yes-instance, it remains to argue that L/M is a clique. To
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in L/M . Necessarily x is a vertex that replaced two vertices u 2 A and v 2 B such that
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Moreover, by the definition of A, B and because ' is bijective, it further follows that M is a
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Lemma 4.1. Unless the ETH is false, there does not exist an algorithm that solves Cross

Matching in time n
o(n)

where n = |A|.

Proof. Targeting a contradiction, suppose that there exists an algorithm, denoted by Matchin-

gAlg, that solves Cross Matching in time no(n). We will show that this implies the existence of
an algorithm, denoted by LSIAlg, that solves Prop-Col LSI in time no(n), thereby contradicting
Lemma 3.1 and hence completing the proof.

We define the execution of LSIAlg as follows. Given an instance (G,H, cG, cH , `) of Prop-
Col LSI, LSIAlg constructs an instance (L,A,B) of Cross Matching as follows (see Fig. ?):

• V (L) = V (G) [ V (H).

• E(L) = E(G) [ E(H) [ {{u, v} : u 2 V (G), v 2 L(u)}.

• A = V (G) and B = V (H).

Then, LSIAlg calls MatchingAlg with (L,A,B) as input, and returns the answer of this call.
Denote n = |V (G)|. First, note that by construction, |A| = |B| = n. Thus, because

MatchingAlg runs in time n
o(n), so does LSIAlg.

For the correctness of the algorithm, first suppose that (G,H, cG, cH , `) is a Yes-instance of
Prop-Col LSI. This means that there exists a bijective function ' : V (G) ! V (H) such that
(i) for every {u, v} 2 E(G), {'(u),'(v)} 2 E(H), and (ii) for every u 2 V (G), '(u) 2 L(u).
Having ' at hand, we will show that (L,A,B) is a Yes-instance, which will imply that the call
to MatchingAlg with (L,A,B) as input returns Yes, and hence LSIAlg returns Yes.

Based on ', we define a subset M ✓ E(L) as follows: M = {{u,'(u)} : u 2 B}. Notice that
the containment of M in E(L) follows from the definition of E(L) and Condition (ii) above.
Moreover, by the definition of A, B and because ' is bijective, it further follows that M is a
perfect matching in L such that every edge in M has one endpoint in A and the other in B.
Thus, to conclude that (L,A,B) is a Yes-instance, it remains to argue that L/M is a clique. To
this end, we consider two arbitrary vertices x and y of L/M , and prove that they are adjacent
in L/M . Necessarily x is a vertex that replaced two vertices u 2 A and v 2 B such that
{u, v} 2 M , and y is a vertex that replaced two vertices u0 2 A \ {u} and v

0 2 B \ {v} such that
{u0, v0} 2 M . By the definition of contraction, to show that x and y are adjacent in L/M , it
su�ces to show that u and v are adjacent in L or u0 and v

0 are adjacent in L (or both). To this
end, suppose that u and v are not adjacent in L, else we are done. By the definition of E(L),
this means that {u, v} /2 E(G) and hence {u, v} 2 E(G). By Condition (i) above, we derive
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Proof. Targeting a contradiction, suppose that there exists an algorithm, denoted by Matchin-

gAlg, that solves Cross Matching in time no(n). We will show that this implies the existence of
an algorithm, denoted by LSIAlg, that solves Prop-Col LSI in time no(n), thereby contradicting
Lemma 3.1 and hence completing the proof.

We define the execution of LSIAlg as follows. Given an instance (G,H, cG, cH , `) of Prop-
Col LSI, LSIAlg constructs an instance (L,A,B) of Cross Matching as follows (see Fig. ?):
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• E(L) = E(G) [ E(H) [ {{u, v} : u 2 V (G), v 2 L(u)}.

• A = V (G) and B = V (H).

Then, LSIAlg calls MatchingAlg with (L,A,B) as input, and returns the answer of this call.
Denote n = |V (G)|. First, note that by construction, |A| = |B| = n. Thus, because

MatchingAlg runs in time n
o(n), so does LSIAlg.

For the correctness of the algorithm, first suppose that (G,H, cG, cH , `) is a Yes-instance of
Prop-Col LSI. This means that there exists a bijective function ' : V (G) ! V (H) such that
(i) for every {u, v} 2 E(G), {'(u),'(v)} 2 E(H), and (ii) for every u 2 V (G), '(u) 2 L(u).
Having ' at hand, we will show that (L,A,B) is a Yes-instance, which will imply that the call
to MatchingAlg with (L,A,B) as input returns Yes, and hence LSIAlg returns Yes.

Based on ', we define a subset M ✓ E(L) as follows: M = {{u,'(u)} : u 2 B}. Notice that
the containment of M in E(L) follows from the definition of E(L) and Condition (ii) above.
Moreover, by the definition of A, B and because ' is bijective, it further follows that M is a
perfect matching in L such that every edge in M has one endpoint in A and the other in B.
Thus, to conclude that (L,A,B) is a Yes-instance, it remains to argue that L/M is a clique. To
this end, we consider two arbitrary vertices x and y of L/M , and prove that they are adjacent
in L/M . Necessarily x is a vertex that replaced two vertices u 2 A and v 2 B such that
{u, v} 2 M , and y is a vertex that replaced two vertices u0 2 A \ {u} and v
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this means that {u, v} /2 E(G) and hence {u, v} 2 E(G). By Condition (i) above, we derive
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Then, LSIAlg calls MatchingAlg with (L,A,B) as input, and returns the answer of this call.
Denote n = |V (G)|. First, note that by construction, |A| = |B| = n. Thus, because

MatchingAlg runs in time n
o(n), so does LSIAlg.

For the correctness of the algorithm, first suppose that (G,H, cG, cH , `) is a Yes-instance of
Prop-Col LSI. This means that there exists a bijective function ' : V (G) ! V (H) such that
(i) for every {u, v} 2 E(G), {'(u),'(v)} 2 E(H), and (ii) for every u 2 V (G), '(u) 2 L(u).
Having ' at hand, we will show that (L,A,B) is a Yes-instance, which will imply that the call
to MatchingAlg with (L,A,B) as input returns Yes, and hence LSIAlg returns Yes.

Based on ', we define a subset M ✓ E(L) as follows: M = {{u,'(u)} : u 2 B}. Notice that
the containment of M in E(L) follows from the definition of E(L) and Condition (ii) above.
Moreover, by the definition of A, B and because ' is bijective, it further follows that M is a
perfect matching in L such that every edge in M has one endpoint in A and the other in B.
Thus, to conclude that (L,A,B) is a Yes-instance, it remains to argue that L/M is a clique. To
this end, we consider two arbitrary vertices x and y of L/M , and prove that they are adjacent
in L/M . Necessarily x is a vertex that replaced two vertices u 2 A and v 2 B such that
{u, v} 2 M , and y is a vertex that replaced two vertices u0 2 A \ {u} and v

0 2 B \ {v} such that
{u0, v0} 2 M . By the definition of contraction, to show that x and y are adjacent in L/M , it
su�ces to show that u and v are adjacent in L or u0 and v
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end, suppose that u and v are not adjacent in L, else we are done. By the definition of E(L),
this means that {u, v} /2 E(G) and hence {u, v} 2 E(G). By Condition (i) above, we derive
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In this section, towards the proof of a lower bound for Clique Contraction, we prove a lower
bound for an intermediate problem called Cross Matching that somewhat resembles Clique

Contraction, and which is defined as follows.
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Input: A graph G with a partition (A,B) of V (G) where |A| = |B|.
Question: Does there exist a perfect matching M in G such that every edge in M has one
endpoint in A and the other in B, and G/M is a clique?

Our objective is to prove the following statement.
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Proof. Targeting a contradiction, suppose that there exists an algorithm, denoted by Matchin-

gAlg, that solves Cross Matching in time no(n). We will show that this implies the existence of
an algorithm, denoted by LSIAlg, that solves Prop-Col LSI in time no(n), thereby contradicting
Lemma 3.1 and hence completing the proof.

We define the execution of LSIAlg as follows. Given an instance (G,H, cG, cH , `) of Prop-
Col LSI, LSIAlg constructs an instance (L,A,B) of Cross Matching as follows (see Fig. ?):

• V (L) = V (G) [ V (H).

• E(L) = E(G) [ E(H) [ {{u, v} : u 2 V (G), v 2 L(u)}.

• A = V (G) and B = V (H).

Then, LSIAlg calls MatchingAlg with (L,A,B) as input, and returns the answer of this call.
Denote n = |V (G)|. First, note that by construction, |A| = |B| = n. Thus, because

MatchingAlg runs in time n
o(n), so does LSIAlg.

For the correctness of the algorithm, first suppose that (G,H, cG, cH , `) is a Yes-instance of
Prop-Col LSI. This means that there exists a bijective function ' : V (G) ! V (H) such that
(i) for every {u, v} 2 E(G), {'(u),'(v)} 2 E(H), and (ii) for every u 2 V (G), '(u) 2 L(u).
Having ' at hand, we will show that (L,A,B) is a Yes-instance, which will imply that the call
to MatchingAlg with (L,A,B) as input returns Yes, and hence LSIAlg returns Yes.

Based on ', we define a subset M ✓ E(L) as follows: M = {{u,'(u)} : u 2 B}. Notice that
the containment of M in E(L) follows from the definition of E(L) and Condition (ii) above.
Moreover, by the definition of A, B and because ' is bijective, it further follows that M is a
perfect matching in L such that every edge in M has one endpoint in A and the other in B.
Thus, to conclude that (L,A,B) is a Yes-instance, it remains to argue that L/M is a clique. To
this end, we consider two arbitrary vertices x and y of L/M , and prove that they are adjacent
in L/M . Necessarily x is a vertex that replaced two vertices u 2 A and v 2 B such that
{u, v} 2 M , and y is a vertex that replaced two vertices u0 2 A \ {u} and v

0 2 B \ {v} such that
{u0, v0} 2 M . By the definition of contraction, to show that x and y are adjacent in L/M , it
su�ces to show that u and v are adjacent in L or u0 and v

0 are adjacent in L (or both). To this
end, suppose that u and v are not adjacent in L, else we are done. By the definition of E(L),
this means that {u, v} /2 E(G) and hence {u, v} 2 E(G). By Condition (i) above, we derive
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4 Lower Bound for the Cross Matching Problem

In this section, towards the proof of a lower bound for Clique Contraction, we prove a lower
bound for an intermediate problem called Cross Matching that somewhat resembles Clique

Contraction, and which is defined as follows.

Cross Matching

Input: A graph G with a partition (A,B) of V (G) where |A| = |B|.
Question: Does there exist a perfect matching M in G such that every edge in M has one
endpoint in A and the other in B, and G/M is a clique?

Our objective is to prove the following statement.

Lemma 4.1. Unless the ETH is false, there does not exist an algorithm that solves Cross

Matching in time n
o(n)

where n = |A|.

Proof. Targeting a contradiction, suppose that there exists an algorithm, denoted by Matchin-

gAlg, that solves Cross Matching in time no(n). We will show that this implies the existence of
an algorithm, denoted by LSIAlg, that solves Prop-Col LSI in time no(n), thereby contradicting
Lemma 3.1 and hence completing the proof.

We define the execution of LSIAlg as follows. Given an instance (G,H, cG, cH , `) of Prop-
Col LSI, LSIAlg constructs an instance (L,A,B) of Cross Matching as follows (see Fig. ?):

• V (L) = V (G) [ V (H).

• E(L) = E(G) [ E(H) [ {{u, v} : u 2 V (G), v 2 L(u)}.

• A = V (G) and B = V (H).

Then, LSIAlg calls MatchingAlg with (L,A,B) as input, and returns the answer of this call.
Denote n = |V (G)|. First, note that by construction, |A| = |B| = n. Thus, because

MatchingAlg runs in time n
o(n), so does LSIAlg.

For the correctness of the algorithm, first suppose that (G,H, cG, cH , `) is a Yes-instance of
Prop-Col LSI. This means that there exists a bijective function ' : V (G) ! V (H) such that
(i) for every {u, v} 2 E(G), {'(u),'(v)} 2 E(H), and (ii) for every u 2 V (G), '(u) 2 L(u).
Having ' at hand, we will show that (L,A,B) is a Yes-instance, which will imply that the call
to MatchingAlg with (L,A,B) as input returns Yes, and hence LSIAlg returns Yes.

Based on ', we define a subset M ✓ E(L) as follows: M = {{u,'(u)} : u 2 B}. Notice that
the containment of M in E(L) follows from the definition of E(L) and Condition (ii) above.
Moreover, by the definition of A, B and because ' is bijective, it further follows that M is a
perfect matching in L such that every edge in M has one endpoint in A and the other in B.
Thus, to conclude that (L,A,B) is a Yes-instance, it remains to argue that L/M is a clique. To
this end, we consider two arbitrary vertices x and y of L/M , and prove that they are adjacent
in L/M . Necessarily x is a vertex that replaced two vertices u 2 A and v 2 B such that
{u, v} 2 M , and y is a vertex that replaced two vertices u0 2 A \ {u} and v

0 2 B \ {v} such that
{u0, v0} 2 M . By the definition of contraction, to show that x and y are adjacent in L/M , it
su�ces to show that u and v are adjacent in L or u0 and v

0 are adjacent in L (or both). To this
end, suppose that u and v are not adjacent in L, else we are done. By the definition of E(L),
this means that {u, v} /2 E(G) and hence {u, v} 2 E(G). By Condition (i) above, we derive
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4 Lower Bound for the Cross Matching Problem

In this section, towards the proof of a lower bound for Clique Contraction, we prove a lower
bound for an intermediate problem called Cross Matching that somewhat resembles Clique

Contraction, and which is defined as follows.
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Input: A graph G with a partition (A,B) of V (G) where |A| = |B|.
Question: Does there exist a perfect matching M in G such that every edge in M has one
endpoint in A and the other in B, and G/M is a clique?

Our objective is to prove the following statement.
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Proof. Targeting a contradiction, suppose that there exists an algorithm, denoted by Matchin-

gAlg, that solves Cross Matching in time no(n). We will show that this implies the existence of
an algorithm, denoted by LSIAlg, that solves Prop-Col LSI in time no(n), thereby contradicting
Lemma 3.1 and hence completing the proof.

We define the execution of LSIAlg as follows. Given an instance (G,H, cG, cH , `) of Prop-
Col LSI, LSIAlg constructs an instance (L,A,B) of Cross Matching as follows (see Fig. ?):

• V (L) = V (G) [ V (H).

• E(L) = E(G) [ E(H) [ {{u, v} : u 2 V (G), v 2 L(u)}.

• A = V (G) and B = V (H).

Then, LSIAlg calls MatchingAlg with (L,A,B) as input, and returns the answer of this call.
Denote n = |V (G)|. First, note that by construction, |A| = |B| = n. Thus, because

MatchingAlg runs in time n
o(n), so does LSIAlg.

For the correctness of the algorithm, first suppose that (G,H, cG, cH , `) is a Yes-instance of
Prop-Col LSI. This means that there exists a bijective function ' : V (G) ! V (H) such that
(i) for every {u, v} 2 E(G), {'(u),'(v)} 2 E(H), and (ii) for every u 2 V (G), '(u) 2 L(u).
Having ' at hand, we will show that (L,A,B) is a Yes-instance, which will imply that the call
to MatchingAlg with (L,A,B) as input returns Yes, and hence LSIAlg returns Yes.

Based on ', we define a subset M ✓ E(L) as follows: M = {{u,'(u)} : u 2 B}. Notice that
the containment of M in E(L) follows from the definition of E(L) and Condition (ii) above.
Moreover, by the definition of A, B and because ' is bijective, it further follows that M is a
perfect matching in L such that every edge in M has one endpoint in A and the other in B.
Thus, to conclude that (L,A,B) is a Yes-instance, it remains to argue that L/M is a clique. To
this end, we consider two arbitrary vertices x and y of L/M , and prove that they are adjacent
in L/M . Necessarily x is a vertex that replaced two vertices u 2 A and v 2 B such that
{u, v} 2 M , and y is a vertex that replaced two vertices u0 2 A \ {u} and v

0 2 B \ {v} such that
{u0, v0} 2 M . By the definition of contraction, to show that x and y are adjacent in L/M , it
su�ces to show that u and v are adjacent in L or u0 and v

0 are adjacent in L (or both). To this
end, suppose that u and v are not adjacent in L, else we are done. By the definition of E(L),
this means that {u, v} /2 E(G) and hence {u, v} 2 E(G). By Condition (i) above, we derive
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4 Lower Bound for the Cross Matching Problem

In this section, towards the proof of a lower bound for Clique Contraction, we prove a lower
bound for an intermediate problem called Cross Matching that somewhat resembles Clique

Contraction, and which is defined as follows.
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Input: A graph G with a partition (A,B) of V (G) where |A| = |B|.
Question: Does there exist a perfect matching M in G such that every edge in M has one
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Our objective is to prove the following statement.
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where n = |A|.

Proof. Targeting a contradiction, suppose that there exists an algorithm, denoted by Matchin-

gAlg, that solves Cross Matching in time no(n). We will show that this implies the existence of
an algorithm, denoted by LSIAlg, that solves Prop-Col LSI in time no(n), thereby contradicting
Lemma 3.1 and hence completing the proof.

We define the execution of LSIAlg as follows. Given an instance (G,H, cG, cH , `) of Prop-
Col LSI, LSIAlg constructs an instance (L,A,B) of Cross Matching as follows (see Fig. ?):

• V (L) = V (G) [ V (H).

• E(L) = E(G) [ E(H) [ {{u, v} : u 2 V (G), v 2 L(u)}.

• A = V (G) and B = V (H).

Then, LSIAlg calls MatchingAlg with (L,A,B) as input, and returns the answer of this call.
Denote n = |V (G)|. First, note that by construction, |A| = |B| = n. Thus, because

MatchingAlg runs in time n
o(n), so does LSIAlg.

For the correctness of the algorithm, first suppose that (G,H, cG, cH , `) is a Yes-instance of
Prop-Col LSI. This means that there exists a bijective function ' : V (G) ! V (H) such that
(i) for every {u, v} 2 E(G), {'(u),'(v)} 2 E(H), and (ii) for every u 2 V (G), '(u) 2 L(u).
Having ' at hand, we will show that (L,A,B) is a Yes-instance, which will imply that the call
to MatchingAlg with (L,A,B) as input returns Yes, and hence LSIAlg returns Yes.

Based on ', we define a subset M ✓ E(L) as follows: M = {{u,'(u)} : u 2 B}. Notice that
the containment of M in E(L) follows from the definition of E(L) and Condition (ii) above.
Moreover, by the definition of A, B and because ' is bijective, it further follows that M is a
perfect matching in L such that every edge in M has one endpoint in A and the other in B.
Thus, to conclude that (L,A,B) is a Yes-instance, it remains to argue that L/M is a clique. To
this end, we consider two arbitrary vertices x and y of L/M , and prove that they are adjacent
in L/M . Necessarily x is a vertex that replaced two vertices u 2 A and v 2 B such that
{u, v} 2 M , and y is a vertex that replaced two vertices u0 2 A \ {u} and v

0 2 B \ {v} such that
{u0, v0} 2 M . By the definition of contraction, to show that x and y are adjacent in L/M , it
su�ces to show that u and v are adjacent in L or u0 and v

0 are adjacent in L (or both). To this
end, suppose that u and v are not adjacent in L, else we are done. By the definition of E(L),
this means that {u, v} /2 E(G) and hence {u, v} 2 E(G). By Condition (i) above, we derive
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gAlg, that solves Cross Matching in time no(n). We will show that this implies the existence of
an algorithm, denoted by LSIAlg, that solves Prop-Col LSI in time no(n), thereby contradicting
Lemma 3.1 and hence completing the proof.

We define the execution of LSIAlg as follows. Given an instance (G,H, cG, cH , `) of Prop-
Col LSI, LSIAlg constructs an instance (L,A,B) of Cross Matching as follows (see Fig. ?):
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• A = V (G) and B = V (H).

Then, LSIAlg calls MatchingAlg with (L,A,B) as input, and returns the answer of this call.
Denote n = |V (G)|. First, note that by construction, |A| = |B| = n. Thus, because
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o(n), so does LSIAlg.

For the correctness of the algorithm, first suppose that (G,H, cG, cH , `) is a Yes-instance of
Prop-Col LSI. This means that there exists a bijective function ' : V (G) ! V (H) such that
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this end, we consider two arbitrary vertices x and y of L/M , and prove that they are adjacent
in L/M . Necessarily x is a vertex that replaced two vertices u 2 A and v 2 B such that
{u, v} 2 M , and y is a vertex that replaced two vertices u0 2 A \ {u} and v

0 2 B \ {v} such that
{u0, v0} 2 M . By the definition of contraction, to show that x and y are adjacent in L/M , it
su�ces to show that u and v are adjacent in L or u0 and v

0 are adjacent in L (or both). To this
end, suppose that u and v are not adjacent in L, else we are done. By the definition of E(L),
this means that {u, v} /2 E(G) and hence {u, v} 2 E(G). By Condition (i) above, we derive

2

Lemma 3.1. Unless the ETH is false, there does not exist an algorithm that solves Prop-Col-

LSI in time n
o(n)

where n = |V (G)|.

TODO

4 Lower Bound for the Cross Matching Problem

In this section, towards the proof of a lower bound for Clique Contraction, we prove a lower
bound for an intermediate problem called Cross Matching that somewhat resembles Clique

Contraction, and which is defined as follows.

Cross Matching

Input: A graph G with a partition (A,B) of V (G) where |A| = |B|.
Question: Does there exist a perfect matching M in G such that every edge in M has one
endpoint in A and the other in B, and G/M is a clique?

Our objective is to prove the following statement.

Lemma 4.1. Unless the ETH is false, there does not exist an algorithm that solves Cross

Matching in time n
o(n)

where n = |A|.

Proof. Targeting a contradiction, suppose that there exists an algorithm, denoted by Matchin-

gAlg, that solves Cross Matching in time no(n). We will show that this implies the existence of
an algorithm, denoted by LSIAlg, that solves Prop-Col LSI in time no(n), thereby contradicting
Lemma 3.1 and hence completing the proof.

We define the execution of LSIAlg as follows. Given an instance (G,H, cG, cH , `) of Prop-
Col LSI, LSIAlg constructs an instance (L,A,B) of Cross Matching as follows (see Fig. ?):

• V (L) = V (G) [ V (H).

• E(L) = E(G) [ E(H) [ {{u, v} : u 2 V (G), v 2 L(u)}.

• A = V (G) and B = V (H).

Then, LSIAlg calls MatchingAlg with (L,A,B) as input, and returns the answer of this call.
Denote n = |V (G)|. First, note that by construction, |A| = |B| = n. Thus, because

MatchingAlg runs in time n
o(n), so does LSIAlg.

For the correctness of the algorithm, first suppose that (G,H, cG, cH , `) is a Yes-instance of
Prop-Col LSI. This means that there exists a bijective function ' : V (G) ! V (H) such that
(i) for every {u, v} 2 E(G), {'(u),'(v)} 2 E(H), and (ii) for every u 2 V (G), '(u) 2 L(u).
Having ' at hand, we will show that (L,A,B) is a Yes-instance, which will imply that the call
to MatchingAlg with (L,A,B) as input returns Yes, and hence LSIAlg returns Yes.

Based on ', we define a subset M ✓ E(L) as follows: M = {{u,'(u)} : u 2 B}. Notice that
the containment of M in E(L) follows from the definition of E(L) and Condition (ii) above.
Moreover, by the definition of A, B and because ' is bijective, it further follows that M is a
perfect matching in L such that every edge in M has one endpoint in A and the other in B.
Thus, to conclude that (L,A,B) is a Yes-instance, it remains to argue that L/M is a clique. To
this end, we consider two arbitrary vertices x and y of L/M , and prove that they are adjacent
in L/M . Necessarily x is a vertex that replaced two vertices u 2 A and v 2 B such that
{u, v} 2 M , and y is a vertex that replaced two vertices u0 2 A \ {u} and v

0 2 B \ {v} such that
{u0, v0} 2 M . By the definition of contraction, to show that x and y are adjacent in L/M , it
su�ces to show that u and v are adjacent in L or u0 and v

0 are adjacent in L (or both). To this
end, suppose that u and v are not adjacent in L, else we are done. By the definition of E(L),
this means that {u, v} /2 E(G) and hence {u, v} 2 E(G). By Condition (i) above, we derive

2

Lemma 3.1. Unless the ETH is false, there does not exist an algorithm that solves Prop-Col-

LSI in time n
o(n)

where n = |V (G)|.

TODO

4 Lower Bound for the Cross Matching Problem

In this section, towards the proof of a lower bound for Clique Contraction, we prove a lower
bound for an intermediate problem called Cross Matching that somewhat resembles Clique

Contraction, and which is defined as follows.

Cross Matching

Input: A graph G with a partition (A,B) of V (G) where |A| = |B|.
Question: Does there exist a perfect matching M in G such that every edge in M has one
endpoint in A and the other in B, and G/M is a clique?

Our objective is to prove the following statement.

Lemma 4.1. Unless the ETH is false, there does not exist an algorithm that solves Cross

Matching in time n
o(n)

where n = |A|.

Proof. Targeting a contradiction, suppose that there exists an algorithm, denoted by Matchin-

gAlg, that solves Cross Matching in time no(n). We will show that this implies the existence of
an algorithm, denoted by LSIAlg, that solves Prop-Col LSI in time no(n), thereby contradicting
Lemma 3.1 and hence completing the proof.

We define the execution of LSIAlg as follows. Given an instance (G,H, cG, cH , `) of Prop-
Col LSI, LSIAlg constructs an instance (L,A,B) of Cross Matching as follows (see Fig. ?):

• V (L) = V (G) [ V (H).

• E(L) = E(G) [ E(H) [ {{u, v} : u 2 V (G), v 2 L(u)}.

• A = V (G) and B = V (H).

Then, LSIAlg calls MatchingAlg with (L,A,B) as input, and returns the answer of this call.
Denote n = |V (G)|. First, note that by construction, |A| = |B| = n. Thus, because

MatchingAlg runs in time n
o(n), so does LSIAlg.

For the correctness of the algorithm, first suppose that (G,H, cG, cH , `) is a Yes-instance of
Prop-Col LSI. This means that there exists a bijective function ' : V (G) ! V (H) such that
(i) for every {u, v} 2 E(G), {'(u),'(v)} 2 E(H), and (ii) for every u 2 V (G), '(u) 2 L(u).
Having ' at hand, we will show that (L,A,B) is a Yes-instance, which will imply that the call
to MatchingAlg with (L,A,B) as input returns Yes, and hence LSIAlg returns Yes.

Based on ', we define a subset M ✓ E(L) as follows: M = {{u,'(u)} : u 2 B}. Notice that
the containment of M in E(L) follows from the definition of E(L) and Condition (ii) above.
Moreover, by the definition of A, B and because ' is bijective, it further follows that M is a
perfect matching in L such that every edge in M has one endpoint in A and the other in B.
Thus, to conclude that (L,A,B) is a Yes-instance, it remains to argue that L/M is a clique. To
this end, we consider two arbitrary vertices x and y of L/M , and prove that they are adjacent
in L/M . Necessarily x is a vertex that replaced two vertices u 2 A and v 2 B such that
{u, v} 2 M , and y is a vertex that replaced two vertices u0 2 A \ {u} and v

0 2 B \ {v} such that
{u0, v0} 2 M . By the definition of contraction, to show that x and y are adjacent in L/M , it
su�ces to show that u and v are adjacent in L or u0 and v

0 are adjacent in L (or both). To this
end, suppose that u and v are not adjacent in L, else we are done. By the definition of E(L),
this means that {u, v} /2 E(G) and hence {u, v} 2 E(G). By Condition (i) above, we derive

2

Lemma 3.1. Unless the ETH is false, there does not exist an algorithm that solves Prop-Col-

LSI in time n
o(n)

where n = |V (G)|.

TODO

4 Lower Bound for the Cross Matching Problem

In this section, towards the proof of a lower bound for Clique Contraction, we prove a lower
bound for an intermediate problem called Cross Matching that somewhat resembles Clique

Contraction, and which is defined as follows.

Cross Matching

Input: A graph G with a partition (A,B) of V (G) where |A| = |B|.
Question: Does there exist a perfect matching M in G such that every edge in M has one
endpoint in A and the other in B, and G/M is a clique?

Our objective is to prove the following statement.

Lemma 4.1. Unless the ETH is false, there does not exist an algorithm that solves Cross

Matching in time n
o(n)

where n = |A|.

Proof. Targeting a contradiction, suppose that there exists an algorithm, denoted by Matchin-

gAlg, that solves Cross Matching in time no(n). We will show that this implies the existence of
an algorithm, denoted by LSIAlg, that solves Prop-Col LSI in time no(n), thereby contradicting
Lemma 3.1 and hence completing the proof.

We define the execution of LSIAlg as follows. Given an instance (G,H, cG, cH , `) of Prop-
Col LSI, LSIAlg constructs an instance (L,A,B) of Cross Matching as follows (see Fig. ?):

• V (L) = V (G) [ V (H).

• E(L) = E(G) [ E(H) [ {{u, v} : u 2 V (G), v 2 L(u)}.

• A = V (G) and B = V (H).

Then, LSIAlg calls MatchingAlg with (L,A,B) as input, and returns the answer of this call.
Denote n = |V (G)|. First, note that by construction, |A| = |B| = n. Thus, because

MatchingAlg runs in time n
o(n), so does LSIAlg.

For the correctness of the algorithm, first suppose that (G,H, cG, cH , `) is a Yes-instance of
Prop-Col LSI. This means that there exists a bijective function ' : V (G) ! V (H) such that
(i) for every {u, v} 2 E(G), {'(u),'(v)} 2 E(H), and (ii) for every u 2 V (G), '(u) 2 L(u).
Having ' at hand, we will show that (L,A,B) is a Yes-instance, which will imply that the call
to MatchingAlg with (L,A,B) as input returns Yes, and hence LSIAlg returns Yes.

Based on ', we define a subset M ✓ E(L) as follows: M = {{u,'(u)} : u 2 B}. Notice that
the containment of M in E(L) follows from the definition of E(L) and Condition (ii) above.
Moreover, by the definition of A, B and because ' is bijective, it further follows that M is a
perfect matching in L such that every edge in M has one endpoint in A and the other in B.
Thus, to conclude that (L,A,B) is a Yes-instance, it remains to argue that L/M is a clique. To
this end, we consider two arbitrary vertices x and y of L/M , and prove that they are adjacent
in L/M . Necessarily x is a vertex that replaced two vertices u 2 A and v 2 B such that
{u, v} 2 M , and y is a vertex that replaced two vertices u0 2 A \ {u} and v

0 2 B \ {v} such that
{u0, v0} 2 M . By the definition of contraction, to show that x and y are adjacent in L/M , it
su�ces to show that u and v are adjacent in L or u0 and v

0 are adjacent in L (or both). To this
end, suppose that u and v are not adjacent in L, else we are done. By the definition of E(L),
this means that {u, v} /2 E(G) and hence {u, v} 2 E(G). By Condition (i) above, we derive

2

Lemma 3.1. Unless the ETH is false, there does not exist an algorithm that solves Prop-Col-

LSI in time n
o(n)

where n = |V (G)|.

TODO

4 Lower Bound for the Cross Matching Problem

In this section, towards the proof of a lower bound for Clique Contraction, we prove a lower
bound for an intermediate problem called Cross Matching that somewhat resembles Clique

Contraction, and which is defined as follows.

Cross Matching

Input: A graph G with a partition (A,B) of V (G) where |A| = |B|.
Question: Does there exist a perfect matching M in G such that every edge in M has one
endpoint in A and the other in B, and G/M is a clique?

Our objective is to prove the following statement.

Lemma 4.1. Unless the ETH is false, there does not exist an algorithm that solves Cross

Matching in time n
o(n)

where n = |A|.

Proof. Targeting a contradiction, suppose that there exists an algorithm, denoted by Matchin-

gAlg, that solves Cross Matching in time no(n). We will show that this implies the existence of
an algorithm, denoted by LSIAlg, that solves Prop-Col LSI in time no(n), thereby contradicting
Lemma 3.1 and hence completing the proof.

We define the execution of LSIAlg as follows. Given an instance (G,H, cG, cH , `) of Prop-
Col LSI, LSIAlg constructs an instance (L,A,B) of Cross Matching as follows (see Fig. ?):

• V (L) = V (G) [ V (H).

• E(L) = E(G) [ E(H) [ {{u, v} : u 2 V (G), v 2 L(u)}.

• A = V (G) and B = V (H).

Then, LSIAlg calls MatchingAlg with (L,A,B) as input, and returns the answer of this call.
Denote n = |V (G)|. First, note that by construction, |A| = |B| = n. Thus, because

MatchingAlg runs in time n
o(n), so does LSIAlg.

For the correctness of the algorithm, first suppose that (G,H, cG, cH , `) is a Yes-instance of
Prop-Col LSI. This means that there exists a bijective function ' : V (G) ! V (H) such that
(i) for every {u, v} 2 E(G), {'(u),'(v)} 2 E(H), and (ii) for every u 2 V (G), '(u) 2 L(u).
Having ' at hand, we will show that (L,A,B) is a Yes-instance, which will imply that the call
to MatchingAlg with (L,A,B) as input returns Yes, and hence LSIAlg returns Yes.

Based on ', we define a subset M ✓ E(L) as follows: M = {{u,'(u)} : u 2 B}. Notice that
the containment of M in E(L) follows from the definition of E(L) and Condition (ii) above.
Moreover, by the definition of A, B and because ' is bijective, it further follows that M is a
perfect matching in L such that every edge in M has one endpoint in A and the other in B.
Thus, to conclude that (L,A,B) is a Yes-instance, it remains to argue that L/M is a clique. To
this end, we consider two arbitrary vertices x and y of L/M , and prove that they are adjacent
in L/M . Necessarily x is a vertex that replaced two vertices u 2 A and v 2 B such that
{u, v} 2 M , and y is a vertex that replaced two vertices u0 2 A \ {u} and v

0 2 B \ {v} such that
{u0, v0} 2 M . By the definition of contraction, to show that x and y are adjacent in L/M , it
su�ces to show that u and v are adjacent in L or u0 and v

0 are adjacent in L (or both). To this
end, suppose that u and v are not adjacent in L, else we are done. By the definition of E(L),
this means that {u, v} /2 E(G) and hence {u, v} 2 E(G). By Condition (i) above, we derive

2

Lemma 3.1. Unless the ETH is false, there does not exist an algorithm that solves Prop-Col-

LSI in time n
o(n)

where n = |V (G)|.

TODO
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Contraction, and which is defined as follows.
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Matching in time n
o(n)
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Denote n = |V (G)|. First, note that by construction, |A| = |B| = n. Thus, because
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in L/M . Necessarily x is a vertex that replaced two vertices u 2 A and v 2 B such that
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Moreover, by the definition of A, B and because ' is bijective, it further follows that M is a
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Based on ', we define a subset M ✓ E(L) as follows: M = {{u,'(u)} : u 2 B}. Notice that
the containment of M in E(L) follows from the definition of E(L) and Condition (ii) above.
Moreover, by the definition of A, B and because ' is bijective, it further follows that M is a
perfect matching in L such that every edge in M has one endpoint in A and the other in B.
Thus, to conclude that (L,A,B) is a Yes-instance, it remains to argue that L/M is a clique. To
this end, we consider two arbitrary vertices x and y of L/M , and prove that they are adjacent
in L/M . Necessarily x is a vertex that replaced two vertices u 2 A and v 2 B such that
{u, v} 2 M , and y is a vertex that replaced two vertices u0 2 A \ {u} and v
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In this section, towards the proof of a lower bound for Clique Contraction, we prove a lower
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Moreover, by the definition of A, B and because ' is bijective, it further follows that M is a
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Lemma 3.1 and hence completing the proof.

We define the execution of LSIAlg as follows. Given an instance (G,H, cG, cH , `) of Prop-
Col LSI, LSIAlg constructs an instance (L,A,B) of Cross Matching as follows (see Fig. ?):

• V (L) = V (G) [ V (H).

• E(L) = E(G) [ E(H) [ {{u, v} : u 2 V (G), v 2 L(u)}.

• A = V (G) and B = V (H).

Then, LSIAlg calls MatchingAlg with (L,A,B) as input, and returns the answer of this call.
Denote n = |V (G)|. First, note that by construction, |A| = |B| = n. Thus, because

MatchingAlg runs in time n
o(n), so does LSIAlg.

For the correctness of the algorithm, first suppose that (G,H, cG, cH , `) is a Yes-instance of
Prop-Col LSI. This means that there exists a bijective function ' : V (G) ! V (H) such that
(i) for every {u, v} 2 E(G), {'(u),'(v)} 2 E(H), and (ii) for every u 2 V (G), '(u) 2 L(u).
Having ' at hand, we will show that (L,A,B) is a Yes-instance, which will imply that the call
to MatchingAlg with (L,A,B) as input returns Yes, and hence LSIAlg returns Yes.

Based on ', we define a subset M ✓ E(L) as follows: M = {{u,'(u)} : u 2 B}. Notice that
the containment of M in E(L) follows from the definition of E(L) and Condition (ii) above.
Moreover, by the definition of A, B and because ' is bijective, it further follows that M is a
perfect matching in L such that every edge in M has one endpoint in A and the other in B.
Thus, to conclude that (L,A,B) is a Yes-instance, it remains to argue that L/M is a clique. To
this end, we consider two arbitrary vertices x and y of L/M , and prove that they are adjacent
in L/M . Necessarily x is a vertex that replaced two vertices u 2 A and v 2 B such that
{u, v} 2 M , and y is a vertex that replaced two vertices u0 2 A \ {u} and v

0 2 B \ {v} such that
{u0, v0} 2 M . By the definition of contraction, to show that x and y are adjacent in L/M , it
su�ces to show that u and v are adjacent in L or u0 and v

0 are adjacent in L (or both). To this
end, suppose that u and v are not adjacent in L, else we are done. By the definition of E(L),
this means that {u, v} /2 E(G) and hence {u, v} 2 E(G). By Condition (i) above, we derive
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4 Lower Bound for the Cross Matching Problem

In this section, towards the proof of a lower bound for Clique Contraction, we prove a lower
bound for an intermediate problem called Cross Matching that somewhat resembles Clique

Contraction, and which is defined as follows.
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Input: A graph G with a partition (A,B) of V (G) where |A| = |B|.
Question: Does there exist a perfect matching M in G such that every edge in M has one
endpoint in A and the other in B, and G/M is a clique?
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o(n)
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Proof. Targeting a contradiction, suppose that there exists an algorithm, denoted by Matchin-
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• E(L) = E(G) [ E(H) [ {{u, v} : u 2 V (G), v 2 L(u)}.
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Then, LSIAlg calls MatchingAlg with (L,A,B) as input, and returns the answer of this call.
Denote n = |V (G)|. First, note that by construction, |A| = |B| = n. Thus, because

MatchingAlg runs in time n
o(n), so does LSIAlg.

For the correctness of the algorithm, first suppose that (G,H, cG, cH , `) is a Yes-instance of
Prop-Col LSI. This means that there exists a bijective function ' : V (G) ! V (H) such that
(i) for every {u, v} 2 E(G), {'(u),'(v)} 2 E(H), and (ii) for every u 2 V (G), '(u) 2 L(u).
Having ' at hand, we will show that (L,A,B) is a Yes-instance, which will imply that the call
to MatchingAlg with (L,A,B) as input returns Yes, and hence LSIAlg returns Yes.

Based on ', we define a subset M ✓ E(L) as follows: M = {{u,'(u)} : u 2 B}. Notice that
the containment of M in E(L) follows from the definition of E(L) and Condition (ii) above.
Moreover, by the definition of A, B and because ' is bijective, it further follows that M is a
perfect matching in L such that every edge in M has one endpoint in A and the other in B.
Thus, to conclude that (L,A,B) is a Yes-instance, it remains to argue that L/M is a clique. To
this end, we consider two arbitrary vertices x and y of L/M , and prove that they are adjacent
in L/M . Necessarily x is a vertex that replaced two vertices u 2 A and v 2 B such that
{u, v} 2 M , and y is a vertex that replaced two vertices u0 2 A \ {u} and v

0 2 B \ {v} such that
{u0, v0} 2 M . By the definition of contraction, to show that x and y are adjacent in L/M , it
su�ces to show that u and v are adjacent in L or u0 and v

0 are adjacent in L (or both). To this
end, suppose that u and v are not adjacent in L, else we are done. By the definition of E(L),
this means that {u, v} /2 E(G) and hence {u, v} 2 E(G). By Condition (i) above, we derive
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Lemma 3.1. Unless the ETH is false, there does not exist an algorithm that solves Prop-Col-

LSI in time n
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where n = |V (G)|.
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4 Lower Bound for the Cross Matching Problem

In this section, towards the proof of a lower bound for Clique Contraction, we prove a lower
bound for an intermediate problem called Cross Matching that somewhat resembles Clique

Contraction, and which is defined as follows.

Cross Matching

Input: A graph G with a partition (A,B) of V (G) where |A| = |B|.
Question: Does there exist a perfect matching M in G such that every edge in M has one
endpoint in A and the other in B, and G/M is a clique?

Our objective is to prove the following statement.

Lemma 4.1. Unless the ETH is false, there does not exist an algorithm that solves Cross

Matching in time n
o(n)

where n = |A|.

Proof. Targeting a contradiction, suppose that there exists an algorithm, denoted by Matchin-

gAlg, that solves Cross Matching in time no(n). We will show that this implies the existence of
an algorithm, denoted by LSIAlg, that solves Prop-Col LSI in time no(n), thereby contradicting
Lemma 3.1 and hence completing the proof.

We define the execution of LSIAlg as follows. Given an instance (G,H, cG, cH , `) of Prop-
Col LSI, LSIAlg constructs an instance (L,A,B) of Cross Matching as follows (see Fig. ?):

• V (L) = V (G) [ V (H).

• E(L) = E(G) [ E(H) [ {{u, v} : u 2 V (G), v 2 L(u)}.

• A = V (G) and B = V (H).

Then, LSIAlg calls MatchingAlg with (L,A,B) as input, and returns the answer of this call.
Denote n = |V (G)|. First, note that by construction, |A| = |B| = n. Thus, because

MatchingAlg runs in time n
o(n), so does LSIAlg.

For the correctness of the algorithm, first suppose that (G,H, cG, cH , `) is a Yes-instance of
Prop-Col LSI. This means that there exists a bijective function ' : V (G) ! V (H) such that
(i) for every {u, v} 2 E(G), {'(u),'(v)} 2 E(H), and (ii) for every u 2 V (G), '(u) 2 L(u).
Having ' at hand, we will show that (L,A,B) is a Yes-instance, which will imply that the call
to MatchingAlg with (L,A,B) as input returns Yes, and hence LSIAlg returns Yes.

Based on ', we define a subset M ✓ E(L) as follows: M = {{u,'(u)} : u 2 B}. Notice that
the containment of M in E(L) follows from the definition of E(L) and Condition (ii) above.
Moreover, by the definition of A, B and because ' is bijective, it further follows that M is a
perfect matching in L such that every edge in M has one endpoint in A and the other in B.
Thus, to conclude that (L,A,B) is a Yes-instance, it remains to argue that L/M is a clique. To
this end, we consider two arbitrary vertices x and y of L/M , and prove that they are adjacent
in L/M . Necessarily x is a vertex that replaced two vertices u 2 A and v 2 B such that
{u, v} 2 M , and y is a vertex that replaced two vertices u0 2 A \ {u} and v

0 2 B \ {v} such that
{u0, v0} 2 M . By the definition of contraction, to show that x and y are adjacent in L/M , it
su�ces to show that u and v are adjacent in L or u0 and v

0 are adjacent in L (or both). To this
end, suppose that u and v are not adjacent in L, else we are done. By the definition of E(L),
this means that {u, v} /2 E(G) and hence {u, v} 2 E(G). By Condition (i) above, we derive
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Lemma 3.1. Unless the ETH is false, there does not exist an algorithm that solves Prop-Col-

LSI in time n
o(n)

where n = |V (G)|.

TODO

4 Lower Bound for the Cross Matching Problem

In this section, towards the proof of a lower bound for Clique Contraction, we prove a lower
bound for an intermediate problem called Cross Matching that somewhat resembles Clique

Contraction, and which is defined as follows.

Cross Matching

Input: A graph G with a partition (A,B) of V (G) where |A| = |B|.
Question: Does there exist a perfect matching M in G such that every edge in M has one
endpoint in A and the other in B, and G/M is a clique?

Our objective is to prove the following statement.

Lemma 4.1. Unless the ETH is false, there does not exist an algorithm that solves Cross

Matching in time n
o(n)

where n = |A|.

Proof. Targeting a contradiction, suppose that there exists an algorithm, denoted by Matchin-

gAlg, that solves Cross Matching in time no(n). We will show that this implies the existence of
an algorithm, denoted by LSIAlg, that solves Prop-Col LSI in time no(n), thereby contradicting
Lemma 3.1 and hence completing the proof.

We define the execution of LSIAlg as follows. Given an instance (G,H, cG, cH , `) of Prop-
Col LSI, LSIAlg constructs an instance (L,A,B) of Cross Matching as follows (see Fig. ?):

• V (L) = V (G) [ V (H).

• E(L) = E(G) [ E(H) [ {{u, v} : u 2 V (G), v 2 L(u)}.

• A = V (G) and B = V (H).

Then, LSIAlg calls MatchingAlg with (L,A,B) as input, and returns the answer of this call.
Denote n = |V (G)|. First, note that by construction, |A| = |B| = n. Thus, because

MatchingAlg runs in time n
o(n), so does LSIAlg.

For the correctness of the algorithm, first suppose that (G,H, cG, cH , `) is a Yes-instance of
Prop-Col LSI. This means that there exists a bijective function ' : V (G) ! V (H) such that
(i) for every {u, v} 2 E(G), {'(u),'(v)} 2 E(H), and (ii) for every u 2 V (G), '(u) 2 L(u).
Having ' at hand, we will show that (L,A,B) is a Yes-instance, which will imply that the call
to MatchingAlg with (L,A,B) as input returns Yes, and hence LSIAlg returns Yes.

Based on ', we define a subset M ✓ E(L) as follows: M = {{u,'(u)} : u 2 B}. Notice that
the containment of M in E(L) follows from the definition of E(L) and Condition (ii) above.
Moreover, by the definition of A, B and because ' is bijective, it further follows that M is a
perfect matching in L such that every edge in M has one endpoint in A and the other in B.
Thus, to conclude that (L,A,B) is a Yes-instance, it remains to argue that L/M is a clique. To
this end, we consider two arbitrary vertices x and y of L/M , and prove that they are adjacent
in L/M . Necessarily x is a vertex that replaced two vertices u 2 A and v 2 B such that
{u, v} 2 M , and y is a vertex that replaced two vertices u0 2 A \ {u} and v

0 2 B \ {v} such that
{u0, v0} 2 M . By the definition of contraction, to show that x and y are adjacent in L/M , it
su�ces to show that u and v are adjacent in L or u0 and v

0 are adjacent in L (or both). To this
end, suppose that u and v are not adjacent in L, else we are done. By the definition of E(L),
this means that {u, v} /2 E(G) and hence {u, v} 2 E(G). By Condition (i) above, we derive
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Cross Matching

Noisy Structured Clique Contraction
special case: Clique Contraction

Hadwiger Number Split Contraction, 
Complete Split Contraction

Perfect Contraction Non-Trivial Chordal Contraction
special cases: Chordal Contraction, 

Interval Contraction, Proper Interval 
Contraction, Threshold Contraction, 

Trivially Perfect Contraction



Cross Matching problem. Given a graph L with a partition (A,B) of
its vertex set, does there exist a perfect matching between A and B
whose contraction in G yields a clique?

Relation to Clique Contraction?
In one direction, a solution to Cross Matching is clearly a solution to
Clique Contraction.



In the other direction, a solution to Clique Contraction might not be
a solution to Cross Matching. We add vertices and edges to the
graph in an instance of Cross Matching to enforce all solutions to be
perfect matchings between A and B.
Further, we show that the addition of “noise” (extra vertices and
edges incident to them) to the core graph has limited “effect”: It is
not helpful to contract them in order to “fill” non-edges in the core.
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Cross Matching

Noisy Structured Clique Contraction
special case: Clique Contraction

Hadwiger Number Split Contraction, 
Complete Split Contraction

Perfect Contraction Non-Trivial Chordal Contraction
special cases: Chordal Contraction, 

Interval Contraction, Proper Interval 
Contraction, Threshold Contraction, 

Trivially Perfect Contraction



In the other direction, a solution to Clique Contraction might not be
a solution to Cross Matching. We add vertices and edges to the
graph in an instance of Cross Matching to enforce all solutions to be
perfect matchings between A and B.
Further, we show that the addition of “noise” (extra vertices and
edges incident to them) to the core graph has limited “effect”: It is
not helpful to contract them in order to “fill” non-edges in the core.

Depending on the contraction problem at hand, the noise is slightly
different, but the proof technique is essentially the same: First show
that the core must yield a clique (e.g., to obtain a chordal graph), and
then show that the noise is “irrelevant”.





Theorem. Unless the ETH is false, Structured Clique Contraction
cannot be solved in no(n) time.

Corollary. Unless the ETH is false, Clique Contraction cannot be
solved in no(n) time.



Lemma. Let F be a solution to an instance (G,A,B,C,D,N,n) of
Structured Clique Contraction. Then, F is a matching of size n,
where each edge has one endpoint in A and the other in B.

In proofs. Let P be a contraction problem. Given an instance
I=(G,A,B,C,D,{},n) of Structured Clique Contraction, construct an
instance I’ of P (that can be viewed as an instance (G,A,B,C,D,N,n) of
Structured Clique Contraction).



Lemma. Let F be a solution to an instance (G,A,B,C,D,N,n) of
Structured Clique Contraction. Then, F is a matching of size n,
where each edge has one endpoint in A and the other in B.

In proofs. Let P be a contraction problem. Given an instance
I=(G,A,B,C,D,{},n) of Structured Clique Contraction, construct an
instance I’ of P (that can be viewed as an instance (G,A,B,C,D,N,n) of
Structured Clique Contraction).

Chordal Contraction



Lemma. Let F be a solution to an instance (G,A,B,C,D,N,n) of
Structured Clique Contraction. Then, F is a matching of size n,
where each edge has one endpoint in A and the other in B.

In proofs. Let P be a contraction problem. Given an instance
I=(G,A,B,C,D,{},n) of Structured Clique Contraction, construct an
instance I’ of P (that can be viewed as an instance (G,A,B,C,D,N,n) of
Structured Clique Contraction).

Chordal Contraction

I. I has a solution.
→ I’ has the same solution.



Lemma. Let F be a solution to an instance (G,A,B,C,D,N,n) of
Structured Clique Contraction. Then, F is a matching of size n,
where each edge has one endpoint in A and the other in B.

In proofs. Let P be a contraction problem. Given an instance
I=(G,A,B,C,D,{},n) of Structured Clique Contraction, construct an
instance I’ of P (that can be viewed as an instance (G,A,B,C,D,N,n) of
Structured Clique Contraction).

Chordal Contraction

II. I’ has a solution.
→ …
→ I’ as an instance of SCC has a solution.



Lemma. Let F be a solution to an instance (G,A,B,C,D,N,n) of
Structured Clique Contraction. Then, F is a matching of size n,
where each edge has one endpoint in A and the other in B.

In proofs. Let P be a contraction problem. Given an instance
I=(G,A,B,C,D,{},n) of Structured Clique Contraction, construct an
instance I’ of P (that can be viewed as an instance (G,A,B,C,D,N,n) of
Structured Clique Contraction).

Chordal Contraction

II. I’ has a solution.
→ …
→ I’ as an instance of SCC has a solution.
→ By the lemma, it is also a solution to I.
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Noisy Structured Clique Contraction
special case: Clique Contraction
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Non-trivial Chordal Graph Class. A graph class is a non-trivial
chordal class if it is a subclass of the class of chordal graphs, and a
superclass of the class of graphs that are the union of two cliques.



Non-trivial Chordal Graph Class. A graph class is a non-trivial
chordal class if it is a subclass of the class of chordal graphs, and a
superclass of the class of graphs that are the union of two cliques.

Theorem. Let C be a non-trivial graph class.
Unless the ETH is false, C-Contraction cannot be
solved in no(n) time.




