Computation of Hadwiger Number and Related Contraction Problems: Tight Lower Bound

Fedor V. Fomin Daniel Lokshtanov Ivan Mihajlin Saket Saurabh Meirav Zehavi

https://sites.google.com/site/zehavimeirav/

Introduction

Overview of Our Contribution

Some Technical Details

Alternatively (informal). *H* is a minor of *G* if we can find pairwise disjoint connected subsets of *V*(*G*) to map to the vertices in *H*, and connect them by edges as dictated by *H*.

Hadwiger number of a graph G. The largest h such that K_h (the clique on h vertices) is a minor of G.

Hadwiger number of a graph G. The largest h such that K_h (the clique on h vertices) is a minor of G.

Can be trivially solved in time $n^{O(n)}$.

Hadwiger number of a graph G. The largest h such that K_h (the clique on h vertices) is a minor of G.

Can be trivially solved in time $n^{O(n)}$.

Open question. Can it be solved in time 2^{O(n)}? (Asked in several venues.)

Graph Minor problem. Given two graphs G and H, is H a minor of G?

Graph Minor problem. Given two graphs *G* and *H*, is *H* a minor of *G*?

The Graph Minor project is the inspiration behind Parameterized Complexity, and central to other research areas as well.

Survey. LSZ: *Efficient Graph Minors Theory and Parameterized Algorithms for (Planar) Disjoint Paths.* Treewidth, Kernels and Algorithms, 2020.

Graph Minor problem. Given two graphs G and H, is H a minor of G?

On general graphs. • FPT, that is, solvable in time $f(h)n^{O(1)}$. [RS'95]

Unless the ETH fails, not solvable in time n^{o(n)} where n=h.
 [CFGKMPS'16]. Tight.

We consider the case where *H* is a clique.

I. Subgraph Isomorphism problem. Given two graphs *G* and *H*, does *G* contain a subgraph isomorphic to *H*?

Introduction

I. Subgraph Isomorphism problem. Given two graphs *G* and *H*, does *G* contain a subgraph isomorphic to *H*?

On general graphs. • W[1]-hard (unlikely to be solved in $f(h)n^{O(1)}$).

- Can be solved in time n^{O(h)}.
- Unless the ETH fails, cannot be solved in time n^{o(n)} where n=h.
 [CFGKMPS'16]

Introduction

I. Subgraph Isomorphism problem. Given two graphs *G* and *H*, does *G* contain a subgraph isomorphic to *H*?

When *H* is a clique. • W[1]-hard.

• Can be solved in time $2^{O(n)}$.

On general graphs. • para-NP-hard (NP-hard even when *h*=3).

• Can be solved in time $h^{O(n)}$.

Unless the ETH fails, cannot be solved in time h^{o(n)} where n=h.
 [CFGKMPS'16]

When *H* is a clique. • Equivalent to *h*-Coloring.

- para-NP-hard (NP-hard even when *h*=3).
- Can be solved in time 2^{*O*(*n*)}. [BHK'09, L'76]

When G is a clique. • Equivalent to Subgraph Isomorphism where we swap the roles of G and H.

• Can be solved in time 2^{O(h)}.

III. Topological Graph Minor problem. Given two graphs *G* and *H*, is *H* a **topological minor** of *G*?

- Only contract edges incident to at least one degree-2 vertex. Alternatively, the connected subsets are singletons, and pairwise vertex disjoint paths map to edges.
- Perhaps the closest relative to the Graph Minor problem.

Introduction

III. Topological Graph Minor problem. Given two graphs *G* and *H*, is *H* a topological minor of *G*?

On general graphs. • FPT. [GKMW'11]

- Can be solved in time $n^{O(n)}$.
- Unless the ETH fails, cannot be solved in time n^{o(n)} where n=h.
 [CFGKMPS'16]

III. Topological Graph Minor problem. Given two graphs *G* and *H*, is *H* a topological minor of *G*?

When *H* is a clique. • FPT. [GKMW'11]

• Can be solved in time $2^{O(n)}$. [LW'09]

<i>H</i> is a clique	Subgraph Isomorphism	Graph Homomorphism	Topological Graph Minor	Graph Minor (Hadwiger Number)
FPT?	No	No	Yes	Yes
2 ⁰⁽ⁿ⁾ ?	Yes	Yes	Yes	???

Introduction

Overview of Our Contribution

Some Technical Details

Overview of Our Contribution

<i>H</i> is a clique	Subgraph Isomorphism	Graph Homomorphism	Topological Graph Minor	Graph Minor (Hadwiger Number)
FPT?	No	No	Yes	Yes
2 ⁰⁽ⁿ⁾ ?	Yes	Yes	Yes	No

Theorem. Unless the ETH fails, the Hadwiger Number problem cannot be solved in time $n^{o(n)}$.

Solves the open question in the beginning of this presentation.

Overview of Our Contribution

<i>H</i> is a clique	Subgraph Isomorphism	Graph Homomorphism	Topological Graph Minor	Graph Minor (Hadwiger Number)
FPT?	No	No	Yes	Yes
2 ⁰⁽ⁿ⁾ ?	Yes	Yes	Yes	No

Corollary. Unless the ETH fails, the Clique Contraction problem (can we contract at most k edges in a given graph G to obtain a clique) cannot be solved in time $n^{o(n)}$.

Solves an open question by [CFGKMPS'16].

F-Contraction. Given a graph G and non-negative integer t, can we contract at most t edges in G to obtain a graph in F?

F-Contraction. Given a graph G and non-negative integer t, can we contract at most t edges in G to obtain a graph in F?

Consequences of our approach. Unless the ETH fails, none of the following problems can be solved in time $n^{o(n)}$:

- Clique Contraction.
- Chordal Graph Contraction.
- Interval Graph Contraction.
- Proper Interval Graph Contraction.
- Threshold Graph Contraction.
- Perfect Graph Contraction.
- Trivially Perfect Graph Contraction.
- Split Graph Contraction.
- Perfect Split Graph Contraction.

If G is connected, then we can contract at most k edges to obtain a clique if and only the Hadwiger number of G is *n*-k.

Introduction

Overview of Our Contribution

Some Technical Details

[CFGKMPS'16]. Unless the ETH fails, List Subgraph Isomorphism cannot be solved in time $n^{o(n)}$.

[CFGKMPS'16]. Unless the ETH fails, List Subgraph Isomorphism cannot be solved in time $n^{o(n)}$.

Properly Colored List Subgraph Isomorphism problem. *G* and *H* are properly colored, and for every vertex *v* in *G*, all vertices (in *H*) in the list of *v* have the same color as *v*.

[CFGKMPS'16]. Unless the ETH fails, List Subgraph Isomorphism cannot be solved in time $n^{o(n)}$.

Properly Colored List Subgraph Isomorphism problem. *G* and *H* are properly colored, and for every vertex *v* in *G*, all vertices (in *H*) in the list of *v* have the same color as *v*.

Our refinement. Unless the ETH fails, Properly Colored List Subgraph Isomorphism cannot be solved in time $n^{o(n)}$.

Relation to List Subgraph Isomorphism? Think of the following construction of *L*:

Relation to List Subgraph Isomorphism? Think of the following construction of *L*:

• A perfect matching between *A* and *B* can be thought of as a mapping of *G* to *H*.

Relation to List Subgraph Isomorphism? Think of the following construction of *L*:

• A perfect matching between A and B can be thought of as a mapping of G to H.

• To obtain a clique, we would like to map non-edges in the complement of *G*, being edges in *G*, to edges in *H*.

Relation to List Subgraph Isomorphism? Think of the following construction of *L*:

• A perfect matching between *A* and *B* can be thought of as a mapping of *G* to *H*.

- To obtain a clique, we would like to map non-edges in the complement of *G*, being edges in *G*, to edges in *H*.
- The difficulty is that non-edges in the complement of *G* can be ``filled'' by crossing edges. To argue that this cannot happen, we critically use the proper colorings of *G* and *H*.

Relation to List Subgraph Isomorphism?

x and y non-adjacent in \overline{G}

color(x') = color(x)

color(y') = color(y) = color(x)

Relation to List Subgraph Isomorphism?

x and y non-adjacent in \overline{G} \Rightarrow x and y adjacent in G

color(x') = color(x)

color(y') = color(y) = color(x)

Relation to List Subgraph Isomorphism?

color(x') = color(x)

color(y') = color(y) = color(x)

x and y non-adjacent in G
→ x and y adjacent in G
→ x and y have different colors

Relation to List Subgraph Isomorphism?

color(x') = color(x)

color(y') = color(y) = color(x)

x and y non-adjacent in \overline{G} \Rightarrow x and y adjacent in G \Rightarrow x and y have different colors \Rightarrow contradiction

Relation to Clique Contraction?

In one direction, a solution to Cross Matching is clearly a solution to Clique Contraction.

In the other direction, a solution to Clique Contraction might not be a solution to Cross Matching. We add vertices and edges to the graph in an instance of Cross Matching to enforce all solutions to be perfect matchings between A and B.

Further, we show that the addition of "noise" (extra vertices and edges incident to them) to the core graph has limited "effect": It is not helpful to contract them in order to "fill" non-edges in the core.

In the other direction, a solution to Clique Contraction might not be a solution to Cross Matching. We add vertices and edges to the graph in an instance of Cross Matching to enforce all solutions to be perfect matchings between A and B.

Further, we show that the addition of "noise" (extra vertices and edges incident to them) to the core graph has limited "effect": It is not helpful to contract them in order to "fill" non-edges in the core.

Depending on the contraction problem at hand, the noise is slightly different, but the proof technique is essentially the same: First show that the core must yield a clique (e.g., to obtain a chordal graph), and then show that the noise is "irrelevant".

NOISY STRUCTURED CLIQUE CONTRACTION

Input: A graph G on at least 6n vertices for some $n \in \mathbb{N}$, and a partition (A, B, C, D, N) of V(G) such that |A| = |B| = n, |C| = |D| = 2n, no vertex in A is adjacent to any vertex in D, and no vertex in B is adjacent to any vertex in C.

Question: Does there exist a subset $F \subseteq E(G)$ of size at most n such that $G[A \cup B \cup C \cup D \cup X]/F$ is a clique,^{*a*} where $X = \{u \in N : \text{there exists a vertex } v \in A \cup B \cup C \cup D \text{ such that } u \text{ and } v \text{ belong to the same connected component of } G[F]\}?$

Theorem. Unless the ETH is false, Structured Clique Contraction cannot be solved in $n^{o(n)}$ time.

Corollary. Unless the ETH is false, Clique Contraction cannot be solved in $n^{o(n)}$ time.

In proofs. Let Π be a contraction problem. Given an instance $I=(G,A,B,C,D,\{\},n)$ of Structured Clique Contraction, construct an instance I' of Π (that can be viewed as an instance (*G*,*A*,*B*,*C*,*D*,*N*,*n*) of Structured Clique Contraction).

In proofs. Let Π be a contraction problem. Given an instance $I=(G,A,B,C,D,\{\},n)$ of Structured Clique Contraction, construct an instance I' of Π (that can be viewed as an instance (*G*,*A*,*B*,*C*,*D*,*N*,*n*) of Structured Clique Contraction).

In proofs. Let Π be a contraction problem. Given an instance $I=(G,A,B,C,D,\{\},n)$ of Structured Clique Contraction, construct an instance I' of Π (that can be viewed as an instance (*G*,*A*,*B*,*C*,*D*,*N*,*n*) of Structured Clique Contraction).

I. I has a solution.

 \rightarrow *I*' has the same solution.

In proofs. Let Π be a contraction problem. Given an instance $I=(G,A,B,C,D,\{\},n)$ of Structured Clique Contraction, construct an instance I' of Π (that can be viewed as an instance (*G*,*A*,*B*,*C*,*D*,*N*,*n*) of Structured Clique Contraction).

II. I' has a solution.

 $\rightarrow \dots$

 \rightarrow *I*' as an instance of SCC has a solution.

In proofs. Let Π be a contraction problem. Given an instance $I=(G,A,B,C,D,\{\},n)$ of Structured Clique Contraction, construct an instance I' of Π (that can be viewed as an instance (*G*,*A*,*B*,*C*,*D*,*N*,*n*) of Structured Clique Contraction).

II. I' has a solution.

 \rightarrow ...

- \rightarrow *I*' as an instance of SCC has a solution.
- \rightarrow By the lemma, it is also a solution to *I*.

Non-trivial Chordal Graph Class. A graph class is a **non-trivial chordal class** if it is a subclass of the class of chordal graphs, and a superclass of the class of graphs that are the union of two cliques.

Non-trivial Chordal Graph Class. A graph class is a **non-trivial chordal class** if it is a subclass of the class of chordal graphs, and a superclass of the class of graphs that are the union of two cliques.

Theorem. Let *C* be a non-trivial graph class. Unless the ETH is false, *C*-Contraction cannot be solved in $n^{o(n)}$ time.

Introduction

Overview of Our Contribution

Some Technical Details