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background

learning theory
PAC learning is standard definition

sometimes fails to provide valuable information
— specific algorithms (nearest neighbor, neural nets, ...
— specific problems

learning rates



framework

input: sample of size n

S= ((Xla)/l)a o -7(Xm)/n)) € (4 > {0,1})"

output: an hypothesis

S»Xhe{o,l})‘



generalization

goal: PAC learning

if S = ((xt,y1),---,(Xn,yn)) is i.i.d. from unknown p
then h = A(S) is typically close to p

closeness is measured by

err(h) = Pr [h(x) £ ]
(,y)~p



context

without “context” learning is “impossible”
what is next element of 1,2,3,4,5,...7

few possible definitions

for a class H, the distribution p is realizable if

inf{err(h) : he H} =0



PAC learning

error of algorithm for sample size n

ERRA(A,H) = sup { SIE err(A(S)) : p is H-realizable}
~pn

the class H is PAC learnable if there is A so that

lim ERR,(A,H) =0

n—oo



VC theory

theorem [Vapnik-Chervonenkis, Blumer-Ehrenfeucht-Haussler-Warmuth, ...]

H is PAC learnable < VC dimension of H is finite



learning curve [Schuurmans]

error “should” decrease as more examples are seen

ERROR

'

n

this improvement is important (predict, estimate, ...)



rates

usually: 1 is unknown but fixed

the rate of algorithm A with respect to p is

rate(n) = rates ,(n) = IEerr(A(S))



VC classes
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thm: upper enVeIOpe ~ % [Vapnik-Chervonenkis, Blumer-Ehrenfeucht-Haussler-Warmuth, ...]

experiments: rate(n) < exp(—n) for fixed g (conn Tesaurol
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rate of class

the class H has rate < R if

JAVEIACYn  Eerr(A(S)) < CR(%)

the class ‘H has rate > R if

R(Cn)
C

3C VA Ju for oo many n Eerr(A(S)) >

the class H has rate R if both



rates: comments

algorithm A does not know distribution u

the "complexity” of u is captured by delay factor C = C(u)



trichotomy theorem*

the rate of H can be

— exponential (e ")
. 1

— linear ()

— arbitrarily slow (for every R — 0, at least R)

*

realizable, |H| > 2, standard measurability assumptions



trichotomy: comments

rate 27V7 e.g. is not an option

Schuurmans proved a special case (dichotomy for chains)

the higher the complexity of H, the slower the rate

the complexity is characterized by “shattering capabilities”



exponential rate

proposition

the rate of H is exponential iff H does not shatter an infinite
Littlestone tree
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exponential rate

lower bound: if || > 2 then rate is > e™"

upper bound: if  does not shatter an infinite Littlestone tree
then rate is < e™”



exponential rate

lower bound: if || > 2 then rate is > e™"

upper bound: if  does not shatter an infinite Littlestone tree
then rate is < e™"

need: no tree = algorithm



duality (LP, games,...)

simplest example:

no point in intersection of two convex bodies
= a separating hyperplane
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measurability

value of position is an ordinal
measures “how many steps to victory”



measurability

value of position is an ordinal

measures “how many steps to victory”
n-steps to mate [Evans, Hamkins]

the Littlestone dimension of #H is the ordinal

0
LD(H) = o©

(5”pxeX miny 0,1} LD(H‘XH )) +1 otherwise

M| =1

H has oo tree



measurability

value of position is an ordinal
measures “how many steps to victory”

the Littlestone dimension of H is the ordinal
0 Ml =1
LD(H) = o© ‘H has oo tree
(SUPXEX miny (0,1} LD("H’XHy)) +1 otherwise

theorem (relies on [Kunen-Martin])
if H is measurable* then LD(H) is countable



summary

learning rates capture distribution specific performance

there are 3 possible learning rates in realizable case

rate is characterizes by shattering capabilities
— shattering = hard distribution via construction
— no shattering = algorithm via duality

complexity of algorithm via ordinals etc.



to do

agnostic case

accurate bounds on rates

applications for shattering framework



