A trichotomy of rates in supervised learning

Amir Yehudayoff (Technion)

Olivier Bousquet (Google) Steve Hanneke (TTIC) Shay Moran (Technion & Google) Ramon van Handel (Princeton)

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

background

learning theory

PAC learning is standard definition

sometimes fails to provide valuable information

- specific algorithms (nearest neighbor, neural nets, ...)

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

- specific problems

learning rates

framework

input: sample of size n

$$S = ((x_1, y_1), \ldots, (x_n, y_n)) \in (\mathcal{X} \times \{0, 1\})^n$$

output: an hypothesis

$$S \underset{A}{\mapsto} h \in \{0,1\}^{\mathcal{X}}$$

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三三 - のへぐ

learning algorithm A

generalization

goal: PAC learning

if $S = ((x_1, y_1), \dots, (x_n, y_n))$ is i.i.d. from unknown μ then h = A(S) is typically close to μ

closeness is measured by

$$err(h) = \Pr_{(x,y) \sim \mu}[h(x) \neq y]$$

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

context

without "context" learning is "impossible" what is next element of $1, 2, 3, 4, 5, \ldots$?

few possible definitions

for a class \mathcal{H} , the distribution μ is **realizable** if

 $\inf\{err(h):h\in\mathcal{H}\}=0$

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

where $err(h) = \Pr_{(x,y) \sim \mu}[h(x) \neq y]$

PAC learning

error of algorithm for sample size n

$$ERR_n(A, \mathcal{H}) = \sup \left\{ \mathop{\mathbb{E}}_{S \sim \mu^n} err(A(S)) : \mu \text{ is } \mathcal{H}\text{-realizable} \right\}$$

the class \mathcal{H} is **PAC learnable** if there is A so that

 $\lim_{n\to\infty} \textit{ERR}_n(A,\mathcal{H}) = 0$

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三三 - のへぐ

theorem [Vapnik-Chervonenkis, Blumer-Ehrenfeucht-Haussler-Warmuth, ...]

$\mathcal H$ is PAC learnable \Leftrightarrow VC dimension of $\mathcal H$ is finite

error "should" decrease as more examples are seen

▲ロ ▶ ▲周 ▶ ▲ 国 ▶ ▲ 国 ▶ ● の Q @

this improvement is important (predict, estimate, ...)

usually: $\boldsymbol{\mu}$ is unknown but fixed

want definition to capture this

the rate of algorithm A with respect to μ is

$$rate(n) = rate_{A,\mu}(n) = \mathop{\mathbb{E}}_{S} err(A(S))$$

▲□▶▲□▶▲≡▶▲≡▶ ≡ めぬぐ

where $err(h) = \Pr_{(x,y) \sim \mu}[h(x) \neq y]$ and |S| = n

VC classes

thm: upper envelope $\approx \frac{VC}{n}$ [Vapnik-Chervonenkis, Blumer-Ehrenfeucht-Haussler-Warmuth, ...]

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

experiments: $\mathit{rate}(n) \lesssim \exp(-n)$ for fixed μ [Cohn-Tesauro]

rate of class

 $R:\mathbb{N} \to [0,1]$ is a rate function

the class \mathcal{H} has **rate** $\leq R$ if

$$\exists A \forall \mu \exists C \forall n \quad \mathbb{E} \operatorname{err}(A(S)) < CR\left(\frac{n}{C}\right)$$

the class \mathcal{H} has **rate** $\geq R$ if

 $\exists C \ \forall A \ \exists \mu \text{ for } \infty \text{ many } n \qquad \mathbb{E} err(A(S)) > \frac{R(Cn)}{C}$

▲ロ ▶ ▲周 ▶ ▲ 国 ▶ ▲ 国 ▶ ● の Q @

the class \mathcal{H} has **rate** R if both

rates: comments

rate $\leq R$ if $\exists A \forall \mu \exists C \forall n \mathbb{E} err(A(S)) < CR(n/C)$

algorithm A does not know distribution μ

the "complexity" of μ is captured by delay factor $C = C(\mu)$

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQで

trichotomy theorem*

the rate of ${\mathcal H}$ can be

- exponential (e^{-n})
- linear $\left(\frac{1}{n}\right)$
- arbitrarily slow (for every $R \rightarrow 0$, at least R)

* realizable, $|\mathcal{H}| > 2$, standard measurability assumptions

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

trichotomy: comments

rate $2^{-\sqrt{n}}$ e.g. is not an option

Schuurmans proved a special case (dichotomy for chains)

the higher the complexity of \mathcal{H} , the slower the rate the complexity is characterized by "shattering capabilities"

・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・

exponential rate

proposition

the rate of ${\cal H}$ is exponential iff ${\cal H}$ does not shatter an infinite Littlestone tree

exponential rate

lower bound: if $|\mathcal{H}| > 2$ then rate is $\geq e^{-n}$

upper bound: if \mathcal{H} does not shatter an infinite Littlestone tree then rate is $\leq e^{-n}$

 $\exists A \forall \mu \exists C \forall n \in err(A(S)) < Ce^{-n/C}$

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ □臣 ○のへ⊙

exponential rate

lower bound: if $|\mathcal{H}| > 2$ then rate is $\geq e^{-n}$

upper bound: if \mathcal{H} does not shatter an infinite Littlestone tree then rate is $\leq e^{-n}$

 $\exists A \forall \mu \exists C \forall n \in err(A(S)) < Ce^{-n/C}$

▲□▶▲□▶▲≡▶▲≡▶ ≡ めぬぐ

need: no tree \Rightarrow algorithm

duality (LP, games,...)

no tree \Rightarrow algorithm

simplest example:

no point in intersection of two convex bodies \Rightarrow a separating hyperplane

duality (LP, games,...)

no tree \Rightarrow algorithm

simplest example:

no point in intersection of two convex bodies \Rightarrow a separating hyperplane

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

duality for Gale-Stewart games: one of players have a winning strategy duality (LP, games,...)

no tree \Rightarrow algorithm

simplest example:

no point in intersection of two convex bodies \Rightarrow a separating hyperplane

duality for Gale-Stewart games: one of players have a winning strategy

problem: how complex is this strategy?

measurability

value of position is an ordinal

measures "how many steps to victory" *n*-steps to mate [Evans, Hamkins]

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三三 - のへぐ

measurability

value of position is an ordinal

measures "how many steps to victory" *n*-steps to mate [Evans, Hamkins]

the Littlestone dimension of ${\mathcal H}$ is the ordinal

$$LD(\mathcal{H}) = \begin{cases} 0 & |\mathcal{H}| = 1\\ \infty & \mathcal{H} \text{ has } \infty \text{ tree}\\ \left(\sup_{x \in \mathcal{X}} \min_{y \in \{0,1\}} LD(\mathcal{H}|_{x \mapsto y}) \right) + 1 & \text{otherwise} \end{cases}$$

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三三 - のへぐ

measurability

value of position is an ordinal

measures "how many steps to victory" *n*-steps to mate [Evans, Hamkins]

the Littlestone dimension of ${\mathcal H}$ is the ordinal

$$LD(\mathcal{H}) = \begin{cases} 0 & |\mathcal{H}| = 1\\ \infty & \mathcal{H} \text{ has } \infty \text{ tree}\\ \left(\sup_{x \in \mathcal{X}} \min_{y \in \{0,1\}} LD(\mathcal{H}|_{x \mapsto y}) \right) + 1 & \text{otherwise} \end{cases}$$

theorem (relies on [Kunen-Martin]) if \mathcal{H} is measurable^{*} then $LD(\mathcal{H})$ is countable

learning rates capture distribution specific performance

there are 3 possible learning rates in realizable case

rate is characterizes by shattering capabilities

- shattering \Rightarrow hard distribution via construction
- no shattering \Rightarrow algorithm via duality

complexity of algorithm via ordinals etc.

to do

agnostic case

accurate bounds on rates

applications for shattering framework

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三三 - のへぐ