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background

learning theory

PAC learning is standard definition

sometimes fails to provide valuable information
– specific algorithms (nearest neighbor, neural nets, ...)
– specific problems

learning rates



framework

input: sample of size n

S =
(
(x1, y1), . . . , (xn, yn)

)
∈ (X × {0, 1})n

output: an hypothesis

S 7→
A
h ∈ {0, 1}X

learning algorithm A



generalization

goal: PAC learning

if S =
(
(x1, y1), . . . , (xn, yn)

)
is i.i.d. from unknown µ

then h = A(S) is typically close to µ

closeness is measured by

err(h) = Pr
(x ,y)∼µ

[h(x) 6= y ]



context

without “context” learning is “impossible”
what is next element of 1, 2, 3, 4, 5, . . .?

few possible definitions

for a class H, the distribution µ is realizable if

inf{err(h) : h ∈ H} = 0

where err(h) = Pr(x ,y)∼µ[h(x) 6= y ]



PAC learning

error of algorithm for sample size n

ERRn(A,H) = sup
{

E
S∼µn

err(A(S)) : µ is H-realizable
}

the class H is PAC learnable if there is A so that

lim
n→∞

ERRn(A,H) = 0



VC theory

theorem [Vapnik-Chervonenkis, Blumer-Ehrenfeucht-Haussler-Warmuth, ...]

H is PAC learnable ⇔ VC dimension of H is finite



learning curve [Schuurmans]

error “should” decrease as more examples are seen

this improvement is important (predict, estimate, ...)



rates

usually: µ is unknown but fixed
want definition to capture this

the rate of algorithm A with respect to µ is

rate(n) = rateA,µ(n) = E
S
err(A(S))

where err(h) = Pr(x ,y)∼µ[h(x) 6= y ] and |S | = n



VC classes

thm: upper envelope ≈ VC
n [Vapnik-Chervonenkis, Blumer-Ehrenfeucht-Haussler-Warmuth, ...]

experiments: rate(n) . exp(−n) for fixed µ [Cohn-Tesauro]



rate of class

R : N→ [0, 1] is a rate function

the class H has rate ≤ R if

∃A ∀µ ∃C ∀n E err(A(S)) < CR
( n
C

)
the class H has rate ≥ R if

∃C ∀A ∃µ for ∞ many n E err(A(S)) >
R(Cn)

C

the class H has rate R if both



rates: comments

rate ≤ R if ∃A ∀µ ∃C ∀n E err(A(S)) < CR(n/C )

algorithm A does not know distribution µ

the “complexity” of µ is captured by delay factor C = C (µ)



trichotomy theorem∗

the rate of H can be

– exponential (e−n)

– linear ( 1n )

– arbitrarily slow (for every R → 0, at least R)

∗ realizable, |H| > 2, standard measurability assumptions



trichotomy: comments

rate 2−
√
n e.g. is not an option

Schuurmans proved a special case (dichotomy for chains)

the higher the complexity of H, the slower the rate

the complexity is characterized by “shattering capabilities”



exponential rate

proposition

the rate of H is exponential iff H does not shatter an infinite
Littlestone tree



exponential rate

lower bound: if |H| > 2 then rate is ≥ e−n

upper bound: if H does not shatter an infinite Littlestone tree
then rate is ≤ e−n

∃A ∀µ ∃C ∀n E err(A(S)) < Ce−n/C

need: no tree ⇒ algorithm
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duality (LP, games,...)

no tree ⇒ algorithm

simplest example:

no point in intersection of two convex bodies
⇒ a separating hyperplane

duality for Gale-Stewart games:
one of players have a winning strategy

problem: how complex is this strategy?
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measurability

value of position is an ordinal
measures “how many steps to victory”
n-steps to mate [Evans, Hamkins]

the Littlestone dimension of H is the ordinal

LD(H) =


0 |H| = 1

∞ H has ∞ tree(
supx∈X miny∈{0,1} LD

(
H
∣∣
x 7→y

))
+ 1 otherwise

theorem (relies on [Kunen-Martin])
if H is measurable∗ then LD(H) is countable
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summary

learning rates capture distribution specific performance

there are 3 possible learning rates in realizable case

rate is characterizes by shattering capabilities
– shattering ⇒ hard distribution via construction
– no shattering ⇒ algorithm via duality

complexity of algorithm via ordinals etc.



to do

agnostic case

accurate bounds on rates

applications for shattering framework


