LARGE SIMPLE CYCLES
IN
SYMPLECTIC COMPLEXES

Yuri Rabinovich
Haifa University

Based on a joint work with
Roy Meshulam, Ilan Newman
K : The i-faces of K
d-cycle: all (d-i)-faces have even degree.
Perform a walk on vertices of graph G to a previously visited vertex without ever returning.

$|E|$ < $2k(N-1)$

Erdős–Gallai's Th. in graphs

Proof: (assuming degs $< k$)
density

size of max. simple d-cycle

of some function of $K_{p,1}$

$G(K) \leq \Omega$?

K: Simplicial complex. Show:

size of max. cycle

$E - G$ says $C(G) \geq \frac{|E|}{|V|} \cdot \nu(G)$.

Our goal
Mathieu's theorem appears in Nash-Williams' thesis. A subset of edges with maximal acyclic size of \((\mathcal{G})\) and further \(c(\mathcal{G}) \geq \frac{\text{max}_{e \in \mathcal{E}} \text{rank}(e)}{2\text{max}_{e \in \mathcal{E}} \text{rank}(e)}\). Instead of \(c(\mathcal{G}) \geq \frac{\text{max}_{e \in \mathcal{E}} \text{rank}(e)}{2\text{max}_{e \in \mathcal{E}} \text{rank}(e)}\), write \(c(\mathcal{G}) \geq \frac{\frac{1}{2} \text{ln}(1 - \frac{1}{c(\mathcal{G})})}{\text{density}(\mathcal{G})}\). What are minors of simplicial complexes? The set of all minors \(\{\mathcal{G} \mid c(\mathcal{G}) \leq k\}\) is closed under minors. Other ideas for a proof?
\(\text{Goal: Lower-bound } c(M) \text{ in terms of } \lambda(M) \)

\[\lambda(M) = \text{max } E_1 \in \text{E}_1 \text{ rank}(E_1) \]

\[c(M) = \text{max } \text{size circuit in } M \]

- Simplicial matroids: \(\mathcal{M}(K) \) without circuits 0
- Simplicial complexes: \(\mathcal{M}(K) \)
 - \(I \): Acyclic subsets of \(K(r) \)
 - \(I_\text{acyclic subset} \) suggests
 - \(I_\text{linear} \): \(I \subseteq \mathcal{E}(G) \)
 - \(I_\text{independent set} \) suggests
 - \(I_\text{closed under containment} \)
 - \(M = (\mathcal{E}, X) \) elements independent 0

- Graphs: \(G \)
- Linear matroid: \(\mathcal{E}(G) \)
Then, \(c(M/C) \leq c(M) = C \).

Let \(M \) be loopless and connected, \(C \) max. circuit in \(M \).

Seymour Lemma:

\[
\text{too weak, too heavy...}
\]

\[
\frac{c(M)}{\log^2 \log^2 \log^2 \text{size } M} < \frac{c(M)}{\log^2 \log^2 \log^2 \text{size } M}
\]

\[
\begin{align*}
\gamma(M) & \leq 2^{23k} \\
& \Leftrightarrow \text{graphic minor} = \text{linear (if) matroid lacks a size } k \\
& \text{Matroidal Tools [Gillen]}
\end{align*}
\]
A circuit in M/A

extend to ind. sets of M/A

ind. sets of M/A

contraction: $M/A \setminus A$

deletion: $M/A \setminus A \setminus E(M)$

$ \notin E(M)$ *

components

biclique

in graphs

equivalent classes: components

\sim is an equivalence relation:

$e \sim f$ if both lie in some circuit.

Matroids: Connectedness and Minors
After the removal of the loops:

* The children of x are the components of M_x/C

* The root has M/C

* C_x: max circuit in M

* M_x: a minor of M has associated M_x/C

Every vertex x in M has a vertex of M.

M: connected, loopless

Decomposition tree of M
Let \(S_t(c) = \max \{ 1, E(c), \text{rank}(E) \} \). The Mathematical Theorem

\[\text{Theorem:} \quad \text{If} \quad S_t(c) = S_t(c_{m+1}) \quad \text{then} \quad \text{rank}(E) = 1. \]
With further effort, and more simplicial complexes, we have:

$$G_d(K) = \sqrt{\frac{2}{d+1}} \mathcal{L}_d(K) - 1$$

Theorem: Let A be a set of d-simplices on $[m]$. The extremal A is shifted, and ranked $(A) \geq \left\lfloor \frac{n}{d+1} \right\rfloor$. Back to simplicial complexes
Based on a joint work with
Roy Meshulam, Ilan Newman

Yuri Rabinovich
Haifa University

IN
SYMPLECTIC COMPLEXES

LARGE SIMPLE CYCLES