
1/26

The Mathematics of Partisan Gerrymandering

Dustin G. Mixon

LA Combinatorics and Complexity Seminar

December 8, 2020



1/26

Gerrymander detection by shape

Long history of detecting gerrymandering by shape

Boston Gazette, 1812 Washington Post, 2014

I “bizarre shape” quantified by “geographic compactness”

I constraints imposed by bipartisan redistricting commissions
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Gerrymander detection by shape

Does shape provide enough information?

NC-12 IL-4

What about context? Does intent matter?

images from Wikipedia
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Gerrymander detection by voting results

One modern approach: compare votes vs. seats

I proportionality (not a valid constitutional standard)

I efficiency gap (subject of Gill v. Whitford)

Do voting results provide enough information?

Is partisan fairness at odds with geometry?

images from Wikipedia
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Part I

compact gerrymandering
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How to quantify “bizarre shape”?

image from Wikipedia
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Classical notions of geographic compactness

Isoperimetry. wasted perimeter

I perimeter

I Polsby–Popper score ∝ (area) / (perimeter)2

Convexity. wasted area, indentedness

I (area) / (area of convex hull)

I Reock score = (area) / (area of minimum covering disk)

Dispersion. second moment, sprawl

I average distance between pairs of points

I moment of inertia

Question 1: Can we gerrymander with nice shapes?

Duchin, sites.duke.edu/gerrymandering/files/2017/11/MD-duke.pdf
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Passing to a (cartoon) model

I state = closed disk

I 2n voters equispaced along concentric circle

I voter preferences = iid uniform from {±1}
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Passing to a (cartoon) model

I state = closed disk

I 2n voters equispaced along concentric circle

I voter preferences = iid uniform from {±1}

Theorem
Partition a closed disk C of unit radius into two regions A,B whose closures
are homeomorphic to C . Then

max
{
|∂A|, |∂B|

}
≥ π + 2, min

{
|A|

| hull(A)| ,
|B|

| hull(B)|

}
≤ 1, IA + IB ≥ π

2
− 16

9π
.

Equality is achieved in all three when A and B are complementary half-disks.

Proof ingredients: Jordan curve theorem, basic convexity, calculus

Alexeev, M., J. Appl. Probab., 2018
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Passing to a (cartoon) model

I state = closed disk

I 2n voters equispaced along concentric circle

I voter preferences = iid uniform from {±1}

Theorem
Let Dn denote the random number of majority-positive districts in an optimal
partisan gerrymander by complementary half-disks. Then

Pr(Dn = 2) =
1

2
−Θ(

1√
n

), lim
n→∞

Pr(Dn = 0) =
1

1 + eπ
.

Proof ingredients: IVT, Donsker’s invariance principle, Brownian bridges

Upshot: 73% of seats (on average) from 50% of votes (on average)

Alexeev, M., J. Appl. Probab., 2018
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Beyond the model

Apply gerrymandered version of Smith’s split-line algorithm:

Figure 1: Partitions of Wisconsin into 8 notional voting districts. Each partition was obtained by selecting lines
(“split-lines”) to iteratively split regions into two nearly equal populations. For the left-hand partition, these lines
were selected so as to maximize the resulting number of majority-Republican districts, whereas majority-Democrat
districts were encouraged for the partition on the right. Here, we applied the 2016 presidential election returns [11]
as a proxy for the spatial distribution of Republicans and Democrats. Wisconsin was particularly competitive in this
election, with Trump and Clinton receiving 1,405,284 and 1,382,536 votes, respectively. Under this proxy, Republicans
can win all 8 of the districts using split-lines (the existence of such a unanimous districting follows from the ham
sandwich theorem [8]), while Democrats can achieve 7 out of 8 (the most possible since they lost overall). Our main
result demonstrates that for a certain model of voter locations and preferences, one may use split-lines to gerrymander
a competitive state and win an average of over 70% of the allotted districts.

Theorem 1 (Optimal geographic compactness). Partition a closed disk D of unit radius into two
regions A, B whose closures are homeomorphic to D. Then

max
n

|@A|, |@B|
o
� ⇡ + 2, min

⇢ |A|
| hull(A)| ,

|B|
| hull(B)|

�
 1, IA + IB � ⇡

2
� 16

9⇡
.

Equality is simultaneously achieved in all three when A and B are complementary half-disks.

Proof. First, each point in @D must lie in @A [ @B. If @D ✓ @A or @D ✓ @B, then

max
n

|@A|, |@B|
o
� |@D| = 2⇡ � ⇡ + 2.

Otherwise, @A \ @D and @B \ @D are both nonempty, and we claim they are both connected.
To see this, suppose to the contrary that there exist a1, a2 2 @A \ @D and b1, b2 2 @B \ @D,

all distinct, arranged in counter-clockwise order as a1, b1, a2, b2. Then since the closure A is
homeomorphic to D, there exists a path P from a1 to a2 whose interior points lie in the interior
A�. One may also draw a path from a2 to a1 by extending radially to the concentric circle of radius
2, and then orbiting along this circle before descending to a1. Combined, these two paths produce
a simple closed curve C that separates b1 from b2. Since B is homeomorphic to D, there exists a
path Q from b1 to b2 whose interior points lie in B�. The Jordan curve theorem then gives that an
interior point q of Q lies in C, and furthermore, q 2 B� ✓ D implies that q 2 C \ D, i.e., q is also
an interior point of P . Overall, q 2 A� \ B�, violating the assumption that A and B are disjoint.

At this point, we know that CA = @A \ @D and CB = @B \ @D are nonempty and connected.
Let x, y denote the endpoints of CA (also, of CB). Since A, B are homeomorphic to D, there exists

3

In general, vote majority 7→ seat unanimity (ham sandwich theorem)

Why not impose partisan fairness?

Smith, rangevoting.org/SplitLR.html

Alexeev, M., J. Appl. Probab., 2018

Soberón, Notices Amer. Math. Soc., 2017
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Part II

an impossibility theorem
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How to measure partisan fairness?

Proportionality. prop votes ≈ prop seats

Efficiency gap. #
(

red wasted votes
)
≈ #

(
blue wasted votes

)

I voter locations = A,B ⊆ [0, 1]2

I districts = D1 t · · · t Dk = [0, 1]2

I wasted votes by A in i ∈ [k]:

wA,i :=

{
|A ∩ Di | − d 1

2
|(A ∪ B) ∩ Di |e if |A ∩ Di | > |B ∩ Di |

|A ∩ Di | else

I efficiency gap:

EG(D1, . . . ,Dk ;A,B) :=
1

|A ∪ B|

k∑
i=1

(
wA,i − wB,i

)

Stephanopoulos, McGhee, Univ. Chic. Law Rev., 2015
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Technical definitions

Districting system. dist : (A,B, k) 7→ (D1, . . . ,Dk) =: D

One person, one vote. ∃δ ∈ [0, 1), ∀(A,B, k), D = dist(A,B, k) satisfies

(1− δ)

⌊
|A ∪ B|

k

⌋
≤
∣∣(A ∪ B) ∩ Di

∣∣ ≤ (1 + δ)

⌈
|A ∪ B|

k

⌉
∀i ∈ [k]

Polsby–Popper compactness. ∃γ > 0, ∀(A,B, k), D = dist(A,B, k) satisfies

4π · |Di |
|∂Di |2

≥ γ ∀i ∈ [k]

Bounded efficiency gap. ∃α, β > 0, ∀(A,B, k), D = dist(A,B, k) satisfies∣∣EG(D1, . . . ,Dk ;A,B)
∣∣ < 1

2
− α whenever

∣∣|A| − |B|∣∣ < β|A ∪ B|

Alexeev, M., Amer. Math. Mo., 2018
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Impossibility

Theorem

There is no districting system that simultaneously satisfies

I one person, one vote

I Polsby–Popper compactness

I bounded efficiency gap

Proof idea: homogeneous mixture of voters

Alexeev, M., Amer. Math. Mo., 2018
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Beyond the model

EG ≈ 0.3� 0.08

MA 6∈ {MD,NC,WI, . . .}

Political geography explanation?
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The Constitution prescribes Congres-
sional apportionment based on 
decennial census population data.  Each
state has at least one Representative, no 
matter how small its population.  Since 
1941, distribution of Representatives has 
been based on total U.S. population, so 
that the average population per 
Representative has the least possible 
variation between one state and any
other.  Congress fixes the number of 
voting Representatives at each 
apportionment.  States delineate the 
district boundaries. The first House of 
Representatives in 1789 had 65 
members; currently there are 435.
There are non-voting delegates from 
American Samoa, the District of 
Columbia, Guam, Puerto Rico, and the 
Virgin Islands.

CONGRESSIONAL DISTRICTS
113th Congress (January 2013–January 2015)
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Part III

fair redistricting is hard
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Background

Sometimes, the set of compliant maps is complicated

Constraints for Wisconsin State Assembly:
I all districts have equal population

I at most 58 counties can be split in different districts

I at most 62 municipalities can be split

I the average Reock score is at least 0.39

I the average Polsby–Popper score is at least 0.28

I at least 6 districts are at least 40% black (among citizens of voting age)

I districts 8 and 9 do not change (previously ordered by a federal court)

How hard is it to find a fair map among compliant maps?
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Computational complexity

image from quantumgazette.blogspot.com
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Fair maps among compliant maps

Compliant maps

I all districts have approximately the same population

I mild notion of geographic compactness

Fair maps

I both parties receive at least some level of representation

Theorem

Deciding whether there exists a fair redistricting among compliant
maps is NP-hard.

Kueng, M., Villar, Theor. Comput. Sci., 2019
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Proof idea: Reduction from planar 3-SAT

3-SAT: Decide whether there exists a boolean assignment
satisfying a formula of the form

(¬x1 ∨ x2 ∨ ¬x4) ∧ (¬x2 ∨ ¬x4 ∨ ¬x3) ∧ . . .

Planar 3-SAT: Bipartite graph with V = { variables, clauses }

Planar 3-SAT is NP-complete

Mahajan, Nimbhorkar, Varadarajan, Theor. Comput. Sci., 2012
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Proof idea: Reduction from planar 3-SAT

instance of planar 3-SAT 7→ instance of fair redistricting

Town Pop D R
Big: L L 0

Small: 2γ
3
L 2γ

3
L 0

Adjacent: L
2

+ γL
6

L
4

L
4

+ γL
6

Edge: L
2

L
2
− γL

4
L
2

+ γL
4

Population per district∈ [L, L+γ].

D wins at most 2k districts
even with almost half of the vote and Total pop� 2k
Formula is satisfiable iff D wins 2k districts.

Kueng, M., Villar, Theor. Comput. Sci., 2019
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Important considerations

Worst-case complexity

I says very little about real-world maps

I identifies limitations of general-purpose redistricting protocols
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Review

Political geography can bring tension between shape and fairness

I Sometimes, you can gerrymander with nice shapes

I Sometimes, you need strange shapes to obtain fairness

I Sometimes, a fair map exists, but it’s hard to find
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Questions?

Partisan gerrymandering with geographically compact districts
B. Alexeev, D. G. Mixon
J. Appl. Probab. 55 (2018) 1046–1059

An impossibility theorem for gerrymandering
B. Alexeev, D. G. Mixon
Amer. Math. Mo. 125 (2018) 878–884.

Fair redistricting is hard
R. Kueng, D. G. Mixon, S. Villar
Theor. Comput. Sci. 791 (2019) 28–35.

Utility Ghost: Gamified redistricting with partisan symmetry
D. G. Mixon, S. Villar
arXiv:1812.07377

Also, Google short fat matrices for my research blog.


