The Mathematics of Partisan Gerrymandering

Dustin G. Mixon

The Ohio State University

LA Combinatorics and Complexity Seminar

December 8, 2020

Gerrymander detection by shape

Long history of detecting gerrymandering by shape

- "bizarre shape" quantified by "geographic compactness"
- constraints imposed by bipartisan redistricting commissions

Gerrymander detection by shape

Does shape provide enough information?

What about context? Does intent matter?

images from Wikipedia

Gerrymander detection by voting results

One modern approach: compare votes vs. seats

- proportionality (not a valid constitutional standard)
- efficiency gap (subject of Gill v. Whitford)

Gerrymander detection by voting results

One modern approach: compare votes vs. seats

- proportionality (not a valid constitutional standard)
- efficiency gap (subject of Gill v. Whitford)

Do voting results provide enough information?

United States presidential election in Massachusetts, 2016						
Party	Candidate	Running Mate	Votes	Percentage	Electoral votes	
Democratic	Hillary Clinton	Tim Kaine	1,995,196	60.0%	11	
Republican	Donald Trump	Mike Pence	1,090,893	32.8%) 0	
Libertarian	Gary Johnson	William Weld	138,018	4.2%	0	
Green	Jill Stein	Ajamu Baraka	47,661	1.4%	0	
Totals			3,269,783	100.00%	11	

Current representatives [edit]

- 1st congressional district: Richard Neal (D) (since 1989)
- 2nd congressional district: Jim McGovern(D)(since 1997)
- 3rd congressional district: Niki Tsongas(D)(since 2007)
- 4th congressional district: Joseph P. Kennedy III(D)(since 2013)
- 5th congressional district: Katherine Clark(D) (since 2013)
- 6th congressional district: Seth Moulton(D)(since 2015)
- 7th congressional district: Mike Capuano(D)(since 1999)
- 8th congressional district: Stephen F. Lynch(D) (since 2001)
- 9th congressional district: Bill Keating(D)(since 2011)

Gerrymander detection by voting results

One modern approach: compare votes vs. seats

- proportionality (not a valid constitutional standard)
- efficiency gap (subject of Gill v. Whitford)

Do voting results provide enough information?

United States presidential election in Massachusetts, 2016						
Party	Candidate	Running Mate	Votes	Percentage	Electoral votes	
Democratic	Hillary Clinton	Tim Kaine	1,995,196	60.0%	11	
Republican	Donald Trump	Mike Pence	1,090,893	32.8%	0	
Libertarian	Gary Johnson	William Weld	138,018	4.2%	0	
Green	Jill Stein	Ajamu Baraka	47,661	1.4%	0	
Totals			3,269,783	100.00%	11	

Current representatives [edit]

- 1st congressional district: Richard Neal(D)(since 1989)
- 2nd congressional district: Jim McGovern(D) (since 1997)
- 3rd congressional district: Niki Tsongas(D)(since 2007)
- 4th congressional district: Joseph P. Kennedy III(D)(since 2013)
- 5th congressional district: Katherine Clark(D) (since 2013)
- 6th congressional district: Seth Moulton(D)(since 2015)
- 7th congressional district: Mike Capuano(D)(since 1999)
- 8th congressional district: Stephen F. Lynch(D) (since 2001)
- 9th congressional district: Bill Keating(D)(since 2011)

Is partisan fairness at odds with geometry?

Joint work with

Boris Alexeev borisalexeev.com

Richard Kueng Caltech

Soledad Villar NYU

Part I compact gerrymandering

How to quantify "bizarre shape"?

Isoperimetry. wasted perimeter

- perimeter
- Polsby–Popper score \propto (area) / (perimeter)²

Duchin, sites.duke.edu/gerrymandering/files/2017/11/MD-duke.pdf

Isoperimetry. wasted perimeter

- perimeter
- Polsby–Popper score \propto (area) / (perimeter)²

Convexity. wasted area, indentedness

- (area) / (area of convex hull)
- Reock score = (area) / (area of minimum covering disk)

Duchin, sites.duke.edu/gerrymandering/files/2017/11/MD-duke.pdf

Isoperimetry. wasted perimeter

- perimeter
- Polsby–Popper score \propto (area) / (perimeter)²

Convexity. wasted area, indentedness

- (area) / (area of convex hull)
- Reock score = (area) / (area of minimum covering disk)

Dispersion. second moment, sprawl

- average distance between pairs of points
- moment of inertia

Duchin, sites.duke.edu/gerrymandering/files/2017/11/MD-duke.pdf

Isoperimetry. wasted perimeter

- perimeter
- Polsby–Popper score \propto (area) / (perimeter)²

Convexity. wasted area, indentedness

- (area) / (area of convex hull)
- Reock score = (area) / (area of minimum covering disk)

Dispersion. second moment, sprawl

- average distance between pairs of points
- moment of inertia

Question 1: Can we gerrymander with nice shapes?

Duchin, sites.duke.edu/gerrymandering/files/2017/11/MD-duke.pdf

Passing to a (cartoon) model

- state = closed disk
- 2n voters equispaced along concentric circle
- voter preferences = iid uniform from $\{\pm 1\}$

Passing to a (cartoon) model

- state = closed disk
- 2n voters equispaced along concentric circle
- voter preferences = iid uniform from $\{\pm 1\}$

Theorem

Partition a closed disk C of unit radius into two regions A, B whose closures are homeomorphic to C. Then

$$\max\left\{|\partial A|,|\partial B|\right\} \geq \pi+2, \quad \min\left\{\tfrac{|A|}{|\operatorname{hull}(A)|},\tfrac{|B|}{|\operatorname{hull}(B)|}\right\} \leq 1, \quad I_A+I_B \geq \tfrac{\pi}{2} - \tfrac{16}{9\pi}.$$

Equality is achieved in all three when A and B are complementary half-disks.

Proof ingredients: Jordan curve theorem, basic convexity, calculus

Alexeev, M., J. Appl. Probab., 2018

Passing to a (cartoon) model

- state = closed disk
- 2n voters equispaced along concentric circle
- voter preferences = iid uniform from $\{\pm 1\}$

Theorem

Let D_n denote the random number of majority-positive districts in an optimal partisan gerrymander by complementary half-disks. Then

$$\Pr(D_n = 2) = \frac{1}{2} - \Theta(\frac{1}{\sqrt{n}}), \qquad \lim_{n \to \infty} \Pr(D_n = 0) = \frac{1}{1 + e^{\pi}}.$$

Proof ingredients: IVT, Donsker's invariance principle, Brownian bridges

Upshot: 73% of seats (on average) from 50% of votes (on average)

Alexeev, M., J. Appl. Probab., 2018

Beyond the model

Apply gerrymandered version of Smith's split-line algorithm:

Smith, rangevoting.org/SplitLR.html Alexeev, M., J. Appl. Probab., 2018 Soberón, Notices Amer. Math. Soc., 2017

Beyond the model

Apply gerrymandered version of Smith's split-line algorithm:

In general, vote majority \mapsto seat unanimity (ham sandwich theorem)

Why not impose partisan fairness?

Smith, rangevoting.org/SplitLR.html Alexeev, M., J. Appl. Probab., 2018 Soberón, Notices Amer. Math. Soc., 2017

Part II an impossibility theorem

How to measure partisan fairness?

Proportionality. prop votes \approx prop seats

How to measure partisan fairness?

Proportionality. prop votes \approx prop seats

Efficiency gap.
$$\#ig($$
 red wasted votes $ig)pprox \#ig($ blue wasted votes $ig)$

• voter locations =
$$A, B \subseteq [0, 1]^2$$

• districts =
$$D_1 \sqcup \cdots \sqcup D_k = [0, 1]^2$$

• wasted votes by A in $i \in [k]$:

$$w_{A,i} := \begin{cases} |A \cap D_i| - \lceil \frac{1}{2} | (A \cup B) \cap D_i | \rceil & \text{if } |A \cap D_i| > |B \cap D_i | \\ |A \cap D_i| & \text{else} \end{cases}$$

efficiency gap:

$$\mathsf{EG}(D_1,\ldots,D_k;A,B) := rac{1}{|A\cup B|}\sum_{i=1}^k \left(w_{A,i}-w_{B,i}\right)$$

Districting system. DIST: $(A, B, k) \mapsto (D_1, \ldots, D_k) =: D$

Districting system. DIST: $(A, B, k) \mapsto (D_1, \ldots, D_k) =: D$

One person, one vote. $\exists \delta \in [0,1), \forall (A, B, k), D = DIST(A, B, k)$ satisfies

$$(1-\delta)\left\lfloor rac{|A\cup B|}{k}
ight
floor \leq \left|(A\cup B)\cap D_i
ight| \leq (1+\delta)\left\lceil rac{|A\cup B|}{k}
ight
ceil$$
 $orall i\in [k]$

Districting system. DIST: $(A, B, k) \mapsto (D_1, \ldots, D_k) =: D$

One person, one vote. $\exists \delta \in [0,1), \forall (A,B,k), D = DIST(A,B,k)$ satisfies

$$(1-\delta)\left\lfloor rac{|A\cup B|}{k}
ight
floor \leq \left|(A\cup B)\cap D_i
ight| \leq (1+\delta)\left\lceil rac{|A\cup B|}{k}
ight
ceil$$
 $orall i\in [k]$

Polsby–Popper compactness. $\exists \gamma > 0, \forall (A, B, k), D = DIST(A, B, k)$ satisfies

$$4\pi \cdot \frac{|D_i|}{|\partial D_i|^2} \ge \gamma \qquad \forall i \in [k]$$

Districting system. DIST: $(A, B, k) \mapsto (D_1, \ldots, D_k) =: D$

One person, one vote. $\exists \delta \in [0, 1), \forall (A, B, k), D = DIST(A, B, k)$ satisfies

$$(1-\delta)\left\lfloor rac{|A\cup B|}{k}
ight
floor \leq \left|(A\cup B)\cap D_i
ight| \leq (1+\delta)\left\lceil rac{|A\cup B|}{k}
ight
ceil$$
 $orall i\in [k]$

Polsby–Popper compactness. $\exists \gamma > 0$, $\forall (A, B, k)$, D = DIST(A, B, k) satisfies

$$4\pi \cdot \frac{|D_i|}{|\partial D_i|^2} \ge \gamma \qquad \forall i \in [k]$$

Bounded efficiency gap. $\exists \alpha, \beta > 0, \forall (A, B, k), D = DIST(A, B, k)$ satisfies

 $ig| \mathsf{EG}(D_1,\ldots,D_k;A,B) ig| < rac{1}{2} - lpha \quad ext{whenever} \quad ig||A| - |B|ig| < eta|A \cup B|$

Alexeev, M., Amer. Math. Mo., 2018

Impossibility

Theorem

There is no districting system that simultaneously satisfies

- one person, one vote
- Polsby–Popper compactness
- bounded efficiency gap

Impossibility

Theorem

There is no districting system that simultaneously satisfies

- one person, one vote
- Polsby–Popper compactness
- bounded efficiency gap

Proof idea: homogeneous mixture of voters

Beyond the model

United States presidential election in Massachusetts, 2016							
	Party	Candidate	Running Mate	Votes	Percentage	Electoral votes	
	Democratic	Hillary Clinton	Tim Kaine	1,995,196	60.0%	11	
	Republican	Donald Trump	Mike Pence	1,090,893	32.8%	0	
	Libertarian	Gary Johnson	William Weld	138,018	4.2%	0	
	Green	Jill Stein	Ajamu Baraka	47,661	1.4%	0	
			3,269,783	100.00%	11		

Current representatives [edit]

- 1st congressional district: Richard Neal(D)(since 1989)
- 2nd congressional district: Jim McGovern(D) (since 1997)
- 3rd congressional district: Niki Tsongas(D) (since 2007)
- 4th congressional district: Joseph P. Kennedy III(D)(since 2013)
- 5th congressional district: Katherine Clark(D)(since 2013)
- 6th congressional district: Seth Moulton(D)(since 2015)
- 7th congressional district: Mike Capuano(D)(since 1999)
- 8th congressional district: Stephen F. Lynch(D) (since 2001)
- 9th congressional district: Bill Keating(D)(since 2011)

Beyond the model

United States presidential election in Massachusetts, 2016						
Party	Candidate	Running Mate	Votes	Percentage	Electoral votes	
Democratic	Hillary Clinton	Tim Kaine	1,995,196	60.0%	11	
Republican	Donald Trump	Mike Pence	1,090,893	32.8%) 0	
Libertarian	Gary Johnson	William Weld	138,018	4.2%	0	
Green	Jill Stein	Ajamu Baraka	47,661	1.4%	0	
Totals			3,269,783	100.00%	11	

Current representatives [edit]

- 1st congressional district: Richard Neal(D)(since 1989)
- 2nd congressional district: Jim McGovern(D) (since 1997)
- 3rd congressional district: Niki Tsongas(D)(since 2007)
- 4th congressional district: Joseph P. Kennedy III(D)(since 2013)
- 5th congressional district: Katherine Clark(D) (since 2013)
- 6th congressional district: Seth Moulton(D)(since 2015)
- 7th congressional district: Mike Capuano(D)(since 1999)
- 8th congressional district: Stephen F. Lynch(D) (since 2001)
- 9th congressional district: Bill Keating(D)(since 2011)

 $\mathsf{EG}\approx 0.3\gg 0.08$

 $\mathsf{MA} \not\in \{\mathsf{MD},\mathsf{NC},\mathsf{WI},\ldots\}$

Political geography explanation?

images from Wikipedia

Part III fair redistricting is hard

Background

Sometimes, the set of compliant maps is complicated

Constraints for Wisconsin State Assembly:

- all districts have equal population
- at most 58 counties can be split in different districts
- at most 62 municipalities can be split
- the average Reock score is at least 0.39
- the average Polsby–Popper score is at least 0.28
- at least 6 districts are at least 40% black (among citizens of voting age)
- districts 8 and 9 do not change (previously ordered by a federal court)

How hard is it to find a fair map among compliant maps?

Computational complexity

Fair maps among compliant maps

Compliant maps

- all districts have approximately the same population
- mild notion of geographic compactness

Fair maps

both parties receive at least some level of representation

Fair maps among compliant maps

Compliant maps

- all districts have approximately the same population
- mild notion of geographic compactness

Fair maps

both parties receive at least some level of representation

Theorem

Deciding whether there exists a fair redistricting among compliant maps is NP-hard.

3-SAT: Decide whether there exists a boolean assignment satisfying a formula of the form

$$(\neg x_1 \lor x_2 \lor \neg x_4) \land (\neg x_2 \lor \neg x_4 \lor \neg x_3) \land \ldots$$

Mahajan, Nimbhorkar, Varadarajan, Theor. Comput. Sci., 2012

3-SAT: Decide whether there exists a boolean assignment satisfying a formula of the form

$$(\neg x_1 \lor x_2 \lor \neg x_4) \land (\neg x_2 \lor \neg x_4 \lor \neg x_3) \land \ldots$$

Planar 3-SAT: Bipartite graph with $V = \{ \text{ variables, clauses } \}$

3-SAT: Decide whether there exists a boolean assignment satisfying a formula of the form

$$(\neg x_1 \lor x_2 \lor \neg x_4) \land (\neg x_2 \lor \neg x_4 \lor \neg x_3) \land \ldots$$

Planar 3-SAT: Bipartite graph with $V = \{ \text{ variables, clauses } \}$

Planar 3-SAT is NP-complete

Mahajan, Nimbhorkar, Varadarajan, Theor. Comput. Sci., 2012

instance of planar 3-SAT \mapsto instance of fair redistricting

even with almost half of the vote and Total pop $\gg 2k$ Formula is satisfiable iff D wins 2k districts.

Important considerations

Worst-case complexity

- says very little about real-world maps
- identifies limitations of general-purpose redistricting protocols

Review

Political geography can bring tension between shape and fairness

- Sometimes, you can gerrymander with nice shapes
- Sometimes, you need strange shapes to obtain fairness
- Sometimes, a fair map exists, but it's hard to find

Questions?

Partisan gerrymandering with geographically compact districts

B. Alexeev, D. G. Mixon J. Appl. Probab. 55 (2018) 1046–1059

An impossibility theorem for gerrymandering

B. Alexeev, D. G. Mixon Amer. Math. Mo. 125 (2018) 878–884.

Fair redistricting is hard

R. Kueng, D. G. Mixon, S. Villar Theor. Comput. Sci. 791 (2019) 28–35.

Utility Ghost: Gamified redistricting with partisan symmetry

D. G. Mixon, S. Villar arXiv:1812.07377

Also, Google short fat matrices for my research blog.