
THE COMPLEXITY OF NECKLACE SPLITTING, 
CONSENSUS-HALVING AND DISCRETE HAM SANDWICH

From the papers:

Consensus-Halving is PPA-Complete (STOC 2018). 
The Complexity of Splitting Necklaces and Bisecting Ham Sandwiches (STOC 2019). 

joint works with with P. W. Goldberg. 



NECKLACE SPLITTING (WITH TWO THIEVES)

An open necklace with an even number of beads of each of n colours.

Cut the necklace into parts using n cuts.

Assign a label (A or B) to each part (the name of the thief that gets it).

Goal: A partition such that A and B have the same number of beads of each colour.
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A TOTAL PROBLEM

Total problem: A solution always exists.

Proof by the Borsuk-Ulam Theorem (1933):

Let  f : Sn → ℝn  be a continuous function. 
Then, there exists x  ∈ Sn  such that  f(x) = f(−x) .

f(x)
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FINDING A SOLUTION

Is there an efficient algorithm for finding a solution?

Despite Alon’s cautious optimism, no such algorithms exist!

Alon.  Non-constructive Proofs 
in Combinatorics (International  
Congress of Mathematicians, 1990).



CONSENSUS-HALVING
F. Simmons and F. Su. Consensus-halving via theorems of Borsuk-Ulam and Tucker. 
Mathematical Social Sciences, (2003).

A set of n agents with valuation functions 
over an interval (a resource).

These functions are explicitly 
representable (in time poly(n)) and 
bounded.

Example: Piecewise constant functions. 

Halving: Cut the interval into pieces and 
label each piece by either (+) or (-).

Consensus-halving: For each agent i, it holds 
that vi(+)= vi(-)

+ +- -+ +- -



CONSENSUS-HALVING

A solution that uses n cuts is guaranteed to exist. Simmons and Su (2003). 

There are instances for which n-1 cuts are not enough. Simmons and Su (2003).



APPROXIMATE CONSENSUS-
HALVING

For each agent i, it holds that |vi(+)-vi(-)| ≤ ε
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FINDING A SOLUTION

Is there an efficient algorithm for finding a solution?

Simmons and Su’s proof is constructive, but not polynomial-time.

Actually:

Consensus-Halving is a continuous analogue of Necklace-Splitting with two thieves.

Alon’s proof (1987) of existence for NS goes via CH.
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FROM NECKLACE SPLITTING TO 
CONSENSUS-HALVING

Idea: Simulate value blocks by beads 
Denser blocks => more beads.



IN TERMS OF COMPLEXITY…

To prove computational hardness for NS, it suffices to prove 
computational hardness for ε-CH.
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HAM SANDWICHES THROUGHOUT THE YEARS

Steinhaus. A Note on the Ham Sandwich Theorem (Mathesis Polska 1938). 

Stone and Turkey. Generalized ‘’Sandwich’’ Theorems (Duke Mathematical Journal 1942). 

Edelsbrunner and Waupotitsch. Computing a Ham-Sandwich Cut in Two Dimensions (Symbolic Computation 1986). 

Lo, Matoušek and Steiger.  Ham-Sandwich Cuts in R^d (STOC 1992). 

Lo, Matoušek and Steiger. Algorithms for Ham-Sandwich Cuts (Discrete and Computational Geometry 1994).



FINDING A SOLUTION

Total problem: A solution always exists.

Again, by the Borsuk-Ulam Theorem.
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FROM DISCRETE HAM SANDWICH 
TO NECKLACE SPLITTING
Consider the moment curve (α, α2, …, αd),  for α ∈ [0,1] .

0 1α

Insert a red point at (α, α2, …, αd) .

The two thieves take alternating pieces.
First thief

Second thief

Any hyperplane intersects the moment curve in at most d points.
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To prove computational hardness for NS, it suffices to prove 
computational hardness for ε-CH.

To prove computational hardness for DHS, it suffices to prove 
computational hardness for NS.

It suffices to prove computational hardness for ε-CH.



THE STATE OF THE WORLD

Necklace Splitting 
always exists.

Discrete Ham Sandwich 
always exists.

ε-Consensus-Halving 
always exists.
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“Total” Search Problems, for which a solution is guaranteed to exist 
and can be verified in polynomial time.

PPA Papadimitriou (Journal of Computer and System Sciences, 1994).  
Problems reducible to the problem LEAF.

PPAD
Papadimitriou (Journal of Computer and System Sciences, 1994).  
Problems reducible to the problem END-OF-LINE.

PWPP

PLS PPP

PPADS

CLS

FP



SUCCESS OF PPAD
Daskalakis, Goldberg and Papadimitriou. 
The Complexity of Computing a Nash equilibrium. 
(SIAM Journal of Computing, 2009).

Chen, Deng and Tang 
Settling the Complexity of Computing 2-Player Nash Equilibria. 
(Journal of the ACM, 2009).

2011 SIAM Outstanding Paper Prize

2008 Kalai Prize

2008 ACM Doctoral Dissertation Award



PPAD

END-OF-LINE:  

Input:  A (exponentially large, with 2n vertices, implicitly given) 
directed graph, where each vertex has in-degree and out-
degree at most 1 and a vertex with in-degree 0.

Output: A vertex with in-degree or out-degree 0.
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END-OF-LINE



PPA

LEAF:  

Input: An undirected (exponentially large, implicitly given) 
undirected graph where each vertex has degree at most 2 and a 
vertex of degree 1.

Output: Another vertex of degree 1.
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PPAD AND PPA

PPAD 

Stands for “Polynomial Parity Argument on a Directed graph”.

A problem is in PPAD if it is polynomial-time reducible to END-OF-LINE.

A problem is PPAD-hard if END-OF-LINE is polynomial-time reducible to it.

PPA 

Stands for “Polynomial Parity Argument”.

Containment and hardness defined with respect to polynomial-time reductions to/
from LEAF.
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THE COMPLEXITY OF THE THREE 
PROBLEMS.

They are all in PPA.  
[Papadimitriou 1994, F.R., Frederiksen, Goldberg and Zhang 2019, F.R. and Goldberg 2019].

Simmons and Su’s proof already almost an “in PPA” result.

What about hardness?
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Necklace Splitting 
always exists.

Discrete Ham Sandwich 
always exists.

ε-Consensus-Halving 
always exists.

in PPA

in PPA

in PPA



A DEEPER LOOK INTO PPA-COMPLETE PROBLEMS

Let’s see what we have to reduce from!



COMPLETE PROBLEMS FOR PPA AND PPAD



COMPLETE PROBLEMS FOR PPA AND PPAD

SPERNER, BROUWER, KAKUTANI Papadimitriou 
(1994). 

NASH Daskalakis, Goldberg and Papadimitiou 
(2005, 2009), Chen and Deng  (2007, 2009). 

EXCHANGE ECONOMY Papadimitriou (1994), 
Chen, Paparas and Yiannakakis (2013). 

ENVY-FREE CAKE CUTTING Deng, Qi and Saberi 
(2009, 2012).  

Many more …



COMPLETE PROBLEMS FOR PPA AND PPAD

SPERNER, BROUWER, KAKUTANI Papadimitriou 
(1994). 

NASH Daskalakis, Goldberg and Papadimitiou 
(2005, 2009), Chen and Deng  (2007, 2009). 

EXCHANGE ECONOMY Papadimitriou (1994), 
Chen, Paparas and Yiannakakis (2013). 

ENVY-FREE CAKE CUTTING Deng, Qi and Saberi 
(2009, 2012).  

Many more …

SPERNER for non-orientable spaces Grigni 
(2001), Friedl, Ivanyos, Santha and Verhoeven 
(2006). 

2D-TUCKER, BORSUK-ULAM Aisenberg, Bonet 
and Buss (2020). 

OCTAHEDRAL TUCKER Deng, Feng and Kulkarni 
(2017). 

TUCKER, SPERNER on Möbius band and Klein 
bottle. Deng, Feng, Liu and Qi (2015). 

Not many more …



COMPLETE PROBLEMS FOR PPA AND PPAD

SPERNER, BROUWER, KAKUTANI Papadimitriou 
(1994). 

NASH Daskalakis, Goldberg and Papadimitiou 
(2005, 2009), Chen and Deng  (2007, 2009). 

EXCHANGE ECONOMY Papadimitriou (1994), 
Chen, Paparas and Yiannakakis (2013). 

ENVY-FREE CAKE CUTTING Deng, Qi and Saberi 
(2009, 2012).  

Many more …

SPERNER for non-orientable spaces Grigni 
(2001), Friedl, Ivanyos, Santha and Verhoeven 
(2006). 

2D-TUCKER, BORSUK-ULAM Aisenberg, Bonet 
and Buss (2020). 

OCTAHEDRAL TUCKER Deng, Feng and Kulkarni 
(2017). 

TUCKER, SPERNER on Möbius band and Klein 
bottle. Deng, Feng, Liu and Qi (2015). 

Not many more …

Consider a triangulated simplex and 
a polynomial-time machine (or a 
circuit) that assigns labels to the 

vertices of the triangulation…



COMPLETE PROBLEMS FOR PPA AND PPAD

SPERNER, BROUWER, KAKUTANI Papadimitriou 
(1994). 

NASH Daskalakis, Goldberg and Papadimitiou 
(2005, 2009), Chen and Deng  (2007, 2009). 

EXCHANGE ECONOMY Papadimitriou (1994), 
Chen, Paparas and Yiannakakis (2013). 

ENVY-FREE CAKE CUTTING Deng, Qi and Saberi 
(2009, 2012).  

Many more …

SPERNER for non-orientable spaces Grigni 
(2001), Friedl, Ivanyos, Santha and Verhoeven 
(2006). 

2D-TUCKER, BORSUK-ULAM Aisenberg, Bonet 
and Buss (2020). 

OCTAHEDRAL TUCKER Deng, Feng and Kulkarni 
(2017). 

TUCKER, SPERNER on Möbius band and Klein 
bottle. Deng, Feng, Liu and Qi (2015). 

Not many more …



COMPLETE PROBLEMS FOR PPA AND PPAD

SPERNER, BROUWER, KAKUTANI Papadimitriou 
(1994). 

NASH Daskalakis, Goldberg and Papadimitiou 
(2005, 2009), Chen and Deng  (2007, 2009). 

EXCHANGE ECONOMY Papadimitriou (1994), 
Chen, Paparas and Yiannakakis (2013). 

ENVY-FREE CAKE CUTTING Deng, Qi and Saberi 
(2009, 2012).  

Many more …

SPERNER for non-orientable spaces Grigni 
(2001), Friedl, Ivanyos, Santha and Verhoeven 
(2006). 

2D-TUCKER, BORSUK-ULAM Aisenberg, Bonet 
and Buss (2020). 

OCTAHEDRAL TUCKER Deng, Feng and Kulkarni 
(2017). 

TUCKER, SPERNER on Möbius band and Klein 
bottle. Deng, Feng, Liu and Qi (2015). 

Not many more …

Consider a triangulated hypergrid 
and a polynomial-time machine (or a 

circuit) that assigns labels to the 
vertices of the triangulation…



COMPLETE PROBLEMS FOR PPA AND PPAD

SPERNER, BROUWER, KAKUTANI Papadimitriou 
(1994). 

NASH Daskalakis, Goldberg and Papadimitiou 
(2005, 2009), Chen and Deng  (2007, 2009). 

EXCHANGE ECONOMY Papadimitriou (1994), 
Chen, Paparas and Yiannakakis (2013). 

ENVY-FREE CAKE CUTTING Deng, Qi and Saberi 
(2009, 2012).  

Many more …

SPERNER for non-orientable spaces Grigni 
(2001), Friedl, Ivanyos, Santha and Verhoeven 
(2006). 

2D-TUCKER, BORSUK-ULAM Aisenberg, Bonet 
and Buss (2020). 

OCTAHEDRAL TUCKER Deng, Feng and Kulkarni 
(2017). 

TUCKER, SPERNER on Möbius band and Klein 
bottle. Deng, Feng, Liu and Qi (2015). 

Not many more …



“NATURAL” PPA-COMPLETE PROBLEMS?



“NATURAL” PPA-COMPLETE PROBLEMS?

Papadimitriou (1994)



“NATURAL” PPA-COMPLETE PROBLEMS?

Papadimitriou (1994)

Grigni (2001)



“NATURAL” PPA-COMPLETE PROBLEMS?

Papadimitriou (1994)

Grigni (2001)

Aisenberg, Bonet and Buss (2020)



NATURAL PROBLEMS

Problems that do not have a circuit explicit in their definition.  
(Papadimitriou (1994), Grigni (2001), Aisenberg, Bonet and Buss (2020)). 

Problems that were identified independently from the work on 
TFNP. (Goldberg (2019), Algorithms UK).
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NATURAL PROBLEMS

Problems that do not have a circuit explicit in their definition.  
(Papadimitriou (1994), Grigni (2001), Aisenberg, Bonet and Buss (2020)). 

Problems that were identified independently from the work on 
TFNP. (Goldberg (2019), Algorithms UK).

Necklace Splitting and Consensus-Halving are natural!
Two birds with one stone?
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F.R. and Goldberg. Consensus-Halving is PPA-complete. (STOC 2018).

When ε is inversely exponential.

inversely exponential inversely polynomial constant

problem becomes easier

hardness becomes more difficult to prove
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F.R. and Goldberg. The Complexity of Splitting Necklaces and Bisecting Ham 
Sandwiches (STOC 2019).

We prove that ε-CONSENSUS HALVING is PPA-Complete for inverse-

polynomial ε. 

This implies that NECKLACE SPLITTING is PPA-Complete.

This also implies that DISCRETE HAM SANDWICH is PPA-Complete.
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No natural 
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CH is PPA-complete

[F.R. and Goldberg, 2018]

PPA now has a
natural complete

problem.

NS is PPA-complete

DHS is PPA-complete

[F.R. and Goldberg 2019]

[F.R. and Goldberg 2019]

PPA now has
natural complete

problems.
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Buss (2015).

OCTAHEDRAL TUCKER Deng, Feng and Kulkarni (2017).

TUCKER, SPERNER on Möbius band and Klein bottle. 
Deng, Feng, Liu and Qi (2015).
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SPERNER, BROUWER, KAKUTANI  
Papadimitriou (1994). 

NASH Daskalakis, Goldberg and Papadimitriou 
(2005, 2009), Chen and Deng  (2007, 2009). 

EXCHANGE ECONOMY Papadimitriou (1994), 
Chen, Paparas and Yiannakakis (2013). 

ENVY-FREE CAKE CUTTING Deng, Qi and Saberi 
(2009, 2012).  

Many more …

SPERNER for non-orientable spaces Grigni (2001), 
Friedl, Ivanyos, Santha and Verhoeven (2006).

2D-TUCKER, BORSUK-ULAM Aisenberg, Bonet and 
Buss (2015).

OCTAHEDRAL TUCKER Deng, Feng and Kulkarni (2017).

TUCKER, SPERNER on Möbius band and Klein bottle. 
Deng, Feng, Liu and Qi (2015).

CONSENSUS-HALVING, NECKLACE SPLITTING, 
DISCRETE HAM SANDWICH. F.R., Goldberg (2018, 2019)

More?
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For k=2, the problem is PPA-complete.

What about general k?

F.R., Hollender, Sotiraki and Zampetakis.  
A Topological Characterization of Modulo-p Arguments and Implications for Necklace Splitting (SODA 2020).

Necklace Splitting with p thieves is in PPA-p, for p a prime power.

What about hardness?

F.R., Hollender, Sotiraki and Zampetakis.  
Consensus Halving: Does It Ever Get Easier?. (EC 2020).

Some evidence of hardness, but still far from it.

Biggest open problem: Is Necklace Splitting with p thieves PPA-p complete?


