Flip Distances between Graph Orientations

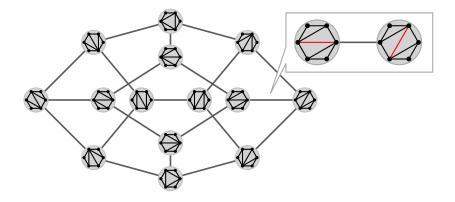
Jean Cardinal

Joint work with Oswin Aichholzer, Tony Huynh, Kolja Knauer, Torsten Mütze, Raphael

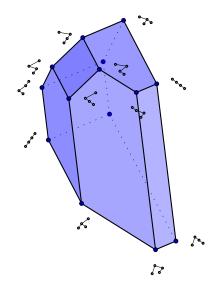
Steiner, and Birgit Vogtenhuber

October 2020

Flip Graphs



Polytope



Flip Distances

• Diameter of associahedra

Sleator, Tarjan, Thurston 1988, Pournin 2014

- Computational question: given two objects, what is their flip distance?
- Flip distance between triangulations of point sets is NP-hard.
- Flip distance between triangulations of simple polygons is NP-hard.

Aichholzer, Mulzer, Pilz 2015

• Flip distance between triangulations of a convex polygon: Major open question.

Flip Distances

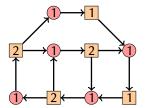
Complexity of flip distances on "nice" combinatorial polytopes?

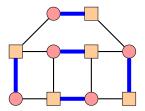
- Matroid polytopes: easy
- Associahedra and polymatroids: open
- Intersection of two matroids?

$\alpha \text{-orientations}$

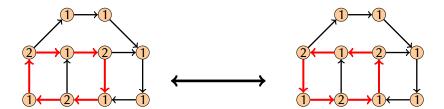
An α -orientation of *G* is an orientation of the edges of *G* in which every vertex *v* has outdegree $\alpha(v)$.

Perfect Matchings in Bipartite Graphs

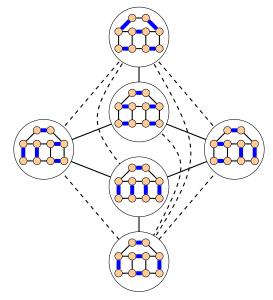




Flips in α -orientations



Flip Graph on Perfect Matchings



Adjacency

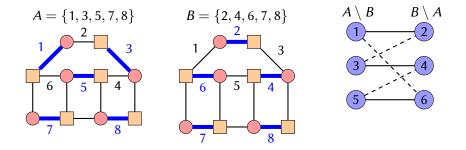
- The common base polytope of two matroids is the intersection of the two matroid polytopes.
- α -orientations are intersections of two partition matroids.
- Adjacency is characterized by cycle exchanges.

Frank and Tardos 1988, Iwata 2002

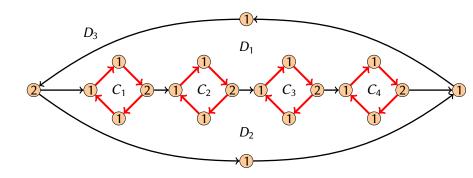
• Adjacency on perfect matching polytope: symmetric difference induces a single cycle.

Balinski and Russakoff 1974

Adjacency



Flip Distance



- Symmetric difference composed of four cycles: C₁, C₂, C₃, C₄
- Flip distance three: D_1 , D_2 , D_3

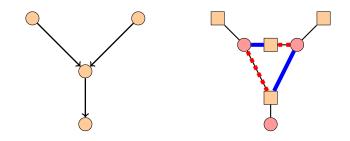
NP-completeness

Theorem

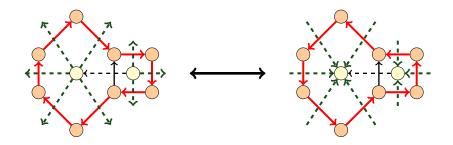
Given a two-connected bipartite subcubic planar graph G and a pair X, Y of perfect matchings in G, deciding whether the flip distance between X and Y is at most two is NP-complete.

NP-hardness

Reduction from Hamiltonian cycle in planar, degree 1/2-2/1 digraphs.



Planar Duality



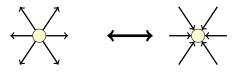
Dual Flips

A *c*-orientation is an orientation in which the number of forward edges in any cycle C is equal to c(C).

Propp 2002, Knauer 2008

primal	dual
lpha-orientation	<i>c</i> -orientation
directed cycle flip	directed cut flip
facial cycle flip	source/sink flip

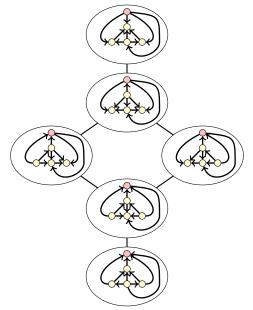
Source/sink flips



- What is the complexity of computing the source/sink flip distance?
- Here the flip graphs is known to have a nice structure.

Propp 2002, Felsner and Knauer 2009,2011

A Distributive Lattice



Source/sink flip distance

Theorem

There is an algorithm that, given a graph G with a fixed vertex \top and a pair X, Y of c-orientations of G, outputs a shortest source/sink flip sequence between X and Y, and runs in time $O(m^3)$ where m is the number of edges of G.

Flip distance with Larger Cut Sets

Theorem

Let X, Y be c-orientations of a connected graph G with fixed vertex \top . It is NP-hard to determine the length of a shortest cut flip sequence transforming X into Y, which consists only of minimal directed cuts with interiors of order at most two.

Reduction from the problem of computing the jump number of a poset.

Thank you!

Algorithmica https://doi.org/10.1007/s00453-020-00751-1