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Flip Graphs
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Polytope
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Flip Distances

• Diameter of associahedra
Sleator, Tarjan, Thurston 1988, Pournin 2014

• Computational question: given two objects, what is their flip
distance?
• Flip distance between triangulations of point sets is NP-hard.

Lubiw and Pathak 2015

• Flip distance between triangulations of simple polygons is
NP-hard.

Aichholzer, Mulzer, Pilz 2015

• Flip distance between triangulations of a convex polygon:
Major open question.
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Flip Distances

Complexity of flip distances on “nice” combinatorial polytopes?
• Matroid polytopes: easy
• Associahedra and polymatroids: open
• Intersection of two matroids?
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α-orientations

An α-orientation of G is an orientation of the edges of G in which
every vertex v has outdegree α(v).
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Perfect Matchings in Bipartite Graphs
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Flips in α-orientations
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Flip Graph on Perfect Matchings
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Adjacency

• The common base polytope of two matroids is the intersection
of the two matroid polytopes.
• α-orientations are intersections of two partition matroids.
• Adjacency is characterized by cycle exchanges.

Frank and Tardos 1988, Iwata 2002

• Adjacency on perfect matching polytope: symmetric di�erence
induces a single cycle.

Balinski and Russako� 1974
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Adjacency

A = {1, 3, 5, 7, 8}
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Flip Distance
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• Symmetric di�erence composed of four cycles: C1, C2, C3, C4

• Flip distance three: D1, D2, D3
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NP-completeness

Theorem
Given a two-connected bipartite subcubic planar graph G and a pair
X ,Y of perfect matchings in G, deciding whether the flip distance
between X and Y is at most two is NP-complete.
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NP-hardness

Reduction from Hamiltonian cycle in planar, degree 1/2-2/1
digraphs.
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Planar Duality
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Dual Flips

A c-orientation is an orientation in which the number of forward
edges in any cycle C is equal to c(C).

Propp 2002, Knauer 2008

primal dual
α-orientation c-orientation

directed cycle flip directed cut flip
facial cycle flip source/sink flip
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Source/sink flips

• What is the complexity of computing the source/sink flip
distance?

• Here the flip graphs is known to have a nice structure.
Propp 2002, Felsner and Knauer 2009,2011
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A Distributive La�ice
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Source/sink flip distance

Theorem
There is an algorithm that, given a graph G with a fixed vertex > and a
pair X ,Y of c-orientations of G, outputs a shortest source/sink flip
sequence between X and Y, and runs in time O(m3) where m is the
number of edges of G.
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Flip distance with Larger Cut Sets

Theorem
Let X ,Y be c-orientations of a connected graph G with fixed vertex >.
It is NP-hard to determine the length of a shortest cut flip sequence
transforming X into Y , which consists only of minimal directed cuts
with interiors of order at most two.

Reduction from the problem of computing the jump number of a
poset.
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Thank you!

Algorithmica
h�ps://doi.org/10.1007/s00453-020-00751-1
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