
Complexity of computing zeros of structured polynomial systems

Complexity of computing zeros of
structured polynomial systems

Peter Bürgisser

joint work with

Felipe Cucker and Pierre Lairez

Los Angeles Combinatorics and Complexity Seminar

November 10, 2020



Complexity of computing zeros of structured polynomial systems

Solving polynomial systems

� Given n homogeneous polynomial equations of degree d ,

f1(z) = 0, . . . , fn(z) = 0,

in n + 1 variables. Want to compute solutions in Pn
(C).

� Intensively studied computational question! Not possible to
summarize all the contributions here.

� Let’s assume the input polynomials fi are su�ciently generic.

� Well known: algebraic algorithms can compute all dn solutions with
dO(n) arithmetic operations: e.g., Renegar (’89), Lakshman (’91),
Giusti, Lecerf, Salvy (’01).

� Can we do better if we just want one (or a few) solutions?

� Numerical homotopy continuation algorithms are capable of this, see
impressive software by Breiding and Timme:
https://www.juliahomotopycontinuation.org



Complexity of computing zeros of structured polynomial systems

Homotopy continuation algorithms

� Such algorithms have been known for quite some time. Their
complexity was investigated in detail by Shub & Smale in the 90ies.

� Smale’s 17th problem (1998):

Can a zero of n complex polynomial equations in n unknowns be
found approximately, on the average, in polynomial time with a
uniform algorithm?

� Here input polynomials are assumed to be distributed according to a
unitary invariant Gaussian distribution (Kostlan, Bombieri, Weyl).

� Smale’s question was given a positive answer by Lairez (2017),
based on work by Shub & Smale, Shub, Beltran & Pardo, and Bürgisser
& Cucker.

� Essentially optimal result for dense model by Lairez (’20):
quasilinear expected cost poly(n,d)N, where N is input size in dense
representation (number of coe�cients).



Complexity of computing zeros of structured polynomial systems

How meaningful is the dense model?

� Dense representation, polynomials are given by their full list of
coe�cients: N ∶= n�d+n

n
�.

� But: Most systems of interest are structured in some sense; they lie
in a set of measure zero in the input space of all polynomials.

� Thus the above probabilistic analysis doesn’t tell us anything about
the behaviour of the above algorithms on these structured inputs!

The dense setting is only the first step towards understanding the problem!

� Ask about refinement of Smale’s question for structured systems.



Complexity of computing zeros of structured polynomial systems

Unitary invariance

� Unitary invariance is an important feature enabling the probabilistic
analysis in the mentioned results.

� The unitary group U(n + 1) acts on the space H of homogeneous
polynomials of degree d in n + 1 variables by linear transformation:
“orthogonal coordinate transformation”.

� The product U ∶= U(n+ 1)n of unitary groups acts on space H ∶= Hn:

(f1, . . . , fn) ⋅ (u1, . . . ,un) ∶= (f1 ○ u1, . . . , fn ○ un).

� Our new result applies to structured settings that respect unitary
univariance.

� We will bound the expected running time of algorithms (solvers)
over U-orbits, that is, we average over U .



Complexity of computing zeros of structured polynomial systems

Systems given by black-box evaluation. . .

� There are many ways to define structured systems.

� One may consider sparse systems, i.e., prescribe the support
(occurring monomials) of the polynomials. See Malajovich (’19-’20).

� However, this model is not unitary invariant.

� Here we only assume that the polynomials are given by a black box:
i.e., an evaluation routine. (No need to know what the routine
actually does.)

� This is a common assumption in optimization: a function (and its
gradient) are given by a black-box routine.

� Note: black box for fi easily gives black box for composition fi ○ ui .



Complexity of computing zeros of structured polynomial systems

. . .and solving them

� Consider system F = (f1, . . . , fn) ∈ Hn s.t. zero set of fi has no singularities.
� We assign to F a quantity reflecting its “numerical conditioning”:

�(F ) ∶= ��(f1)2 +� + �(fn)2�
1
2
<∞.

� �(fi) is essentially the average of Smale’s � quantity �(fi , z), averaged over the

compact hypersurface of zeros of fi .

� L(F): number of arithmetic operations su�cient to evaluate F .

Theorem (I)

We exhibit an algorithm BBS, which on input F ∈H given as black-box,
and ✏ > 0, computes an approximate zero of F with probability at
least 1 − ✏.
On input u ⋅ F , where u ∈ U is uniformly random, this algorithm performs
at most

poly(n,d) ⋅ L(F ) ⋅ ��(F ) log�(F ) + log log ✏−1�
operations on average.



Complexity of computing zeros of structured polynomial systems

Solving random systems with unitary invariant distribution

� Theorem I applies to any prob. distribution of F ∈H that is unitary
invariant.

� On a random input F ∈H, the expected number of operations is
bounded by

poly(n, �) ⋅ L ⋅ �� log� + log log ✏−1�
where

� = E[�(F )2]
1
2

and L denotes an upper bound on L(F ).

� We apply this to the class of polynomial systems computed by small
algebraic branching programs.

� This class is unitary invariant and, by definition, these systems have
small L (evaluation complexity).

� Have a natural invariant Gaussian distribution on this class.

� We managed to e↵ectively upper bound �(F ) in this case.



Complexity of computing zeros of structured polynomial systems

Algebraic branching programs

� Algebraic branching programs (ABPs), introduced by Nisan (’91),
play an important role in algebraic complexity theory: notably in
Valiant’s VP versus VNP theory.

� ABPs provide an elegant graphical way of formalizing computations
with polynomials, but the most concise way to express the model is
using matrices.

� Fix r0, . . . , rd ∈ N>0 with r0 = rd and let

Ai(z) = Ai0 z0 +� +Ain zn

with complex matrices Aij of format ri−1 × ri , 1 ≤ i ≤ d .
� The trace of iterated matrix multiplication

f (z) = tr (A1(z)�Ad(z)) .

is the polynomial defined by the corresponding ABP.
� By associativity of matrix multiplication, can evaluate f (z) with a

total of O(ndr3) arithmetic operations, where r ∶= maxi ri .



Complexity of computing zeros of structured polynomial systems

Gaussian algebraic branching programs

� We assume now that the Aij are independent complex standard
Gaussian matrices and focus on the distribution of the (highly
structured) random polynomial

f (z) = tr (A1(z)�Ad(z)) .

� Important: the distribution of f is unitarily invariant
� The support S of this distribution is a low dimensional algebraic

subvariety of the space H of d-dimensional forms: dimS ≤ d(n + 1)2.

Theorem (II)

We have
E ��(f )2� ≤ 3

4d
3
(d + n) log d ,

provided r1, . . . , rd−1 ≥ 2. Otherwise, �(f ) =∞ almost surely.

The proof is a technical tour de force ...



Complexity of computing zeros of structured polynomial systems

Solving systems given by Gaussian ABPs

Corollary (II)

If f1, . . . , fn are given by independent Gaussian random ABPs of degree at
most d , format r1, . . . , rd−1 ≥ 2, and evaluation complexity at most L,
then algorithm BBS computes a zero of f1 = 0, . . . , fn = 0 with probability
at least 1 − ✏ in

poly(n,d) ⋅ L ⋅ log log ✏−1
operations on average.

Our result may be interpreted as a first step towards providing an
a�rmative answer to a refined version of Smale’s 17th question,
concerned with structured systems of polynomial equations.



Complexity of computing zeros of structured polynomial systems

Rigid Homotopy Continuation

� General framework due to Pierre Lairez, J. AMS 2019, substantially
improving Shub & Smale and basis of our work.

� Fix F = (f1, . . . , fn) ∈H s.t. zero set of fi has no singularities.
Consider the compact “solution variety”

V ∶= {((u1, . . . ,un), z) ∈ U × Pn
� f1(u1(z)) = 0, . . . , fn(un(z)) = 0}.

� V is invariant under action of U , have U-invariant prob. distribution.

� It is possible to e�ciently compute a sample (u, z) ∈ V.

� Connect u to identity I by a geodesic path [0,1]→ U , t � ut , s.t.
u0 = u, u1 = I . Continue the zero z by a path [0,1]→ Pn, t � zt s.t.
z0 = z (almost surely possible).



Complexity of computing zeros of structured polynomial systems

Stepsizes via Monte Carlo sampling

� Implement numerical continuation via Newton iteration.
� Appropriate step sizes are given by Smale’s parameter �(f , z).
� Previous algorithm estimated stepsize in terms of condition number,

which leads to large step sizes and is much too wasteful!
� Definition of �(f , z) involves norm of higher order derivatives

1
k! �Dk

z
f �

F
=�f (z+●)k�W ,

where p = f (z + ●)k is the homogeneous component of degree k of
the shifted polynomial x � f (z + x).

� Trick from algebraic complexity: p is easy to compute in black box
model.

� Estimate �(f , z) using Monte Carlo random samplling based on

�p�2
W
=�n+1+k

k
�Ew [�p(w)�2],

with w chosen uniformly at random in euclidean unit ball B of Cn+1.
� The rigid continuation algorithm is Monte-Carlo: it fails with

controlled error probability.



Complexity of computing zeros of structured polynomial systems

Thank you for your attention!


