Testing membership in varieties, algebraic natural proofs, and geometric complexity theory

Markus Bläser

Saarland University

with Christian Ikenmeyer, Gorav Jindal, Vladimir Lysikov, Anurag Pandey, and Frank-Olaf Schreyer

Membership testing in varieties

Orbit problems in computer science

The minrank problem

Variety membership problem

Variety membership problem

- "Given" a variety V and
- given a point x in the ambient space
- decide whether $x \in V!$

What is the complexity of this problem?

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQで

```
\longrightarrow depends on the encoding of V
```

Varieties given by circuits

Theorem

If V is given by a list of arithmetic circuits, then the membership problem is in coRP.

Proof:

- Let C_1, \ldots, C_t computing f_1, \ldots, f_t such that $V = V(f_1, \ldots, f_t)$.
- Test whether f₁(x) = ··· = f_t(x) = 0 by evaluating C_τ at x. (Polynomial Identity Testing)

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQで

Remark

Can be realized as a many-one reduction to PIT.

PIT reduces to PIT for constant polynomials

Lemma

There is a many-one reduction from general PIT to PIT for constant polynomials.

Proof:

- Let C be a circuit of size s computing $f(X_1, \ldots, X_n)$.
- The degree and the bit size of the coefficients are exponentially bounded in s.
- f is not identically zero iff $f(2^{2^{s^2}}, \ldots, 2^{2^{ns^2}}) \neq 0$.

Remark

The proof yields a many-one reduction from PIT to hypersurface membership testing when the surface is given as a circuit.

Further ways to specify varieties

Explicitely in the problem:
Let V = (V_n) and consider V-membership

 As an orbit closure: Let G = (G_n) be a sequence of groups acting on an n-dimensional ambient space. Given (x, v) decide whether x ∈ G_nv! (Orbit containment problem)

By a dense subset:

Given circuits computing a polynomial map, decide whether \boldsymbol{x} lies in the closure of the image.

Membership testing in varieties

Orbit problems in computer science

The minrank problem

Tensor rank and matrix multiplication

Definition

 $\mathfrak{u} \otimes \mathfrak{v} \otimes \mathfrak{w} \in \mathfrak{U} \otimes \mathfrak{V} \otimes W$ is called a rank-one tensor.

Definition (Rank)

R(t) is the smallest r such that there are rank-one tensors t_1,\ldots,t_r with $t=t_1+\cdots+t_r.$

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQで

Lemma

Let $t\in U\otimes V\otimes W$ and $t'\in U'\otimes V'\otimes W'.$

- $\blacktriangleright \ R(t \oplus t') \le R(t) + R(t')$
- $\blacktriangleright \ R(t \otimes t') \le R(t)R(t')$

Strassen's algorithm and tensors

Observation: Tensor product \cong Recursion

Strassen's algorithm:

- $\blacktriangleright \langle 2, 2, 2 \rangle^{\otimes s} = \langle 2^s, 2^s, 2^s \rangle$
- $\blacktriangleright \ \mathsf{R}(\langle 2,2,2\rangle^{\otimes s}) \leq 7^s$

Definition (Exponent of matrix multiplication)

$$\omega = \inf\{\tau \mid \mathsf{R}(\langle n, n, n \rangle) = O(n^{\tau})\}$$

Strassen: $\omega \leq \log_2 7 \leq 2.81$

Lemma

If $R(\langle k, m, n \rangle) \leq r$, then $\omega \leq 3 \cdot \frac{\log r}{\log kmn}$.

Restrictions

Definition

Let $A: U \to U'$, $B: V \to V'$, $C: W \to W'$ be homomorphism.

$$\blacktriangleright (A \otimes B \otimes C)(u \otimes v \otimes w) = A(u) \otimes B(v) \otimes C(w)$$

$$\begin{array}{l} \blacktriangleright \quad (A\otimes B\otimes C)t = \sum_{i=1}^r A(u_i)\otimes B(\nu_i)\otimes C(w_i) \text{ for } \\ t = \sum_{i=1}^r u_i\otimes \nu_i\otimes w_i. \end{array}$$

► t' ≤ t if there are A, B, C such that t' = (A ⊗ B ⊗ C)t. ("restriction").

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ●の00

Lemma

• If
$$t' \leq t$$
, then $R(t') \leq R(t)$

$$\begin{array}{l} \blacktriangleright \quad R(t) \leq r \; \textit{iff} \; t \leq \langle r \rangle. \\ (\langle r \rangle \; \textit{``diagonal''} \; \textit{of size } r.) \end{array}$$

Orbit problems

Let $(A,B,C)\in {\rm End}(U)\times {\rm End}(V)\times {\rm End}(W)$ act on $U\otimes V\otimes W$ by

$$(A, B, C)u \otimes v \otimes w = A(u) \otimes B(v) \otimes C(w).$$

and linearity.

We can interpret $t \in U' \otimes V' \otimes W'$ as an element of $U \otimes V \otimes W$ by embedding U' into U, V' into V, and W' into W.

Lemma

 $R(t) \leq r \text{ iff } t \in (\mathrm{End}(U) \times \mathrm{End}(U) \times \mathrm{End}(U)) \langle r \rangle.$

Border rank and orbit problems

• S_r be the set of all tensors of rank r.

• $X_r := \overline{S_r}$ is the set of tensors of *border rank* $\leq r$.

Lemma

If
$$\underline{R}(\langle k, m, n \rangle) \leq r$$
, then $\omega \leq 3 \cdot \frac{\log r}{\log kmn}$.

Lemma

 $\underline{R}(t) \leq r \text{ iff } t \in \overline{(\operatorname{GL}_r \times \operatorname{GL}_r \times \operatorname{GL}_r) \langle r \rangle}.$

Identity testing

Lemma (Valiant)

If a polynomial $f \in k[X_1, \ldots, X_n]$ can be computed by a formula of size s, then there is a matrix pencil of size $m \times m$

$$A := A_0 + X_1 A_1 + \dots + X_n A_n$$

such that f = det(A). We have m = O(s).

Observation

f is identically zero iff A does not have full rank.

 $\operatorname{SL}_m\times\operatorname{SL}_m$ acts on (A_0,\ldots,A_n) by

$$(S,T)(A_0,\ldots,A_n) := (SA_0T,\ldots,SA_nT).$$

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQで

Noncommutative identity testing

Definition

Let G act on V. The *null cone* are all vectors v such that $0 \in \overline{Gv}$.

One can define a noncommutative version of the rank of a matrix pencil.

Theorem

A does not have full noncommutative rank iff A is in the null cone of the left-right-SL-action.

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQで

Theorem (Garg-Gurvits-Oliviera-Wigderson)

This null-cone problem can be solved deterministically in polynomial time.

Valiant's world

- Let $X = X_1, X_2, \ldots$ be indeterminates.
- A function p : N → N is p-bounded, if there is some polynomial q such that p(n) ≤ q(n) for all n.

Definition

A sequence of polynomials $(f_n)\in K[X]$ is called a p-family if for all n,

- 1. $f_n \in K[X_1, \ldots, X_{p(n)}]$ for some polynomially bounded function p and
- 2. $\deg f_n \leq q(n)$ for some polynomially bounded function q.

Definition

The class VP consists of all p-families (f_n) such that $L(f_n)$ is polynomially bounded.

Projections as orbit problems

Definition

- 1. $f\in K[X]$ is a projection of $g\in K[X]$ if there is a substitution $r:X\to X\cup K$ such that f=r(g). "f $\leq g$ "
- 2. A p-family (f_n) is a *p*-projection of another p-family (g_n) if there is a p-bounded q such that $f_n \leq g_{q(n)}$. " $(f_n) \leq_p (g_n)$ "
- ▶ End_n acts on $k[X_1, ..., X_n]$ by $(gh)(x) = h(g^t x)$ for $g \in End_n$, $h \in k[X_1, ..., X_n]$, $x \in k^n$.
- \blacktriangleright If $f\in \operatorname{End}_n h$ and h is homogeneous of degree d, then f is homogeneous of degree d

・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・

- If $f \leq h$, then $\deg f$ can be smaller than $\deg h$.
- Padding: Replace f by $X_1^{\deg h \deg f} f$.
- ▶ If $f \leq h$, then $X_1^{\deg h \deg f} f \in End_n h$
- ▶ VP and VP_{ws} are closed under End_n .

Valiant's conjecture

Conjecture (Valiant)

 $\mathsf{VP} \neq \mathsf{VNP}$

▶ the weaker conjecture $VP_{ws} \neq VNP$ is equivalent to per \leq_p det.

Conjecture (Mulmuley & Sohoni)

 $\mathsf{VNP} \not\subseteq \overline{\mathsf{VP}_{\mathrm{ws}}}$

▶ equivalent to $X_{11}^{n-m} \operatorname{per}_m \notin \overline{\operatorname{GL}_{n^2} \operatorname{det}_n}$ for any $n = \operatorname{poly}(m)$.

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ●の00

Orbit closure containment problem

We want to understand the complexity of deciding

$$x \in \overline{Gv}$$
?

- We will focus on tensors.
- Tensor rank is NP-hard (Hastad).
- Very little is known about closures.
- In partcular, we do not know any hardness results for border rank.

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三 のへぐ

Membership testing in varieties

Orbit problems in computer science

The minrank problem

The minrank problem

Definition

Let $A_1, \ldots, A_k \in K^{m \times n}$. The *min-rank* of A_1, \ldots, A_k is the minimum number r such that there are scalars $\lambda_1, \ldots, \lambda_m$, not all being 0, with

$$\operatorname{rk}(\lambda_1 A_1 + \dots + \lambda_k A_k) \leq r.$$

We denote the min-rank by $minR(A_1, \dots, A_k)$.

- Can also be phrased in terms of a matrix pencil X₁A₁ + ··· + X_kA_k.
- Can be phrased in terms of tensors by stacking the matrices on top of each other.

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ●の00

Geometric description

Theorem

Let U, V, W be vector spaces over an algebraically closed field F. The set of all tensors $T \in U \otimes V \otimes W$ with minrank at most r is Zariski closed.

Definition

We call the projective variety

 $\mathbb{P}\mathcal{M}_{U\otimes V\otimes W,r}=\{[T]\in\mathbb{P}(U\otimes V\otimes W)\mid \exists x\neq 0\colon \mathrm{rk}(Tx)\leq r\}$

the projective minrank variety, and the corresponding affine cone

 $\mathcal{M}_{U \otimes V \otimes W, r} = \{ T \in U \otimes V \otimes W \mid \exists x \neq 0 \colon \mathrm{rk}(Tx) \leq r \}$

the affine minrank variety, or just the minrank variety.

Simple properties

Lemma

Let V^\prime and W^\prime be subspaces of V and W respectively. Then

$$\mathcal{M}_{U\otimes V'\otimes W',r}=\mathcal{M}_{U\otimes V\otimes W,r}\cap (U\otimes V'\otimes W').$$

Lemma

Let $\dim U = k$, $\dim V = n$ and $\dim W > s = n(k-1) + r$. Then

$$\mathcal{M}_{U\otimes V\otimes W,r} = \bigcup_{\substack{W'\subset W\\\dim W'=s}} \mathcal{M}_{U\otimes V\otimes W',r}.$$

Lemma

The variety $\mathcal{M}_{U\otimes V\otimes W,r}$ is invariant under the standard action of $\operatorname{GL}(U) \times \operatorname{GL}(V) \times \operatorname{GL}(W)$ on $U \otimes V \otimes W$.

ヘロン 人間 とくほ とくほ とうほ

Orbit problem

- Let $L = (F^n)^{\oplus (k-1)} \oplus F^r$, dim L = s := n(k-1) + r.
- ▶ Let L_i be the i-th summand with standard basis e_{ij} , $1 \le j \le \dim L_i$.
- Let $U = F^k$ with standard basis e_i .

$$\mathsf{T}_{\mathsf{k},\mathsf{n},\mathsf{r}} = e_1 \otimes (\sum_{j=1}^{\mathsf{r}} e_{1j} \otimes e_{1j}) + \sum_{i=2}^{\mathsf{k}} e_i \otimes (\sum_{j=1}^{\mathsf{n}} e_{ij} \otimes e_{ij}),$$

▶ The group $GL(U) \times GL(L) \times GL(L)$ acts on $U \otimes L \otimes L$.

Theorem

Suppose V and W are subspaces of L. Then

 $\mathcal{M}_{U\otimes V\otimes W,r}=\overline{(\mathrm{GL}(U)\times \mathrm{GL}(L)\times \mathrm{GL}(L))T_{k,n,r}}\cap (U\otimes V\otimes W).$

Symmetries

Theorem

If r < n, then the stabilizer of $T_{k,n,r}$ in $\operatorname{GL}_k \times \operatorname{GL}_s \times \operatorname{GL}_s$ is isomorphic to $(\operatorname{GL}_r \times \operatorname{GL}_1) \times (\operatorname{GL}_n \times \operatorname{GL}_1)^{k-1} \rtimes \mathfrak{S}_{k-1}$.

$$(\mathsf{Z}_1, z_1, \dots, \mathsf{Z}_k, z_k) \in (\operatorname{GL}_r \times \operatorname{GL}_1) \times (\operatorname{GL}_n \times \operatorname{GL}_1)^{k-1}$$

is embedded into $\operatorname{GL}_k\times\operatorname{GL}_s\times\operatorname{GL}_s$ via

 $(\operatorname{diag}(z_1,\ldots,z_k),\operatorname{diag}(\mathsf{Z}_1,\ldots,\mathsf{Z}_k),\operatorname{diag}((z_1\mathsf{Z}_1)^{-\mathsf{T}},\ldots,(z_k\mathsf{Z}_k)^{-\mathsf{T}}))$

and \mathfrak{S}_{k-1} permutes the last k-1 coordinates of U and the last k-1 summands of L simultaneously.

Theorem

 $\begin{array}{l} \textit{If} \operatorname{stab} T = \operatorname{stab} T_{k,n,r}, \textit{ then } T \textit{ } \underset{i \in s}{\textit{ in }} (\operatorname{GL}_k \times \operatorname{GL}_s \times \operatorname{GL}_s) T_{k,n,r}. \\ \textit{If} \operatorname{stab} T \supset \operatorname{stab} T_{k,n,r}, \textit{ then } T \in \overline{(\operatorname{GL}_k \times \operatorname{GL}_s \times \operatorname{GL}_s) T_{k,n,r}}. \end{array}$

Complexity

Problem (HMinRank)

```
Given matrices (A_1, \ldots, A_m) and a number r, decide whether \min R(A_1, \ldots, A_m) \leq r.
```

HMinRank1: special case when r = 1.

Problem (HQuad_{S,F})

Given a set of quadratic forms represented by lists of coefficients from $S \subseteq F$, determine if it has a common nontrivial zero over F.

Theorem

 $\operatorname{HQuad}_{\{0,1,-1\},F}$ is NP-hard for any field F.

Complexity (2)

Theorem

Let F be a field and K be an effective subfield of F. Then $\operatorname{HMinRank1_{K,F}}$ is polynomial-time equivalent to $\operatorname{HQuad}_{K,F}$.

Corollary

Let F be a field and K be an effective subfield of F. Then $\operatorname{HMinRank1}_{K,F}$ is NP-hard.

Corollary

Given two tensors t and t', deciding whether the orbit closure of t is contained in the orbit closure of t' (under the usual $\operatorname{GL}_n \times \operatorname{GL}_n \times \operatorname{GL}_n$ action) is NP-hard.

Conclusions

- Orbit closure containment for 3-tensors is NP-hard.
- What about orbit closure intersection?
- What is the complexity of the defining equations of the orbit closure?

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ●の00

 \longrightarrow algebraic natural proofs