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Variety membership problem

Variety membership problem

I “Given” a variety V and

I given a point x in the ambient space

I decide whether x ∈ V!

What is the complexity of this problem?

−→ depends on the encoding of V



Varieties given by circuits

Theorem

If V is given by a list of arithmetic circuits, then the membership
problem is in coRP.

Proof:

I Let C1, . . . , Ct computing f1, . . . , ft such that
V = V(f1, . . . , ft).

I Test whether f1(x) = · · · = ft(x) = 0 by evaluating Cτ at x.
(Polynomial Identity Testing)

Remark

Can be realized as a many-one reduction to PIT.



PIT reduces to PIT for constant polynomials

Lemma

There is a many-one reduction from general PIT to PIT for
constant polynomials.

Proof:

I Let C be a circuit of size s computing f(X1, . . . , Xn).

I The degree and the bit size of the coefficients are
exponentially bounded in s.

I f is not identically zero iff f(22
s2

, . . . , 22
ns2

) 6= 0.

Remark

The proof yields a many-one reduction from PIT to hypersurface
membership testing when the surface is given as a circuit.



Further ways to specify varieties

I Explicitely in the problem:
Let V = (Vn) and consider V-membership

I As an orbit closure:
Let G = (Gn) be a sequence of groups acting on an
n-dimensional ambient space.
Given (x, v) decide whether x ∈ Gnv!
(Orbit containment problem)

I By a dense subset:
Given circuits computing a polynomial map, decide whether x
lies in the closure of the image.
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Tensor rank and matrix multiplication

Definition

u⊗ v⊗w ∈ U⊗ V ⊗W is called a rank-one tensor.

Definition (Rank)

R(t) is the smallest r such that there are rank-one tensors
t1, . . . , tr with t = t1 + · · ·+ tr.

Lemma

Let t ∈ U⊗ V ⊗W and t ′ ∈ U ′ ⊗ V ′ ⊗W ′.
I R(t⊕ t ′) ≤ R(t) + R(t ′)
I R(t⊗ t ′) ≤ R(t)R(t ′)



Strassen’s algorithm and tensors

Observation: Tensor product ∼= Recursion

Strassen’s algorithm:

I 〈2, 2, 2〉⊗s = 〈2s, 2s, 2s〉
I R(〈2, 2, 2〉⊗s) ≤ 7s

Definition (Exponent of matrix multiplication)

ω = inf{τ | R(〈n,n, n〉) = O(nτ)}

Strassen: ω ≤ log2 7 ≤ 2.81

Lemma

If R(〈k,m,n〉) ≤ r, then ω ≤ 3 · log r
log kmn .



Restrictions

Definition

Let A : U→ U ′, B : V → V ′, C :W →W ′ be homomorphism.

I (A⊗ B⊗ C)(u⊗ v⊗w) = A(u)⊗ B(v)⊗ C(w)
I (A⊗ B⊗ C)t =

∑r
i=1A(ui)⊗ B(vi)⊗ C(wi) for

t =
∑r
i=1 ui ⊗ vi ⊗wi.

I t ′ ≤ t if there are A,B,C such that t ′ = (A⊗ B⊗ C)t.
(“restriction”).

Lemma

I If t ′ ≤ t, then R(t ′) ≤ R(t)
I R(t) ≤ r iff t ≤ 〈r〉.

(〈r〉 “diagonal” of size r.)



Orbit problems

Let (A,B,C) ∈ End(U)× End(V)× End(W) act on U⊗ V ⊗W
by

(A,B,C)u⊗ v⊗w = A(u)⊗ B(v)⊗ C(w).

and linearity.

We can interpret t ∈ U ′ ⊗ V ′ ⊗W ′ as an element of U⊗ V ⊗W
by embedding U ′ into U, V ′ into V, and W ′ into W.

Lemma

R(t) ≤ r iff t ∈ (End(U)× End(U)× End(U))〈r〉.



Border rank and orbit problems

I Sr be the set of all tensors of rank r.

I Xr := Sr is the set of tensors of border rank ≤ r.

Lemma

If R(〈k,m,n〉) ≤ r, then ω ≤ 3 · log r
log kmn .

Lemma

R(t) ≤ r iff t ∈ (GLr ×GLr ×GLr)〈r〉.



Identity testing

Lemma (Valiant)

If a polynomial f ∈ k[X1, . . . , Xn] can be computed by a formula of
size s, then there is a matrix pencil of size m×m

A := A0 + X1A1 + · · ·+ XnAn

such that f = det(A). We have m = O(s).

Observation

f is identically zero iff A does not have full rank.

SLm × SLm acts on (A0, . . . , An) by

(S, T)(A0, . . . , An) := (SA0T, . . . , SAnT).



Noncommutative identity testing

Definition

Let G act on V. The null cone are all vectors v such that 0 ∈ Gv.

One can define a noncommutative version of the rank of a matrix
pencil.

Theorem

A does not have full noncommutative rank iff A is in the null cone
of the left-right-SL-action.

Theorem (Garg–Gurvits–Oliviera–Wigderson)

This null-cone problem can be solved deterministically in
polynomial time.



Valiant’s world

I Let X = X1, X2, . . . be indeterminates.

I A function p : N → N is p-bounded, if there is some
polynomial q such that p(n) ≤ q(n) for all n.

Definition

A sequence of polynomials (fn) ∈ K[X] is called a p-family if for all
n,

1. fn ∈ K[X1, . . . , Xp(n)] for some polynomially bounded function
p and

2. deg fn ≤ q(n) for some polynomially bounded function q.

Definition

The class VP consists of all p-families (fn) such that L(fn) is
polynomially bounded.



Projections as orbit problems

Definition

1. f ∈ K[X] is a projection of g ∈ K[X] if there is a substitution
r : X→ X ∪ K such that f = r(g). “f ≤ g”

2. A p-family (fn) is a p-projection of another p-family (gn) if
there is a p-bounded q such that fn ≤ gq(n). “(fn) ≤p (gn) ”

I Endn acts on k[X1, . . . , Xn] by (gh)(x) = h(gtx) for
g ∈ Endn, h ∈ k[X1, . . . , Xn], x ∈ kn.

I If f ∈ Endn h and h is homogeneous of degree d, then f is
homogeneous of degree d

I If f ≤ h, then deg f can be smaller than degh.

I Padding: Replace f by Xdeg h−deg f
1 f.

I If f ≤ h, then Xdeg h−deg f
1 f ∈ Endn h

I VP and VPws are closed under Endn.



Valiant’s conjecture

Conjecture (Valiant)

VP 6= VNP

I the weaker conjecture VPws 6= VNP is equivalent to
per 6≤p det.

Conjecture (Mulmuley & Sohoni)

VNP 6⊆ VPws

I equivalent to Xn−m11 perm /∈ GLn2 detn for any n = poly(m).



Orbit closure containment problem

I We want to understand the complexity of deciding

x ∈ Gv?

I We will focus on tensors.

I Tensor rank is NP-hard (Hastad).

I Very little is known about closures.

I In partcular, we do not know any hardness results for border
rank.
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The minrank problem

Definition

Let A1, . . . , Ak ∈ Km×n. The min-rank of A1, . . . , Ak is the
minimum number r such that there are scalars λ1, . . . , λm, not all
being 0, with

rk(λ1A1 + · · ·+ λkAk) ≤ r.

We denote the min-rank by minR(A1, . . . Ak).

I Can also be phrased in terms of a matrix pencil
X1A1 + · · ·+ XkAk.

I Can be phrased in terms of tensors by stacking the matrices
on top of each other.



Geometric description

Theorem

Let U, V, W be vector spaces over an algebraically closed field F.
The set of all tensors T ∈ U⊗ V ⊗W with minrank at most r is
Zariski closed.

Definition

We call the projective variety

PMU⊗V⊗W,r = {[T ] ∈ P(U⊗ V ⊗W) | ∃x 6= 0 : rk(Tx) ≤ r}

the projective minrank variety, and the corresponding affine cone

MU⊗V⊗W,r = {T ∈ U⊗ V ⊗W | ∃x 6= 0 : rk(Tx) ≤ r}

the affine minrank variety, or just the minrank variety.



Simple properties

Lemma

Let V ′ and W ′ be subspaces of V and W respectively. Then

MU⊗V ′⊗W ′,r =MU⊗V⊗W,r ∩ (U⊗ V ′ ⊗W ′).

Lemma

Let dimU = k, dimV = n and dimW > s = n(k− 1) + r. Then

MU⊗V⊗W,r =
⋃

W ′⊂W
dimW ′=s

MU⊗V⊗W ′,r.

Lemma

The variety MU⊗V⊗W,r is invariant under the standard action of
GL(U)×GL(V)×GL(W) on U⊗ V ⊗W.



Orbit problem

I Let L = (Fn)⊕(k−1) ⊕ Fr, dimL = s := n(k− 1) + r.

I Let Li be the i-th summand with standard basis eij,
1 ≤ j ≤ dimLi.

I Let U = Fk with standard basis ei.

Tk,n,r = e1 ⊗ (

r∑
j=1

e1j ⊗ e1j) +
k∑
i=2

ei ⊗ (

n∑
j=1

eij ⊗ eij),

I The group GL(U)×GL(L)×GL(L) acts on U⊗ L⊗ L.

Theorem

Suppose V and W are subspaces of L. Then

MU⊗V⊗W,r = (GL(U)×GL(L)×GL(L))Tk,n,r ∩ (U⊗ V ⊗W).



Symmetries

Theorem

If r < n, then the stabilizer of Tk,n,r in GLk ×GLs ×GLs is
isomorphic to (GLr ×GL1)× (GLn ×GL1)

k−1 oSk−1.

(Z1, z1, . . . , Zk, zk) ∈ (GLr ×GL1)× (GLn ×GL1)
k−1

is embedded into GLk ×GLs ×GLs via

(diag(z1, . . . , zk), diag(Z1, . . . , Zk), diag((z1Z1)
−T, . . . , (zkZk)

−T))

and Sk−1 permutes the last k− 1 coordinates of U and the last
k− 1 summands of L simultaneously.

Theorem

If stab T = stab Tk,n,r, then T lies in (GLk ×GLs ×GLs)Tk,n,r.
If stab T ⊃ stab Tk,n,r, then T ∈ (GLk ×GLs ×GLs)Tk,n,r



Complexity

Problem (HMinRank)

Given matrices (A1, . . . , Am) and a number r,
decide whether minR(A1, . . . , Am) ≤ r.

HMinRank1: special case when r = 1.

Problem (HQuadS,F)

Given a set of quadratic forms represented by lists of coefficients
from S ⊆ F, determine if it has a common nontrivial zero over F.

Theorem

HQuad{0,1,−1},F is NP-hard for any field F.



Complexity (2)

Theorem

Let F be a field and K be an effective subfield of F. Then
HMinRank1K,F is polynomial-time equivalent to HQuadK,F.

Corollary

Let F be a field and K be an effective subfield of F. Then
HMinRank1K,F is NP-hard.

Corollary

Given two tensors t and t ′, deciding whether the orbit closure of t
is contained in the orbit closure of t ′ (under the usual
GLn ×GLn ×GLn action) is NP-hard.

f



Conclusions

I Orbit closure containment for 3-tensors is NP-hard.

I What about orbit closure intersection?

I What is the complexity of the defining equations of the orbit
closure?
−→ algebraic natural proofs
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