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Polyominoes

Definition
A polyomino is a planar figure made from one or more equal-sized
squares, each joined together along an edge [S. Golomb (1953)].

Every cell (square) is fixed in a square lattice.
Two cell are adjacent if the Manhattan distance is 1.
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L-Tromino Tiling Problem

Definition
Given:

A set of L-trominoes Σ called a tile set, Σ = { , , ,

}
and a polyomino R called region.

Goal: Place tiles from Σ to fill the region R covering every cell
without overflowing the perimeter of R and without overlapping
between the tiles.

(a) A region R (b) A tiling of region R
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L-Tromino Tiling Problem (cont’d)

L-Tromino tiling problem
INPUT: A region R.
OUTPUT: “Yes” if R has a cover and “no” otherwise.

C. Moore and J. M. Robson (2000) proved that deciding the
existence of a L-Tromino tiling in a given region is NP-complete
with a reduction from Cubic Planar Monotone 1-in-3 SAT.

T. Horiyama, T. Ito, K. Nakatsuka, A. Suzuki and R. Uehara
(2012) constructed a one-one reduction from 1-in-3 SAT.
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Aztec Rectangle

The Aztec Diamond AD(n) is the union of all cell inside the
contour |x |+ |y | = n + 1.

(a) AD1 (b) AD2 (c) AD3 (d) AD4

The Aztec Rectangle ARa,b is a generalization of an Aztec Diamond.

(a) AR1,2 (b) AR1,3 (c) AR2,3 (d) AR3,4
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Tiling Aztec Rectangle (cont’d)

Each piece of L-tromino covers 3 cells.

In any L-tromino tiling, the number of covered cells is always
multiple of 3.

The number of cells in an ARa,b is given by

|ARa,b| = a(b + 1) + b(a + 1).

Theorem
An Aztec rectangle ARa,b has a tiling with L-trominoes
⇐⇒ |ARa,b| ≡ 0 (mod 3)
⇐⇒ (a, b) is equal to (3k, 3k ′) or (3k − 1, 3k ′ − 1) for some k, k ′ ∈ N.
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Tiling Aztec Rectangle (cont’d)

The problem of tiling an Aztec Rectangle can be solved recursively.
If (a, b) equals (3k, 3k ′), use pattern 1.
If (a, b) equals (3k − 1, 3k ′ − 1), use pattern 2.

ARa,b

ARa+2,b+2

(a) Pattern 1

ARa,b

ARa+4,b+4

(b) Pattern 2
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Tiling Aztec Rectangle (cont’d)
The problem of tiling an Aztec Rectangle can be solved recursively.
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Tiling Aztec Rectangle (cont’d)

The problem of tiling an Aztec Rectangle can be solved recursively.
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Tiling Aztec Rectangle with a single defect

A defect cell is a cell in which no tromino can be placed on top.

defect cell

Theorem
An Aztec rectangle ARa,b with one defect has a tiling with L-trominoes
⇐⇒ |ARa,b| ≡ 1 (mod 3)
⇐⇒ a or b is equal to 3k − 2 for some k ∈ N.

19/50
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Tiling Aztec Rectangle with a single defect (cont’d)

Place a fringe where it covers the defect.
Place stairs to cover other cells.
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Tiling Aztec Rectangle with an unbounded number of
defects

Theorem
The problem of tiling Aztec Rectangle ARa,b with an unbounded
number of defects is NP-complete.

Given a region R ′, we can embed R ′ inside a sufficiently large
Aztec Rectangle ARa,b.

R ′
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180◦L-Tromino Tiling

Definition
The 180-tromino tiling problem only allows 180◦ rotations of
L-trominoes, i.e., the tile set can be

Σ = { right-oriented 180-trominoes } = { , }

or

Σ = { left-oriented 180-trominoes } = { , }.

With no loss of generality, we will only consider right-oriented
180-trominoes.
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180◦L-Tromino Tiling (cont’d)

Theorem (Conway y Lagarias, 1990)
There is a one-one correspondence between 180-tromino tiling and
the triangular trihex tiling.

34 4 4 5555 6

3

5555

6

4 4 4

xy z

Transformation from triangular trihex to 180-tromino
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180◦L-Tromino Tiling (cont’d)

Definition
A cell tetrasection is a division of a cell into 4 equal size cells.

Definition
A tetrasected polyomino P� is obtained by tetrasecting each cell
of a poylomino P.

If there is a I-tromino tiling for some R, then there is also a
180-tromino tiling for R�.

However, it is not known if the converse statement is true or false.
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180◦L-Tromino Tiling (cont’d)

Horiyama et al. proved that the I-tromino tiling problem is NP-Complete.

Theorem (Horiyama et al., 2012)
1-in-3 SAT ≤p I-Tromino

(a) Line gadget. (b) Corner gadget. (c) Cross gadget.

(d) Duplicator gadget.
(e) Clause
gadget.

(f) Negated
clause gadget.
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180◦L-Tromino Tiling (cont’d)

In each gadget G , I-tromino tiling for G can be simulated with
180-tromino tiling for G�.

(a) Original gadget G . (b) Tetrasected gadget G�.

Theorem
180-tromino tiling is NP-complete.
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Forbidden Polyominoes

The 180-tromino tiling can also be reduced to the Maximum
Independent Set problem.

Transformation from R to GR :
Transform every cell of R to vertices of GR .
Add horizontal, vertical and northeast-diagonal edges.

Transformation from GR to IR :
Transform every 3-cycle of GR to vertices of IR .
Add an edge where 3-cycles intersects.
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Forbidden Polyominoes (cont’d)

Theorem

Maximum Independent Set of IR is equal to |R|3
⇐⇒ R has a 180-tromino tiling .

where |R| the number of cells in a region R.
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Forbidden Polyominoes (cont’d)

R IR

Theorem

Maximum Independent Set of IR is equal to |R|3
⇐⇒ R has a 180-tromino tiling .
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Forbidden Polyominoes (cont’d)

If IG is claw-free, i.e., does not contain a claw as induced graph,
then computing Maximum Independent Set can be computed in
polynomial time.

The following five polyominoes generates a distinct IG with a claw
in it.
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Forbidden Polyominoes (cont’d)

Theorem
If a region R doesn’t contains a rotated, reflected or sheared
forbidden polyomino, then 180-tromino tiling can be computed in
polynomial time.
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Tiling a Tetrasected Region

Theorem
A tetrasected region R� has a L-tromino tiling if and only if
|R�| ≡ 0 (mod 3). Furthermore, there exist a O(n log n) algorithm
that computes the L-tromino tiling of R�, where n = |R|.

We divide the algorithm in two cases:
Special case is when the dual graph of R is a tree.
General case.
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Special case: the Dual Graph is a Tree

Definition
A Dual Graph GR of a polyomino R is a graph obtained by
replacing the cells by vertices and connecting vertices for each pair
of adjacent cells.

(a) A region R. (b) Dual graph GR .
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Special case: the Dual Graph is a Tree (cont’d.)

Let R be a region where the dual graph is a tree and |R| ≡ 0
(mod 3).

Definition
The tags of a cell c of R are the number of cells modulo 3 of the
spanning subregion in each direction.

R↑
R→

R↓

R← = ∅ c

(a) Spanning subregion from c.

2
2

1

1

2

5

(b) Tags of c.

Lemma
The sum of the tags of any cell is always equal to 2 (mod 3).
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Special case: the Dual Graph is a Tree (cont’d.)

There are exactly four kinds of tagged cells.

2

(a) Leaf

11

(b) Straight trunk

1
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(c) Bent trunk

1
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(d) 2-2-1 Fork

2
1

2

(e) 2-1-2 Fork

1
1

2
1

(f) 21 Cross

2
2

2
2

(g) 24 Cross
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Caso especial cuando el Grafo Dual es un Árbol (cont.)

With a single DFS traversal of the dual graph of R, we can tag
every cell of R.

2

2

2

2
1

1
1

211
2

2
1

1
1

2

(a) Region with tagged cells.

If we replace each tagged cell with the following tiling patterns,

2 11 1
1

1
2

2 2
1

2
1

1
2

1
2

2
2

2
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Caso especial cuando el Grafo Dual es un Árbol (cont.)
With a single DFS traversal of the dual graph of R, we can tag
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it will emerge a L-tromino tiling of the region R�.
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General case

In the general case, we consider a dual graph with cycles.

Given a region R such that |R| ≡ 0 (mod 3), the following
procedure will produce a L-tromino tiling of R�:

Partition the region R into two or more subregions such that:
the number of cells in each subregions is a multiple of three,
and
the dual graph of each subregion is a tree.

Then, partition each subregion using the tiling pattern.
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Caso general (cont.)

The algorithm to partition a region R is:

1 Compute any spanning tree of the dual graph GR .
2 Take an edge from GR and insert it into the spanning tree

closing a cycle.
3 Select four different edges arbitrarily from the cycle and find a

cut such that
3.1 Each subregion contains a multiple of three number of cells.

4 Apply this algorithm for each subregion.
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