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Polyominoes

Definition

A polyomino is a planar figure made from one or more equal-sized
squares, each joined together along an edge [S. Golomb (1953)].

o Every cell (square) is fixed in a square lattice.

@ Two cell are adjacent if the Manhattan distance is 1.
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L-Tromino Tiling Problem

Definition

Given:

@ A set of L-trominoes X called a tile set, X = { Ill Iﬂ I{|
[y
@ and a polyomino R called region.

Goal: Place tiles from X to fill the region R covering every cell
without overflowing the perimeter of R and without overlapping
between the tiles.

I_I_

Hin

(a) A region R (b) A tiling of region R
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L-Tromino Tiling Problem (cont’d)

L-TROMINO tiling problem

INPUT: A region R.
OUTPUT: “Yes” if R has a cover and “no” otherwise.

C. Moore and J. M. Robson (2000) proved that deciding the
existence of a L-TROMINO tiling in a given region is NP-complete
with a reduction from CUBIC PLANAR MONOTONE 1-IN-3 SAT.
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L-Tromino Tiling Problem (cont’d)

L-TROMINO tiling problem

INPUT: A region R.
OUTPUT: “Yes” if R has a cover and “no” otherwise.

C. Moore and J. M. Robson (2000) proved that deciding the
existence of a L-TROMINO tiling in a given region is NP-complete
with a reduction from CUBIC PLANAR MONOTONE 1-IN-3 SAT.

T. Horiyama, T. Ito, K. Nakatsuka, A. Suzuki and R. Uehara
(2012) constructed a one-one reduction from 1-IN-3 SAT.
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contour |x| + |y| =n+1.
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Aztec Rectangle

The Aztec Diamond AD(n) is the union of all cell inside the
contour |x| + |y| =n+1.

b) AD; c) ADs d) AD,

The Aztec Rectangle AR, j is a generalization of an Aztec Diamond.

Q@ﬂ?i}

a) AR1> b) AR13 c) AR»3 d) AR3.4

(a) ADl
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Tiling Aztec Rectangle (cont'd)
Each piece of L-tromino covers 3 cells.
In any L-tromino tiling, the number of covered cells is always
multiple of 3.

The number of cells in an AR, } is given by

|AR,p| = a(b+1) + b(a+1).
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Tiling Aztec Rectangle (cont'd)
Each piece of L-tromino covers 3 cells.
In any L-tromino tiling, the number of covered cells is always
multiple of 3.

The number of cells in an AR, } is given by

|AR,p| = a(b+1) + b(a+1).

An Aztec rectangle AR, has a tiling with L-trominoes
< |AR,p| =0 (mod 3)
<> (a,b) is equal to (3k,3k’) or (3k — 1,3k’ — 1) for some k, k' € N.
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The problem of tiling an Aztec Rectangle can be solved recursively.
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AR a12,b+2

(a) Pattern 1
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Tiling Aztec Rectangle (cont'd)

The problem of tiling an Aztec Rectangle can be solved recursively.
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Tiling Aztec Rectangle with a single defect

A defect cell is a cell in which no tromino can be placed on top.

defect cell

An Aztec rectangle AR, with one defect has a tiling with L-trominoes
< |AR,p| =1 (mod 3)
<= aorb is equal to 3k — 2 for some k € N.
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Tiling Aztec Rectangle with a single defect (cont'd)

@ Place a fringe where it covers the defect.

@ Place stairs to cover other cells.

T
fringe _—l_‘
1

stairs

stairs
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The problem of tiling Aztec Rectangle AR, with an unbounded
number of defects is NP-complete.
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180°L-Tromino Tiling

Definition
The 180-tromino tiling problem only allows 180° rotations of
L-trominoes, i.e., the tile set can be

Y = { right-oriented 180-trominoes } = { ﬂ l}l }

or
Y = { left-oriented 180-trominoes } = { Dj |—|__| }

With no loss of generality, we will only consider right-oriented
180-trominoes.
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180°L-Tromino Tiling (cont'd)

Theorem (Conway y Lagarias, 1990)

There is a one-one correspondence between 180-tromino tiling and
the triangular trihex tiling.
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180°L-Tromino Tiling (cont'd)

Theorem (Conway y Lagarias, 1990)

There is a one-one correspondence between 180-tromino tiling and
the triangular trihex tiling.

Transformation from triangular trihex to 180-tromino

28/50



180°L-Tromino Tiling (cont'd)

29/50



180°L-Tromino Tiling (cont'd)

Definition
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180°L-Tromino Tiling (cont'd)

A cell tetrasection is a division of a cell into 4 equal size cells.

[ =~

Definition

| \

A tetrasected polyomino P® is obtained by tetrasecting each cell
of a poylomino P.

If there is a I-tromino tiling for some R, then there is also a
180-tromino tiling for R®.

However, it is not known if the converse statement is true or false.
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180°L-Tromino Tiling (cont'd)

Horiyama et al. proved that the I-tromino tiling problem is NP-Complete.

Theorem (Horiyama et al., 2012)
1-N-3 SAT <, I-TROMINO

—

- =2

(a) Line gadget. (b) Corner gadget. (c) Cross gadget.
L i L
A

(e) Clause (f) Negated

(d) Duplicator gadget. gadget. clause gadget.
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180°L-Tromino Tiling (cont'd)

In each gadget G, |-tromino tiling for G can be simulated with
180-tromino tiling for G®.
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180°L-Tromino Tiling (cont'd)

In each gadget G, |-tromino tiling for G can be simulated with
180-tromino tiling for G&.

B

(a) Original gadget G.
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180°L-Tromino Tiling (cont'd)

In each gadget G, |-tromino tiling for G can be simulated with
180-tromino tiling for G&.

(a) Original gadget G. (b) Tetrasected gadget G?.
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180°L-Tromino Tiling (cont'd)

In each gadget G, |-tromino tiling for G can be simulated with
180-tromino tiling for G&.

L e
H

(a) Original gadget G. (b) Tetrasected gadget G?.

LTI

L
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180°L-Tromino Tiling (cont'd)

In each gadget G, |-tromino tiling for G can be simulated with
180-tromino tiling for G&.

[
I
]
1 — raru =i v G rara B
| T o FTeH
= I TI=T+
A i
1 [ [ B Iq [T
G b
i 5§ 8
— [ Al b 5
T a—rr
! L 5 HE T
(a) Original gadget G. (b) Tetrasected gadget G®.
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180°L-Tromino Tiling (cont'd)

In each gadget G, |-tromino tiling for G can be simulated with
180-tromino tiling for G&.

[
[
G
[ [ rears B e D e M
| = A P
— T HEEE
B ]
B [ B L o
B ol
| G el
G B i
] N E B
E O Firel it
IL T I raawei raamad)

(a) Original gadget G. (b) Tetrasected gadget G¥.

180-tromino tiling is NP-complete.
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Forbidden Polyominoes (cont’d)
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Forbidden Polyominoes (cont’d)
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Forbidden Polyominoes (cont’d)

N

]
VLY
]

Maximum Independent Set of Ir is equal to @

<= R has a 180-tromino tiling .

where |R| the number of cells in a region R.
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Forbidden Polyominoes (cont’d)

If I is , i.e., does not contain a

as induced graph,

then computing Maximum Independent Set can be computed in

polynomial time.

The following five polyominoes generates a distinct /g with a

in it.

o [ oS

JJ;

i

g \v/ég g}bﬂ
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Forbidden Polyominoes (cont’d)

Theorem

If a region R doesn’t contains a rotated, reflected or sheared

forbidden polyomino, then 180-tromino tiling can be computed in
polynomial time.

1]
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Tiling a Tetrasected Region

A tetrasected region R® has a L-tromino tiling if and only if
|RE| =0 (mod 3). Furthermore, there exist a O(nlog n) algorithm
that computes the L-tromino tiling of R®, where n = |R].
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Tiling a Tetrasected Region

A tetrasected region R® has a L-tromino tiling if and only if
|RE| =0 (mod 3). Furthermore, there exist a O(nlog n) algorithm
that computes the L-tromino tiling of R®, where n = |R].

We divide the algorithm in two cases:
@ Special case is when the dual graph of R is a tree.
e General case.
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Special case: the Dual Graph is a Tree

Definition

A Dual Graph Gg of a polyomino R is a graph obtained by
replacing the cells by vertices and connecting vertices for each pair

of adjacent cells.
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Definition

A Dual Graph Gg of a polyomino R is a graph obtained by
replacing the cells by vertices and connecting vertices for each pair

of adjacent cells.

(a) A region R. (b) Dual graph Gg.
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Special case: the Dual Graph is a Tree (cont'd.)

Let R be a region where the dual graph is a tree and |R| =0
(mod 3).

Definition

The tags of a cell ¢ of R are the number of cells modulo 3 of the
spanning subregion in each direction.
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Special case: the Dual Graph is a Tree (cont'd.)

Let R be a region where the dual graph is a tree and |R| =0
(mod 3).

Definition

The tags of a cell ¢ of R are the number of cells modulo 3 of the
spanning subregion in each direction.

R_=0| c R,

(a) Spanning subregion from c.
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Special case: the Dual Graph is a Tree (cont'd.)

Let R be a region where the dual graph is a tree and |R| =0
(mod 3).

Definition

The tags of a cell ¢ of R are the number of cells modulo 3 of the
spanning subregion in each direction.
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Special case: the Dual Graph is a Tree (cont'd.)

Let R be a region where the dual graph is a tree and |R| =0
(mod 3).

Definition

The tags of a cell ¢ of R are the number of cells modulo 3 of the
spanning subregion in each direction.

By
N
|HH,

R =0f c R, 5
R,
(a) Spanning subregion from c. (b) Tags of c.

The sum of the tags of any cell is always equal to 2 (mod 3).
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Special case: the Dual Graph is a Tree (cont'd.)
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Special case: the Dual Graph is a Tree (cont'd.)

There are exactly four kinds of tagged cells.

2 X1 1
1
(a) Leaf (b) Straight trunk (c) Bent trunk
1 2
2X1 2X2 X1 2X2
2 1 2 2
(d) 2-2-1 Fork  (e) 2-1-2 Fork (f) 2! Cross (g) 2* Cross
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-
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-
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(a) Region with tagged cells.
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With a single DFS traversal of the dual graph of R, we can tag
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Caso especial cuando el Grafo Dual es un Arbol (cont.)

With a single DFS traversal of the dual graph of R, we can tag
every cell of R.
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(a) Region with tagged cells.
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(b) After replacing with tiling
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Caso especial cuando el Grafo Dual es un Arbol (cont.)

With a single DFS traversal of the dual graph of R, we can tag
every cell of R.

K

2

X

[ RN [

(a) Region with tagged cells.

[N S [N}
—

B

1

2

[ (=N

[N [N}
-

(b) After replacing with tiling

patterns.

If we replace each tagged cell with the following tiling patterns,

’_1

2 X1
2

’_k_‘

iy

—

s

|

45 /50



Caso especial cuando el Grafo Dual es un Arbol (cont.)

With a single DFS traversal of the dual graph of R, we can tag
every cell of R.
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(a) Region with tagged cells. (b) After replacing with tiling
patterns
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Caso especial cuando el Grafo Dual es un Arbol (cont.)

With a single DFS traversal of the dual graph of R, we can tag
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Caso especial cuando el Grafo Dual es un Arbol (cont.)

With a single DFS traversal of the dual graph of R, we can tag

every cell of R.
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(a) Region with tagged cells.

—

(b) After replacing with tiling

patterns.

If we replace each tagged cell with the following tiling patterns,
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it will emerge a L-tromino tiling of the region R¥.
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General case

In the general case, we consider a dual graph with cycles.

Given a region R such that |[R| =0 (mod 3), the following
procedure will produce a L-tromino tiling of R™:
@ Partition the region R into two or more subregions such that:

o the number of cells in each subregions is a multiple of three,
and
e the dual graph of each subregion is a tree.

@ Then, partition each subregion using the tiling pattern.

47/50



Caso general (cont.)

48/50



Caso general (cont.)

The algorithm to partition a region R is:

48/50



Caso general (cont.)

The algorithm to partition a region R is:

48/50



Caso general (cont.)

The algorithm to partition a region R is:

48/50



Caso general (cont.)

The algorithm to partition a region R is:

48/50



Caso general (cont.)

The algorithm to partition a region R is:

1 Compute any spanning tree of the dual graph Gg.

48/50



Caso general (cont.)

The algorithm to partition a region R is:

1 Compute any spanning tree of the dual graph Gg.

48/50



Caso general (cont.)

The algorithm to partition a region R is:

1 Compute any spanning tree of the dual graph Gg.

48/50



Caso general (cont.)

The algorithm to partition a region R is:

1 Compute any spanning tree of the dual graph Gg.

2 Take an edge from Gg and insert it into the spanning tree
closing a cycle.

48/50



Caso general (cont.)

The algorithm to partition a region R is:

1 Compute any spanning tree of the dual graph Gg.

2 Take an edge from Gg and insert it into the spanning tree
closing a cycle.

48/50



Caso general (cont.)

The algorithm to partition a region R is:

1 Compute any spanning tree of the dual graph Gg.

2 Take an edge from Gg and insert it into the spanning tree
closing a cycle.

48/50



Caso general (cont.)

The algorithm to partition a region R is:

1 Compute any spanning tree of the dual graph Gg.
2 Take an edge from Gg and insert it into the spanning tree
closing a cycle.

3 Select four different edges arbitrarily from the cycle and find a
cut such that

48/50



Caso general (cont.)

The algorithm to partition a region R is:

1 Compute any spanning tree of the dual graph Gg.
2 Take an edge from Gg and insert it into the spanning tree
closing a cycle.

3 Select four different edges arbitrarily from the cycle and find a
cut such that

3.1 Each subregion contains a multiple of three number of cells.
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Caso general (cont.)

The algorithm to partition a region R is:
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1 Compute any spanning tree of the dual graph Gg.

2 Take an edge from Gg and insert it into the spanning tree
closing a cycle.

3 Select four different edges arbitrarily from the cycle and find a
cut such that

3.1 Each subregion contains a multiple of three number of cells.
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Caso general (cont.)

The algorithm to partition a region R is:

L

=1
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1 Compute any spanning tree of the dual graph Gg.

2 Take an edge from Gg and insert it into the spanning tree
closing a cycle.

3 Select four different edges arbitrarily from the cycle and find a
cut such that
3.1 Each subregion contains a multiple of three number of cells.
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Caso general (cont.)

The algorithm to partition a region R is:

L

=1
Top

1 Compute any spanning tree of the dual graph Gg.

2 Take an edge from Gg and insert it into the spanning tree
closing a cycle.

3 Select four different edges arbitrarily from the cycle and find a
cut such that

3.1 Each subregion contains a multiple of three number of cells.
4 Apply this algorithm for each subregion.
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Caso general (cont.)

The algorithm to partition a region R is:

}ﬁ JEASE
el 2

1 Compute any spanning tree of the dual graph Gg.

2 Take an edge from Gg and insert it into the spanning tree
closing a cycle.

3 Select four different edges arbitrarily from the cycle and find a
cut such that

3.1 Each subregion contains a multiple of three number of cells.
4 Apply this algorithm for each subregion.
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