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Abstract. The product replacement algorithm is a commonly used heuristic to

generate random group elements in a finite group G, by running a random walk on
generating k-tuples of G. While experiments showed outstanding performance, until

recently there was little theoretical explanation. We give an extensive review of both
positive and negative theoretical results in the analysis of the algorithm.

Introduction

In the past few decades the study of groups by means of computations has become
a wonderful success story. The whole new field, Computational Group Theory, was
developed out of needs to discover and prove new results on finite groups. More
recently, the probabilistic method became an important tool for creating faster and
better algorithms. A number of applications were developed which assume a fast
access to (nearly) uniform group elements. This led to a development of the so
called “product replacement algorithm”, which is a commonly used heuristic to
generate random group elements in finite groups. The main object of this paper is
a rigorous study of this algorithm.

The story behind the product replacement algorithm is the following. Initially
research in Computational Group Theory was mostly focused on working with
permutation groups, where the fundamental algorithms of Sims (see [Si]) led the
way to current advances. The permutation group algorithms became so fast that
introduction of random group elements could only slow the algorithms.

Once the direction of research shifted to matrix groups, introduction of random
group elements became not only helpful, but highly desirable. It appeared that
advancement in the “recognition project” (understanding the structure of a ma-
trix group given by a set of generators) became possible only with a fast access
to (nearly) uniform group elements (see e.g. [BrP,Kn2,KS,NP1]). On the other
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hand, it was observed on several occasions that getting random group elements by
running a simple random walk on a group takes a very long time, or otherwise gives
inadequate results (see [Bb5,HR,DS3]).

The problem of generating random group elements has two solutions: one prac-
tical and one theoretical. On a theoretical side, Babai in [Bb3] (see also section 4.1)
found a general black box algorithm (see [Bb5]) which produces (nearly) uniform
group elements at a cost of O(log5 |G|) group multiplications. Being provably poly-
nomial, albeit practically slow, this algorithm became a fundamental result on
which subsequent theoretical work could be built. It did not resolve, however, the
practical need for an efficient random group generator.

The practical “product replacement algorithm” was discovered by Leedham-
Green and Soicher [LG]. It was later tested [CLMNO] and proved to have remark-
ably good performance in several practically interesting cases (cf. [HR]). As success
of the algorithm became widely acknowledged, it was included as a standard routine
in two major group algebra packages GAP (see [Sc]) and MAGMA (see [BSM]).

Unfortunately, the reasoning why algorithm has such a good performance re-
mained a mystery. Until recently, all attempts to prove theoretical results on
performance of the algorithm either failed or produced incremental results (see
[Bb5,CG1,DG,DS2]). A major work of Diaconis and Saloff-Coste [DS3] and several
(joint) results of the author [BbP,LP,P4,P5,P6,PB] gave a new life to the hopes of
fully understanding the algorithm.

The aim of this review article is to give an up to date review of the state of our
knowledge on the algorithm. We tried to make this review accessible to nonspe-
cialists, so on occasion we give proofs of standard or elementary results, as well
as spend much time giving background in certain areas. The attempt was to have
a standard point of reference to most (often basic) results that come up in the
analysis of the algorithm.

The product replacement algorithm is defined as follows ([CLMNO]). Given a
finite group G, let Nk(G) be the set of k-tuples (g) = (g1, . . . , gk) of elements of
G such that 〈g1, . . . , gk〉 = G. We call elements of Nk(G) the generating k-tuples.
Given a generating k-tuple (g1, . . . , gk), define a move on it in the following way.
Choose uniformly a pair (i, j), such that 1 ≤ i 6= j ≤ k, then apply one of the
following four operations with equal probability:

R±i,j : (g1, . . . , gi, . . . , gk)→ (g1, . . . , gi · g±1
j , . . . , gk)

L±i,j : (g1, . . . , gi, . . . , gk)→ (g1, . . . , g
±1
j · gi, . . . , gk)

Note that these moves map a generating k-tuple into a generating k-tuple. Now
apply these moves t times (the choice of the move must be uniform and independent
at each step), and return a random component of the resulting generating k-tuple.
This is the desired “random” element of the group G.

Another way to describe the algorithm, is to define on Nk(G) a structure of a
graph induced by maps R±i,j and L±i,j . This makes Nk(G) into a 4k(k − 1)-regular
graph with no orientation on edges, but with loops when k > d(G), where d(G) is
the minimal number of generators of G. Now the algorithm consists of running a
nearest neighbor random walk on this graph (for t steps) and returning a random
component of the stopping state. We refer to this random walk as the product
replacement random walk W =Wk(G).
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About the presentation of a group. We assume the group is given as a black
box group, which means that there is an oracle which can multiply elements, invert
them, and compare them with identity (see [Bb5]). The group is then defined by a
set of generators (g1, . . . , gl). Now, in the algorithm one should take k ≥ l and set
gl+1 = · · · = gk = id (see [CLMNO]).

A few words about the parameters k and t. In the original paper [CLMNO] the
authors showed that when k > 2 log |G| and t is large enough, the algorithm will
provably work. Practical computations suggested that small values work as well.
Much of our work is concentrated on a proper choice of k and t.

Our analysis of the algorithm breaks into three mostly separate parts:

1) Bias.

2) Connectivity.

3) Mixing time.

Each of these is the subject of a separate section of this review. We sum up
things at the end (section 4) where we allow ourselves some speculations on the
possible future developments. Let us now give a brief overview of the sections.

First, observe that it is unclear whether Γk(G) is connected. When it isn’t, little
can be said about the connected component Γ′k(G) which contains (g). In section 2
we review what is known about this problem, especially in connection with an
algebraic notion of (T) systems. Following [P4,P5] we apply results in probabilistic
group theory to show that, for reasonably small k, graphs Γk(G) already have
“large” connected component.

In a different direction, section 1 is dedicated to bias of the output. Formally,
if (g) = (g1, . . . , gk) is chosen uniformly from Nk(G), consider the bias in the
distribution Q of a random component gi. While mentioned in [CLMNO], this
problem was largely ignored until recently, when the first examples of strong bias
have been found ([PB,BbP]). In our treatment we follow the recent paper [BbP] of
Babai and the author.

Finally, is section 3, we review the results on the mixing time of the prod-
uct replacement random walk Wk(G). In the past two decades there has been a
spectacular progress in the study of discrete Markov chains, in particular, random
walks on groups. Several attempts have been made to proceed with the analysis
in the case of Wk(G). We will concentrate on the paper [DS3] of Diaconis and
Saloff-Coste, where the authors use a state of the art analytic approach (largely
developed in their previous papers) to obtain subexponential bounds on the mixing
time for general groups.

A different approach was used by Lubotzky and the author in [LP], based on
the Kazhdan’s property (T) from the representation theory of Lie groups. We
show that the positive solution of an important open problem

(
whether a group of

automorphisms of a free group Aut(Fk) has property (T)
)

implies that the graphs
Γk(G) are expanders, with an expansion constant ε = ε(k) depending only on k.
In special cases this gives a rigorous proof of the rapid mixing. We follow [LP] to
give what seem to be the first explanation of the rapid mixing phenomenon.

A last warning before we conclude the introduction. This paper is purely theoret-
ical and we do not claim (and do not review) any practical results on performance
of the algorithm. We review a number of theoretical results, and try to give proper
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acknowledgements when appropriate. The remaining results are either folklore or
due to the author.

1. The bias in the output

Much of this section is dedicated to probabilistic group theory. We do not at-
tempt to give a review of this interesting and rapidly developing area for several
reasons. First, there are already several such reviews which cover different parts
of the subject (see [Kn2,Sh]). Second, this issue is rather tangential to the main
subject of our study and is used mostly as a powerful tool in analysis of the algo-
rithm. Still, for the sake of completeness we present here a somewhat biased review
of results we will use later on.

1.1 Probability of generating a finite group.

Let G be a finite group, and let d(G) be the minimal number of generators of
G. By ϕk(G) denote the probability that k uniformly and independently chosen
elements in G generate the whole group:

ϕk(G) =
|Nk(G)|
|G|k

The subject of this section is to give some estimates on these probabilities.

Theorem 1.1.1 For every sequence of nonisomorphic simple groups {Gi} we
have

ϕ2(Gi)→ 1, as |Gi| → ∞

This theorem is a combination of several results. First, it was proved for al-
ternating groups An by Dixon [Dx]. Then, for classical groups (and few more
series), it was established by Kantor and Lubotzky [KL] (see also [Kn1]). They
used Aschbacher’s classification of maximal subgroups of linear groups [As]. Fi-
nally, Liebeck and Shalev [LS1,LS2] completed the proof for the remaining series.
We should add that these papers (except for [Dx]) use extensively the classification
of finite simple groups.

The asymptotic behavior of the probabilities ϕ2 is also known and the results
can be summarized as follows.

Theorem 1.1.2 Let An be alternating groups, Gn(q) be a simple group of Lie
type of (untwisted) rank n. Then:

(i) ϕk(An) = 1− 1
nk−1

+O

(
1

n2k−1

)
, where k ≥ 2

(ii) ϕ2(Gn(q)) = 1−O
(
n3 log2 q

qn

)
.

Part (i) follows from the work of Babai [Bb2], part (ii) was conjectured and
partly proved by Kantor and Lubotzky [KL], and proved in full by Liebeck and
Shalev [LS1,LS2].
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Proposition 1.1.3 Let G be a finite p-group, d = d(G). Then:

(i) ϕd(G) > 1− 1
p
− 1
p2
,

(ii) ϕd+1(G) > 1− 1
p(p− 1)

,

(iii) ϕd+r−1(G) > 1− 1
pr − pr−1 − pr−2 − 1

, where r ≥ 1.

The result is obtained by direct calculation due to the fact that the quotient
G/Φ(G) ' Zmp , and ϕk(G) = ϕk(G/Φ(G)), where Φ(G) is a Frattini group of G.
Different versions of this result were obtained in [DS3,P4]. For nilpotent groups we
also obtain:

Proposition 1.1.4 Let G be a finite nilpotent group, d = d(G). Then:

(i) ϕd(G) >
1

5 log log |G|
,

(ii) ϕd+1(G) >
1
e
,

(iii) ϕd+r−1(G) > 1− 8
12r/4

, where r ≥ 1.

Again, see [DS3], Remark after Lemma 6.3; and [P4].

Theorem 1.1.5 There exists a universal constant C < 107 such that for any
solvable group G, d = d(G), and r > 0 we have

ϕ(β+1)·d+C+r > 1− αr,

where β = (3 · ln 48 + ln 24)/(3 · ln 9) ≈ 2.243991050 is the Pálfy–Wolf constant,
and α = 1/ 4

√
12 < 1.

This result is due to the author [P4] and is obtained by using the product formula
of Gachütz [Ga]. A weaker version is due to A. Mann [Mn] who used a somewhat
different method to show that ϕ(β+1)d+C(G) is greater that some universal constant
ε > 0. In the other direction, Mann in [Mn] showed that ϕβd−C(G)→ 0 for certain
series of groups. This implies that the constant (β+ 1) in Theorem 1.1.5 cannot be
improved to a constant smaller than β.

Question 1.1.6 Can one improve the constant (β+ 1) in Theorem 1.1.5 ? Can
one find a “reasonable” bound on C (compared to 107 in the theorem) ?

Finally, for general groups we have the following weak result:

Theorem 1.1.7 For any finite group G, 1 > ε > 0, m = dlog2 |G|e, we have

(i) ϕk(G) ≥ ϕk
(
Zm2
)
,

(ii) ϕk(G) > 1− ε, where k > m+ 2 + log2 1/ε,

(iii) ϕm(G) >
1
4

and ϕm+1(G) ≥ 1
2
.
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Part (ii) of the theorem is a slight improvement over a more general classical
result of Erdős and Rényi in [ER] (see also [P3]). The proof of part (i) is based on
“random group process” defined in [P4] (cf. [Ac,PV]). Parts (ii), (iii) then follow
from (i) and Proposition 1.1.3.

We conclude with a somewhat related recent result of Guralnick and Kantor.
While technically different, we find it amazingly useful in several application.

Theorem 1.1.8 ([GK]) Let G be a nonabelian finite simple group. Define

PC(G) = max
C

min
g∈G,g 6=id

P
(
〈g, h〉 = G |h ∈ C

)
,

where max is over all conjugacy classes C ⊂ G, and the probability is taken over
uniform h ∈ C. Then:

(i) PC(G) > 1/10 for every G,
(ii) PC(G)→ 1 as |G| → ∞, for G not isomorphic to An or Ω(2m+ 1, q)

with a bounded q.

1.2 Generating k-tuples in products of simple groups.

A famous result of Philip Hall [H1] (see also [KL]) can be formulated as follows:

Theorem 1.2.1 (P. Hall) Let G be a nonabelian simple group. Then the
maximal number N , such that group H = GN (direct product of N copies of a
G) is generated by k elements, is equal to |Nk(G)|/|Aut(G)|. Further, an element
(g) = (g1, . . . , gk) ∈ Hk, where gi =

(
g

(1)
i , . . . , g

(m)
i

)
∈ H, is a generating k-tuple of

H = GN if and only if all k-tuples
(
g

(j)
1 , . . . , g

(j)
k

)
, 1 ≤ j ≤ m generate the group

G and lie in different orbits of the diagonal action of Aut(G) on Nk(G).

In a celebrated special case of G = A5 and k = 2, Hall showed [H1] that N = 19,
i.e. that d(A19

5 ) = 2, while d(A20
5 ) = 3.

Recall that by Theorem 1.1.1, for any fixed k > 1 the probabilities ϕk(An)→ 1.
Since Aut(An) = Sn for n ≥ 5, n 6= 6, we obtain that the N from the theorem
satisfies:

N = ϕk(An)
|An|k

|Sn|
>
n!k−1

2k+2
,

where n is large enough. In particular, if G = An and n is large enough, the group
A
n!/8
n can be generated by two elements, while An!/4

n cannot.
Now let N = n!/8, k > 5. Consider a set of k-tuples in H = ANn . From the above

and the birthday paradox (see [F,KL,BbP]) one can easily see that the probability
that two k-tuples

(
g

(j)
1 , . . . , g

(j)
k

)
and

(
g

(j′)
1 , . . . , g

(j′)
k

)
lie in the same orbit of Aut(G)

goes to zero superexponentially. Thus one can ignore this probability and conclude
that N generating k-tuples almost surely correspond to a generating k-tuple of ANn .

First, observe that ϕk(ANn ) → 0 as n → ∞, given k = o(n) ([KL]). Indeed, the
probability that any given k-tuple generates An is at most (1− n−k), which is the
probability that none of the k permutations fixes 1. Therefore the probability that
all of the N k-tuples generate An is at most (1− 1/nk)N → 0 as n→∞.
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From here it is immediate that in order to have ϕk > ε > 0, one needs k = Ω(n).
Now, in the reverse direction one has the following general result:

Theorem 1.2.2 If G is a direct product of simple nonabelian groups (possibly,
with repetitions), then ϕk(G) > 1/2 for k ≤ C logm, where m is the maximal
number of isomorphic copies of each group and C is a universal constant.

The result is due to the author [P4]. The proof uses a number of technical
calculations involving the generation probabilities in Theorem 1.1.2, as well as the
classification of finite simple groups. The constant C is expected to be reasonable,
but probably should be hard to calculate due to difficulties with calculation on large
sporadic groups.

1.3 Proving the bias.

Now we are ready to present the first version of the bias in the output of the
product replacement algorithm. We shall start with preliminary observation.

Let G be a finite group, and let Qk, Q∗k be the probability distributions of the
first and of the random component in a uniform generating k-tuple (g) ∈ Nk(G).
Then symmetry gives:

Lemma 1.3.1 For all G, k ≥ d(G) we have Qk = Q∗k.

The lemma reduces the problem of bias of the output to the problem of bias of
the first component in generating k-tuples of G.

Let H = ANn , N = n!/8, k > 5. Consider a random generating k-tuple (h) =
(h1, . . . , hk) ∈ Nk(H). We write h1 = (σ1, . . . , σN ), where σj ∈ An. Now, each σj
is the first component of a random generating k-tuple of An. While they may seem
close to being nearly uniform in An, a small bias remains:

Lemma 1.3.2 ([BbP]) If σ is the first element in a uniform generating k-tuple
of An, then

P
(
σ(1) = 1

)
=

1
n
− 1
nk

+O

(
1

n2k−1

)

The proof is immediate from part (i) of Theorem 1.1.2. See [BbP] for a complete
proof and other versions of the Lemma.

Now, in an unbiased sample we have P(σj = 1) = 1/n. Since the number of
independent samples is N , we must have the bias in each of them less than N , or
otherwise the bias becomes statistically significant. In other words, if k = o(n),
then nk = o(n!/8), and the bias can be detected.

Theorem 1.3.3 ([BbP]) Let Hn = ANn , where N = n!/8. Let k = o(n). Then
there exists a sequence of subsets Bn ⊂ Nk(Hn) such that |Bn|/|Nk(G)| → 1 and
Qk(Bn)→ 0 as n→∞.

Proof. Take Bn to be the set of all (h) = (σ1, . . . , σN ) ∈ Hn such that

#
{
j |σj(1) = 1

}
> N

(
1
n
− 1

2nk

)
.

The Chernoff bound (see e.g. [ASE]) gives that the N random permutations σj ∈
An are in Bn with high probability.
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On the other hand, for σj chosen from generating k-tuple of An we have

E
(
#
{
j |σj(1) = 1

})
= N ·

(
1− 1

nk

)
,

so the Chernoff bound gives that such N independent σj do not lie in Bn with high
probability. �

Remark 1.3.4 The first results on bias was announced in [PB], and rigorously
proved in [BbP]. One can generalize the result to other sets Bn as well as to other
series of simple groups of Lie type. We refer to [BbP] for a more detailed treatment.

Before we finish this section, let us elaborate on the findings. Basically, we
showed that even if the graph Γk(H) is connected, even if the product replacement
random walk mixes rapidly, the resulting distribution of the output can still be
biased. Of course, for that to happen we need ϕk(Hn) → 0 as n → ∞, which is
indeed true when Hn = A

n!/8
n . While this is only a necessary condition, it seems

likely that bias exists in all natural cases when ϕk(Hn)→ 0. However proving bias
in such cases can be a delicate task.

Open Problem 1.3.5 Can one exhibit the bias for a sequence of solvable
groups?

Remark 1.3.6 We believe a natural candidate for Hn in 1.3.5 to be the group
Hn = Rn n

(
Zn2
)N , where Rn is an n-th iterated wreath product of S4:

Rn = S4 o S4 o . . . o S4 (n times),

where the action of Rn is independent on each copy of Zn2 , and N is the largest
number such that Hn still can be generated by three (or any fixed constant number
of k) elements. Note that it is not even obvious that Rn is two-generated. On the
other hand, using Gaschütz formulas A. Mann showed in [Mn] that ϕ2(Rn) > 1/2
for any n. Still, we challenge the reader to find a single “nice” generating 2-tuple.

1.4 Detecting the bias.

While from general mathematical point of view the previous section completely
answers the question about existence of the bias, from computational point of view
the answer is somewhat weak. The idea is that generating random group elements
is not a goal, but rather a routine used in various randomized algorithms (see e.g.
[Bb4,Bb5,BP,Kn2,P2]). Thus the “real” threshold for bias is much higher: one must
show that these “random elements” can actually “mess up” some calculations.

In the original paper [CLMNO] the authors tested the algorithm by using χ2 on
the distribution of the orders of the elements. The order statistics is of great im-
portance, especially in various recognition algorithms (see e.g. [BrP,Kn2,KS,NP1]).
Let us show that they are useless in case of powers of An.

Proposition 1.4.1 The proportion of elements of H = ANn which have the same
order is at least 1− e−N/(n logn), for any integers n, N .

Proof. First, let us determine this order. Denote by mp(n) = pblogp nc the
maximal m ≤ n such that m = pr. Let M =

∏
pmp(n), where the product is
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over all primes p ≤ n. Since M is divisible by every possible length i of the cycle,
1 ≤ i ≤ n, for every h ∈ H we have hM = id.

Let us now calculate the probability that h ∈ H has order M . Observe that the
length of the cycle containing 1 is uniform in {1, . . . , n}. Thus with probability at
least 1/n an element σ ∈ An contains a cycle of length mp(n). The probability
that no component of a random h ∈ H contains a cycle of length mp(n) is at most
(1 − 1/n)N . Finally, the probability that components h contain cycles of length
mp(n) for every prime p is at least 1− n · (1− 1/n)N > 1− exp(−N/n log n). But
then h has order M which completes the proof. �

The proposition implies that the bias found in the previous section cannot be
detected by the order statistics. This begs the following question, possibly related
to Problem 1.3.5 :

Question 1.4.2 Can one find a sequence of groups Hn which exhibit bias in
the order statistics ?

Now let us show that the bias can nevertheless be detected by a short straight
line program. First we need several definitions.

Let w be a word over the alphabet {x±1
i , i = 1, 2, . . . }. Substituting elements of

G for the xi assigns w a value in G. Assume that the xi are chosen independently
from the probability distribution P over G. We denote by w[P ] the probability
distribution of the value of w.

Let G be a finite group. As in the previous section, by Qk = Q∗k denote the
probability distribution on G of the random component in a generating k-tuple
(g) ∈ Nk(G). By U denote the uniform distribution on G.

Theorem 1.4.3 ([BbP]) Let k = k(n) ≥ 4 and k = o(n), n → ∞. Then there
exists a sequence of words wn,k with the following properties. The length of wn,k

is nO(k). Let ω(n) → ∞, ω(n) = o(n). Set m = nkω(n), and G = Amn . Then
w[Qk] = id has probability 1 − O(n−cn), while w[U] = id has probability O(n−cn),
where c is a universal constant.

Let us sketch the idea of the proof. First, let n be a prime. Rather than look
at the number of σj in g = (σ1, . . . , σm), such that σj(1) = 1 (see the proof of
Theorem 1.3.3) we look at the number of those σj which are n-cycles. But since n
is prime, we have σn = id implies σ is a long cycle or σ = id. The analog of Lemma
1.3.2 is also straightforward. Therefore we have a (positive) bias in the number of
trivial components in random element gn ∈ G.

Now, a general theory (the Ajtai–Komlós–Szemerédi sorting network in [AKS])
shows how to construct a short monotone Boolean circuit which “detects” the bias.
The problem is to construct a short word w from the circuit. Basically we need to
find probabilistic simulation of AND and OR by group operations.

Formally, let H be a group and g ∈ H. Consider the predicate E(g) meaning
“g = id”. We wish to construct words w1 and w2 corresponding to the predicates
E1(g, h) = E(g)∧ E(h) and E2(g, h) = E(g)∨ E(h), respectively. Clearly, there is no
word which would be id exactly if E1 holds, nor is there one for E2. But the product
w1 = gh and the commutator w2 = [g, h] = g−1h−1gh go part of the way: E1(g, h)
implies w1 = id and E2 implies w2 = id; and the converse holds often enough in
each case.
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Now, what we do is consider w1 = g′h′ and w2 = [g′, h′] where g′ = ga1 · . . . · gal ,
where ga = a−1ga, and ai are independent and chosen from the same distribution
as g; h′ is defined analogously. Using rapid mixing of random walks on H = An we
conclude w1, w2 are the desired probabilistic simulations of the monotone Boolean
operations. We refer to [BbP] for details and references.

Remark 1.4.4 A priori it may seem unlikely that the graph Γ = Γk
(
A
n!/8
n

)
is

connected when k ≥ 4. In this case the result of Theorem 1.4.3 is only a theoretical
exercise as the algorithm does not produce uniform generating k-tuples. Neverthe-
less the graph Γ is probably connected indeed for all k ≥ 4. In particular, we know
that Γ4(AN5 ), N ≤ 1140 is connected. We refer to Corollary 2.4.5, Remark 2.4.7
and Conjecture 2.5.4 below.

1.5 Avoiding the bias.

To avoid having a bias of Q on G one should take k to be sufficiently large. How
large? That depends on your definition of the bias and structural properties of G.

Let P be a probability distribution on a finite set X, and U be a uniform distri-
bution on X. Define the total variation between P and U as follows:

‖P−U ‖tv = max
B⊂X

∣∣∣∣P(B)− |B|
|X|

∣∣∣∣ =
1
2

∑
x∈X

∣∣∣∣P(x)− 1
|X|

∣∣∣∣ ,
where P(B) =

∑
x∈B P(x). It is easy to see that 0 ≤ ‖P−U ‖tv ≤ 1. We postpone

discussion of the total variation and other distances until section 3.1. Instead, let
us make the following elementary observation.

Proposition 1.5.1 Let P be a probability distribution on X ⊂ Gk and let Q be a
probability distribution on G defined as a projection of P onto the first component.
Then

‖Q−U ‖tv ≤ ‖P−U ‖tv +
(

1− |X|
|G|k

)
In particular, when X = Nk(G) we have ‖Q−U ‖tv ≤ 1− ϕk(G) + ‖P−U ‖tv.

Proof. Denote by P′ the probability distribution on Gk ⊃ X, which is P on
(g) ∈ X and zero otherwise. Clearly,

‖P′ −U ‖tv =
1
2

∑
(g)∈X

∣∣∣∣P′(g)− 1
|G|k

∣∣∣∣ +
1
2

∑
(g)∈Gk\X

1
|G|

≤

≤ 1
2

∑
(g)∈X

∣∣∣∣P′(g)− 1
|X|

∣∣∣∣ +
1
2

∑
(g)∈X

∣∣∣∣ 1
|X|
− 1
|G|k

∣∣∣∣ +

+
1
2

(
1− |X|
|G|k

)
= ‖P−U ‖tv +

(
1− |X|
|G|k

)
.

Now, since a uniform distribution on G is a projection of the uniform distribution
on Gk, we immediately obtain:

‖Q−U ‖tv ≤ ‖P′ −U ‖tv ≤ ‖P−U ‖tv +
(
1− |X|/|G|k

)
. �
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Now, fix a sequence {Gn} of groups. Let us assume that ϕk(Gn)→ 1 as n→∞.
Then Proposition 1.5.2 implies that the bias of Q is bounded by that of the random
walk. In the remainder of this section we will be concerned with the problem of
finding an appropriate function k = k(Gn) for a given sequence of groups to satisfy
the assumption above.

First, let us translate the previous results into this language. By ω(n) denote a
function ω : N→ N such that ω(n)→∞ as n→∞.

Corollary 1.5.2 Let {Gn} be any sequence of groups. Then ϕk(Gn)→ 1 given
k = k(n) satisfies either of the following:

(i) k = d(Gn) + ω(n), if Gn is nilpotent,
(ii) k = (β + 1) · d(Gn) + ω(n), if Gn is solvable,
(iii) k = (logm) · ω(n), if Gn is a direct product of finite nonabelian simple

groups, each copy at most m times,
(iv) k = log |Gn|+ ω(n), for any G.

While parts (i)−(iii) seem to be satisfactory, the general case (iv) remains quite
weak. The following conjecture if true would be a significant advancement:

Conjecture 1.5.3 Let {Gn} be a sequence of groups. Then ϕk(Gn)→ 1 given
k = ω(n) · d(Gn) · log log |Gn|.

Remark 1.5.4 Note that the results (i)−(iii) in Proposition 1.5.2 are stronger
than what Conjecture predicts. Indeed, for the only nontrivial case (iii), if G =
Fm1 × F l2 × . . . we have log log |G| ≥ log log |F1|m ≥ logm.

We remark that a large body of work on positive generation of profinite groups
can be translated into this language. Let us especially note a paper [BPS] where
the authors show that if a profinite group G has no sections isomorphic to An for
large n (i.e. for all n > N), then this group is positively generated, i.e. ϕk(G) ≥ ε
for a universal k and ε > 0 independent of the group G.

Question 1.5.5 Can one quantify the results in [BPS] (i.e. find explicit expres-
sions of k and ε in terms of N) ?

2. Connectivity of Γk(G)

2.1 Preliminaries.

Let G be a finite group. Recall that Nk(G) denotes the set of generating k-tuples
(g) = (g1, . . . , gk), where 〈g1, . . . , gk〉 = G. Let Γk(G) be as in the Introduction,
the graph on Nk(G) with edges corresponding to moves R±i,j , L

±
i,j :

R±i,j : (g1, . . . , gi, . . . , gk)→ (g1, . . . , gi · g±1
j , . . . , gk)

L±i,j : (g1, . . . , gi, . . . , gk)→ (g1, . . . , g
±1
j · gi, . . . , gk)

We call Γk(G) the product replacement graph, and its edges the Nielsen moves.
Note that while Γk(G) is defined as an oriented graph, it is symmetric, so orien-

tation can be disregarded. As before, let d(G) be the minimal number of generators
which generate G. In this section we are concerned with the following problem.

Problem 2.1.1 For a given G, k ≥ d(G), is Γk(G) connected ?
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It is quite embarrassing how little is known about this problem. For example,
we do not know the answer to the following innocent looking question:

Question 2.1.2 Is it true that if Γk(G), k ≥ d(G) is connected, then Γm(G) is
connected for every m > k ?

In the next sections we shall the examples when Γd((G) is disconnected. However
we do not know the answer to the following “easy” question:

Question 2.1.3 Is there a finite group G, d = d(G) such that Γd+1(G) is
disconnected ?

Later in this section we will show that the answer to this question is negative
when G is solvable, and it is probably negative for finite simple groups and their
direct products. We reserve our judgement with regard to the question in full
generality.

By κk(G) denote the number of connected components of Γk(G). Now let us
prove some general results on κk(G) before turning to examples and special cases.

First, note that one cannot expect that H ⊂ G implies that κk(H) ≤ κk(G)
since we already do not have d(H) ≤ d(G). For example, H = Zn2 ⊂ G = Z2 o Zn,
but d(H) = n > d(G) = 2. On the other hand, if H is a quotient of G, then
d(H) ≤ d(G). This result can be extended to show that κk(H) ≤ κk(G) for any
k ≥ d(G).

Theorem 2.1.4 ([LP]) If α : G→ H is an epimorphism between finite groups,
then for every k ≥ d(H) the map αk : Γk(G)→ Γk(H), defined by

αk
(
g1, . . . , gk

)
=
(
α(g1), . . . , α(gk)

)
is a surjective graph projection. In particular, the number of connected components
of Γk(H) is bounded by that of Γk(G).

The result easily follows from the following important lemma:

Lemma 2.1.5 (Gaschütz) Let ψ : G → H be an epimorphism between finite
groups, k ≥ d(G), and let (h1, . . . , hk) be a generating k-tuple of H. Then there
exists a generating k-tuple (g1, . . . , gk) of G with ψ(gi) = hi for i = 1, . . . , k.

Proof. Denote by N C G the kernel of the epimorphism ψ: H ' G/N . Consider
any (g1, . . . , gk) such that 〈g1N, . . . , gkN〉 = H. We need to find (u1, . . . , uk) ∈ Nk

such that 〈g1u1, . . . , gkuk〉 = G.
Let us fix a k-tuple (g) = (g1, . . . , gk) as above. Consider the set R(g) of all k-

tuples (g1u1, . . . , gkuk). Clearly, |R(g)| = |N |k. For every subgroup S ⊂ G we have
R(g)∩Sk 6= ∅ if and only if S N = G. Further, in this case |R(g)∩Sk| = |S ∩N |k.
This number is therefore independent of the choice of (g).

Now, the number of k-tuples in R(g) which generate G is equal to |N |k minus the
number of k-tuples in R(g) and proper subgroups. But the latter can be calculated
by the Möbius summation formula of the numbers |R(g)∩Sk| (see [H1]). Therefore
the number N of k-tuples in R(g) which generate G is independent of the choice
of (g).

By hypothesis, there does exist a generating k-tuple a = (a1, . . . , ak) of G. Then
for ψk(a) = (ψ(a1), . . . , ψ(ak)) the number N is positive. But since it is the same
for all (g), we obtain the result. �
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In our proof we closely follow the original proof (see [Gr], Proposition 6.14.) We
refer to [Gr] for a number of other related results.

2.2 Extended product replacement graph.

Define an extended product replacement graph Γ̃k(G) to be a graph on Nk(G)
with edges corresponding to R±i,j , L

±
i,j , and πi,j , ιm, 1 ≤ i, j,m ≤ k, where

πi,j : (g1, . . . , gi, . . . , gj , . . . , gk)→ (g1, . . . , gj , . . . , gi, . . . , gk)

ιm : (g1, . . . , gm, . . . , gk)→ (g1, . . . , g
−1
m , . . . , gk)

Proposition 2.2.1 Let κk(G), κ̃k(G) be the number of connected components
in Γk(G) and Γ̃k(G) respectively. Then

κ̃k(G) ≤ κk(G) ≤ 2 κ̃k(G).

Moreover, if Γ̃k(G) is connected and k ≥ d(G) + 1, then Γk(G) is also connected.

Proof. Let (g) = (g1, . . . , gk). We easily have:

(g) =(. . . , gi, . . . , gj , . . . )
R−i,j−−→ (. . . , gi · g−1

j , . . . , gj , . . . )

L+
j,i−−→ (. . . , gi · g−1

j , . . . , gi, . . . )
L−i,j−−→ (. . . , g−1

j , . . . , gi, . . . ).

Denote this move by Pi,j . Repeating Pi,j twice we obtain:

(g)
Pi,j−−→ (. . . , g−1

j , . . . , gi, . . . )
Pi,j−−→ (. . . , g−1

i , . . . , g−1
j , . . . ).

Denote this move by Ii,j . Observe that Pi,j , Ii,j generate a subgroup of index two
of rotations in a hyperoctahedral group Hn (the Weyl group of root system Dn).

Let us assume that (g) = (g1, . . . , gk) is connected to (h) = (h1, . . . , hk) by a
certain sequence of moves in graph Γ̃k(G). Now, in the graph Γk(G) apply the
same moves as in Γ̃k(G) (up to ±) and use Ii,j and Pi,j in place of inversions ιj
and transpositions πi,j . This gives (h±1

1 , . . . , h±1
k ). Let us apply a few more Ii,j

to obtain (h1, . . . , hk−1, h
±1
k ). If Γ′ ⊂ Γ̃k(G) is a connected component, then every

(g) ∈ Γ̃′ is connected to a fixed (h). This implies that such (g) is connected to
either (h1, . . . , hk) or (h1, . . . , hk−1, h

±1
k ). Thus Γk(G) has at most two times the

number of connected components in Γ̃k(G).
For the second part, if k ≥ d(G) + 1, and Γ̃k(G) is connected, then every k-tuple

(g) ∈ Γk(G) is connected to some (h1, . . . , hk−1, id). This proves the result. �

Let us show that for k large enough, the graphs Γk(G) do become connected.
Let d = d(G) be the maximal size of the minimal generating set, which is a set such
that no generator can be omitted. By ` = `(G) denote the length of the longest
increasing sequence of subgroups:

G0 = {id} ⊂ G1 ⊂ . . . ⊂ G` = G ,
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where Gi 6= Gi+1. Note that

d(G) ≤ d(G) ≤ `(G) ≤ log2 |G| ,

where the latter inequality follows from |Gi+1|/|Gi| ≥ 2.

Proposition 2.2.2 If k ≥ d(G) + d(G), then Γk(G) is connected.

Proof. By Proposition 2.2.1, it suffice to prove that Γ̃k(G) is connected.
Let d = d(G), d = d(G), k ≥ d + d. Fix a generating set 〈h1, . . . , hd〉 =

G and consider a generating k-tuple (h) = (h1, . . . , hd, id, . . . , id). Observe that
every generating k-tuple (g1, . . . , gk) ∈ Nk(G) is connected (in graph Γ̃k(G)) to
(h). Indeed, the set of generators is redundant, so up to a permutation we have
〈gd+1, . . . , gd+d〉 = G. Then (g) is connected to (h1, . . . , hd, gd+1, . . . , gd+d) and
finally to (h). �

Theorem 2.2.3 (Babai) Let G be a finite group, k = 2dlog2 |G|e. Then the
diameter ∆ = ∆(G, k) of the product replacement graph Γk(G) is at most C·log2 |G|,
where C is a universal constant.

The proof of Babai [Bb5] is an extension of the proof of Proposition 2.2.2. It
uses an important “cube doubling” idea (see [ER,Bb3]) which has other important
applications and is worth noting.

Proof. Let r = dlog2 |G|e. We say that (g) = (g1, . . . , gr) ∈ Nr(G) is good1 if
C−1C = G, where

C = C(g) =
{
gε11 · · · gεrr | ε1, . . . , εr ∈ {0, 1}

}
.

Observe that by definition of one can move from (g, h) = (g1, . . . , gr, h1, . . . , hr) to
(g, h′) = (g1, . . . , gr, h

′
1, . . . , h

′
r) in at most 2 r2 Nielsen moves.

We claim that for every k-tuple (g) ∈ Nk(G) one can obtain a k-tuple of the
form (u, v), where (u), (v) ∈ Nr, and (u) is good. Indeed, permute elements of (g)
so that the last r of them generate G. That will be our (v). Now let us construct
a good r-tuple (u) by induction. Set C0 = ∅. Assume that at step i we determined
u1, . . . , ui such that |Ci| = 2i, where Ci−1 = C(u1, . . . , ui). If C−1

i Ci = G, the
this is already a good set. Otherwise there exists w ∈ {id, v1, . . . , vr} such that
gi+1Diw 6= Di, where Di = C−1

i Ci. Indeed, if gi+1Di = Di for w = id, then
for w = vi we have gi+1Divi = Divi. But since (v) is a generating r-tuple, and
DiG 6= Di, there exists vi such that gi+1Civi 6= Ci. Now move gi+1 to an element
ui+1 = gi+1z, where z = D−1

i w, ui+1 /∈ Di. Then |Ci+1| = 2 |Ci|, which completes
the induction step in at most (2i+ 1) Nielsen moves.

The total number of induction steps is at most dlog2 |G|e = r since we are
“doubling the cube” Ci at every step. We need therefore at most r2 Nielsen moves
and O(r) transpositions and inversions to obtain a good k-tuple. From the previous
observation, two good k tuples are connected by at most 2 r2 Nielsen moves and
O(r) transpositions and inversions. Recall now that by the proof of Proposition
2.2.2 each transpositions and inversions can be substituted by at most c Nielsen
moves, where c is a universal constant. This completes the proof. �

1In [Bb5] such (g) are called “cube-semigenerators”
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Remark 2.2.4 Proposition 2.2.2 is an observation in [DS3]. A weaker version
with k ≥ 2 d(G) was given in the original paper [CLMNO] (see also [Gi]). Theorem
2.2.3 and the proof closely follow the paper [Bb5].

Let us also note that computing d(G) is not an easy task. A recent result
d(Sn) = n− 1 of Whiston [Wh] is worth mentioning, especially in comparison with
another hard result `(Sn) = b 3n−1

2 c − bn, where bn is the number of ones in the
binary expansion of n (see [CST,Bb1]).

2.3 Abelian, nilpotent and solvable groups.

The main result of this section is due to Dunwoody [Du2], who showed that
Γd(G)+1(G) is connected for any finite solvable group G. The case k = d(G) is more
delicate, and is also considered.

Example 2.3.1 Let G = (Zp)m, where p is a prime. Then Nk(G) is in one to
one correspondence with the set GL(m, p) of nonsingular m×m matrices over Fp.
Note that Nielsen moves R±i,j , L

±
i,j become elementary transformations (adding or

subtracting a row), and therefore do not change the determinant. Thus Γm(G) has
at least (p− 1) components. Further, Γm(Zmp ) is a Cayley graph of GL(m, p) with
a generating set E±i,j .

In the other direction, the elementary matrices E±i,j with ones on the diagonal,
±1 at (i, j) and zero elsewhere, generate SL(m, p). Therefore Γm(Zmp ) has exactly
m isomorphic connected components.

Note also that Γ̃(Zmp ) is a Cayley graph of Γm(Zmp ) with a generating set consist-
ing of elementary matrices, permutation matrices, and matrices which have (−1)
at (i, i), 1 elsewhere on diagonal, and zero outside of the main diagonal. For p = 2
graph Γ̃(Zmp ) is also connected, but for p ≥ 3, p - prime, it has (p− 1)/2 connected
components.

Theorem 2.3.2 ([NN,DG]) Let G be a finite abelian group, given as

G ' Zm1 × Zm2 × · · · × Zmr
,

where m1 |m2 | . . . |mr. Then d(G) = r and
(i) Γk(G) is connected for all k ≥ r + 1,
(ii) Γr(G) has φ(m1) components of equal size,

where φ(m) is the Euler function (the number of integers less than m which are
relatively prime with m).

The first part of the theorem2 is due to B.H. Neumann and H. Neumann [NN]
(see also [DG,Ev2]). The second part is due to Diaconis and Graham [DG], who
also rediscovered the first part.

The proof is an elementary, though nontrivial generalization of the observation
in Example 2.3.1. One proves in part (ii) that when an element gi ∈ G is written
as (ai,1, . . . , ai,r), then det(ai,j) is the only invariant of generating k-tuples under
Nielsen moves (see [DG] for details).

For nilpotent groups the situation with the case k = d(G) is more complicated.
First, using Gaschütz’ Lemma, one can lift “invariants” from abelian quotients

2The result in [NN] was formulated in a slightly different language of T -systems, see below.
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to the whole group. This idea was successfully used in [Du1] by Dunwoody. A
somewhat different approach was proposed in [Ne]:

Lemma 2.3.3 (Higman)3 Let Γ′ be a connected component of Γ2(G) which
contains (g1, g2) ∈ N2(G). Then for every (h1, h2) ∈ Γ′ we have [h1, h2] is a
conjugate of [g1, g2].

In other words, the conjugacy class of the commutator [g1, g2] is invariant un-
der Nielsen moves. This can be easily checked directly. Note that in Γ̃k(G), the
transposition of generators inverts the commutator: [g1, g2]→ [g2, g1] = [g1, g2]−1,
so one has to add an inverse of the conjugacy class. In [Ne] B.H. Neumann used
Higman’s Lemma to find distinct connected components in a particular nilpotent
group G ' Z8 nD4, where D is a dihedral group of order 8.

Question 2.3.4 (B.H. Neumann) Can one find a generalization of Higman’s
Lemma for more than two generators, that is for k > 2 ?

Open Problem 2.3.5 Describe all connected components of Nk(G), where G
is a finite nilpotent group and k = d(G).

Now let us prove the main result of this section:

Theorem 2.3.6 (Dunwoody) Let G be a finite solvable group, k ≥ d(G) + 1.
Then Γk(G) is connected.

Proof. The proof is by induction on the length ` of a chief series of G:

{id} = G0 ⊂ G1 ⊂ . . . ⊂ G` = G ,

where Gi−1 is a minimal normal G-invariant subgroup of Gi, and Gi C G, i =
1, . . . , `.

When ` = 0 there is nothing to prove. Assume ` ≥ 1. Fix any (k − 1) ≥ d(G)
generators h1, . . . , hk−1 of G. We will show that any generating k-tuple (g) =
(g1, . . . , gk) ∈ Γk(G) is connected to (h) = (id, h1, . . . , hk−1) ∈ Γk(G) by Nielsen
moves. This clearly implies connectivity of the whole graph.

Denote G1 by M . By the induction hypothesis on G/G1, (g) is connected to
a k-tuple (m,m1h1, . . . ,mk−1hk−1), where m,m1, . . . ,mk−1 ∈ M . If m = id, the
elements mihi generate G and we can use R±1,i to get m 6= id. Therefore we can
assume that m 6= id.

Now note that h−1
i mhi = (mihi)−1m (mihi). For any given g ∈ G write g =

w(h1, . . . , hk−1) as a word in generators of G. Then(
w(m1h1, . . . ,mk−1hk−1)

)−1
mw(m1h1, . . . ,mk−1hk−1)

=
(
w(h1, . . . , hk−1)

)−1
mw(h1, . . . , hk−1) = g−1mg = mg.

Therefore by successive application of R+
1,i and L−1,i one can connect the generating

k-tuple (m,m1h1, . . . ,mk−1hk−1) with (mg,m1h1, . . . ,mk−1hk−1) for any g.
Since M is a minimal normal subgroup of G, every m′ ∈ M is a product of

conjugates of m. Therefore by iterating the previous procedure, one can use L±i,1

3Higman’s Lemma has appeared in [NN] in a somewhat different form.
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to get rid of all the mi and obtain (m,h1, . . . , hk−1). But then, since h1, . . . , hk−1

generate G, we easily obtain (h) = (id, h1, . . . , hk−1) by the Nielsen moves. This
completes the proof. �

Remark 2.3.7 As shown by Evans [Ev2], the graphs Γk(G) with k ≥ d(G) + 1
are connected for all (even infinite) nilpotent groups. This fails badly for k = d(G)
(see [Du1]), even when the so called “swap moves” are allowed :

(g1, . . . , gi, . . . , gk)→ (g1, . . . , g
′
i, . . . , gk),

where g′i ∈ G is any element such that (g1, . . . , g
′
i, . . . , gk) is a generating k-tuple.

We refer to [TT,Ro] for reasoning behind this definition and various examples. As
we shall see later, all but a finite number of simple groups are connected by these
swap moves for k ≥ 3 (see proof of Proposition 2.5.12).

We challenge the reader to generalize (or disprove) the above mentioned Evans’
and Dunwoody theorems to all (even infinite) solvable groups. We refer to a re-
lated result of Myasnikov [My] who proved Andrews–Curtis Conjecture for certain
solvable groups.

Let us mention that in a different context Question 2.1.3 has a negative answer
for infinite groups. This is related to the following Waldhausen’s question: “If
G = 〈x1, . . . , xn, r1, . . . , rm〉 can be generated by fewer than n elements, then does
the normal closure of 〈r1, . . . , rn〉 in Fn contain a primitive element of Fn? ”
(see [LyS], p. 92). The answer for this question is negative (see [No,Ev1]). On
the other hand, it was noted in [Du2] (in fact, motivated his work) that this is
equivalent to the question of whether a generating set for G with n elements can
always be changed by Nielsen moves to a set containing the identity element, given
d(G) = n − 1. But this is a weaker condition than the connectivity of Γ̃n−1(G).
Thus Γ̃n−1(G) and therefore Γn−1(G) is disconnected in this case.

2.4 T -systems.

Let G be a finitely generated group, and d(G) be the minimal number of gener-
ators of G. Systems of transitivity (or T -systems) are defined as follows.

We say that N is a G-defining subgroup of a free group Fk if N is normal in
Fk and Fk/N ' G. Denote by Σk(G) the set of G-defining subgroups of Fk, and
consider an action of Aut(Fk) on Σk(G). The orbits of this action are called Tk-
systems. They were introduced in [NN] by B.H. Neumann and H. Neumann, and
studied on and off since then.

Recall also that Aut(Fk) is generated by the set Υk of Nielsen moves, trans-
positions and inversions. These moves define a graph structure on Σk(G). Now
Tk-systems correspond to connected components of Σk(G).

Recall that Γ̃k(G) is also defined by the set of moves Υk. Consider the natural
action of Aut(G) on the set Nk(G) of generating k-tuples of G. Identifying under
this action defines a projection of graph Γ̃k(G) onto Σk(G). We obtain:

Proposition 2.4.1 The number of connected components in Σk(G) (the number
of Tk-systems) is less or equal to the the number of connected components in Γ̃k(G).
In the other direction, if Σk(G) is connected and k ≥ 2 d(G), then Γ̃k(G) is also
connected.
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Proof. The first part follows from the previous observation. For the second
part, connectivity of Σk(G) implies that every k-tuple (g) ∈ Nk(G) is connected in
Γ̃k(G) to some ϕ(h), where ϕ ∈ Aut(G) and (h) ∈ Nk(G) is fixed. Now take (h) =
(h1, . . . , hd, id, . . . , id), where d = d(G). Then ϕ(h) = (h′1, . . . , h

′
d, id, . . . , id) ∈

Nk(G) is a generating k-tuple which is connected to (h) in Γ̃k(G). Indeed, permute
elements in ϕ(h) to make the first d of them to be id. Now generate (h1, . . . , hd) in
the first d positions, and then make the remaining (k− d) elements become id. We
conclude that any (g) ∈ Nk(G) is connected in Γ̃k(G) to a fixed (h) as above. �

Corollary 2.4.2 If k ≥ 2 d(G), then Γk(G) is connected if and only if G has
exactly one Tk-system.

Proof. The corollary follows immediately from Proposition 2.4.1 and Proposition
2.2.1. �

Theorem 2.4.3 (Gilman) Let G be a finite simple group and k ≥ 3. Then
Aut(Fk) acts on at least one Tk-system of G as the alternating or symmetric group.

This result is quite miraculous since it basically says that for simple groups on
some orbit the group action of A = Aut(Fk) is not only simply transitive, but
highly transitive. The proof is also quite interesting, but goes beyond the scope of
this survey.

In fact, Theorem 2.4.3 is a compilation of several results. The main part, which
is the case k ≥ 4, is due to Gilman [Gi]. It was subsequently extended to the case
k = 3 by Evans [Ev3] (see Lemma 5.2) under assumption that a simple group is
generated by two elements, one of which is an involution. The proof in [Ev3] follows
closely [Gi], so we will refer to Theorem 2.4.3 as Gilman’s Theorem.

Now, the assumption that a simple group is generated by two elements one of
which is an involution, holds in fact for every simple group (see Remark 2.4.8).
The easiest way to see this is to apply Theorem 1.1.8 of Guralnick and Kantor.
Recall that by the Feit-Thompson Theorem (see e.g. [Go]) every finite simple
group contains an involution. Therefore by 1.1.8 (i), it generates the whole group
with some elements of a certain conjugacy class.

Corollary 2.4.4 If G is simple and has exactly one Tk-system, k ≥ 3, then Gm

has also exactly one Tk-system, given m < N = |Σk(G)|.

Proof. By Hall’s Theorem 1.2.1, the generating k-tuples of Gm correspond
to those m-tuples of generating k-tuples of G which all lie in different orbits of
the diagonal action of Aut(G) on Nk. Assume now that Σk(G) is connected. By
Theorem 2.4.3, Aut(Fk) acts (N−1)-transitively on Σk(G). But that means that for
any m ≤ N one can use extended Nielsen moves to get from m elements in different
orbits (of Aut(G) on Nk(G)) to m elements in any other different m orbits. But
this is more than enough to show that Σk(Gm) is connected, as the action of the
group Aut(Gm) on Nk(Gm) contains separate actions of m copies of Aut(G) on
different Nk(G). �

Corollary 2.4.5 If G is simple and has exactly one Tk-system, k ≥ 4, then
Γk(Gm) is connected, given m < |Σk(G)|.
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Proof. Recall that for all finite simple groups d(G) = 2. Now the result follows
from Corollary 2.4.4 and Corollary 2.4.2. �

Unfortunately we cannot improve the condition k ≥ 4 to k ≥ 3. Indeed, the
group An having only one T3-system does not imply that Γ3(An) is connected
since in Corollary 2.3.2 we need k to be at least two times the minimal number of
generators.

Let us conclude by formulating a stronger version of Question 2.1.3:

Question 2.4.6 Is there a finite group G, d = d(G) such that G has more than
one Td+1-system (equivalently: Σd+1(G) is disconnected) ?

Remark 2.4.7 Corollary 2.4.4 is a refined version of the observation made by
Dunwoody in a review of the paper [Gi] (Math. Reviews 55#8186, see also [Du2]).
The story is that in [Du2] Dunwoody proposed P. Hall’s example A19

5 as a possible
candidate for a positive answer to the question 2.4.6.4 In a review Dunwoody
asserts that Gilman’s results imply that A19

5 cannot satisfy 2.4.6. This does not
seem clear to us in view of the condition k ≥ 4 in [Gi], but certainly Gilman was
very close to resolving the A19

5 problem. Only after a paper [Ev3] of Evans about 15
years later, one can extend the result to the case k = 3, so to prove that G = A19

5

has only one T3-system. Indeed, since ϕ3(A5) > ϕ2(A5) = 19/30 (this is Hall’s
result) by Corollary 2.4.4 we have

|Σ3(A5)| = ϕ3(A5)|A3
5|

|Aut(A5)|
>

19
30 · 603

120
= 1140.

From here we obtain a remarkable connectivity of the graphs Σ3(ANn ) for N ≤
1140 < |Σ3(A5)|. It is unclear, however, whether Aut(F3) acts as a symmetric
(not as an alternating) group on Σ3(A5), i.e. whether A

|Σ3(A5)|
5 has only one

T3-system as suggested in Question 2.4.6.

Remark 2.4.8 A few words about simple groups being generated by two ele-
ments, one of which is an involution. For sporadic groups this follows from their
construction, and for several series (such as alternating groups, PSL(n, q), etc.) it
was known for decades (see e.g. [CM,Go]). In full generality this was first proved
by Malle, Saxl and Weigel in [MSW].

2.5 Simple groups.

In this section we elaborate on the connectivity of the product replacement
graph in the special case of simple groups. As we shall see, this case seems to be
of particular importance.

Example 2.5.1 Let G = A5. In a pioneering paper [NN] the authors show
that A5 has at least two T2-systems. To see that, simply use Higman’s Lemma and

4Actually, Dunwoody proposes A19
5 as a possible challenge problem for computational group

theory. Note that the order of the group |A19
5 | ≈ .61 · 1034 is much too large for any brute force

computation. Imagine now how much challenge it was in 1967 when Dunwoody proposed the
problem!
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observe that the commutator of two generating elements must be either a 5-cycle
or a 3-cycle. Since both can occur, there are at least two T2-systems.

Note that when G = S5, we already have at least three T2-systems: elements
with two 2-cycles can occur as commutators of a generating pair of element.

Proposition 2.5.2 The number of connected components of Γ2(An) increases
as n→∞.

Proof. Let n be odd. Simply observe that when (m, p) = 1 the elements of the
form a = (1, 2, . . . , n) and b = (1, 2, . . . , p), (in cycle notation) generate the whole
An. Their commutators belong to different conjugacy classes (for p < m/2). Now
Higman’s Lemma implies the result. �

Question 2.5.2 What is the number of conjugacy classes of the commutator
[a, b] of two generating elements (a, b) ∈ N2(An) ?

Note, of course, that [An, An] = An, n ≥ 5, and two elements in An generate An
with probability P =

(
1 − 1/n + O(1/n2)

)
. Also, if [a, b] = c, then [σa, σb] = σc

for all σ ∈ Sn. Therefore elements with the same cycle structure either can be all
obtained, or can’t be all obtained as commutators of two generating elements in
An. Of course, some conjugacy classes, e.g. id, can’t be obtained in this way.

Open Problem 2.5.3 Describe all connected components of Γ2(An), n ≥ 5.

For k ≥ 3 very few results are known, so let us start with the general conjecture
of obvious importance.

Conjecture 2.5.4 (Wiegold) For every k ≥ 3 and every nonabelian group G,
there exists only one Tk-system (equivalently: the graph Σk(G) is connected).

While never published, this conjecture was attributed to Wiegold on several
occasions (see [Da,Ev2,Ev3]). It seems inspired by Gilman’s paper [Gi]. Let us
state here a somewhat stronger companion conjecture.

Conjecture 2.5.5 For every nonabelian simple group G and every k ≥ 3, the
product replacement graph Γk(G) is connected.

Note that since d(G) = 2 for all finite simple groups, for k ≥ 4 Conjectures 2.5.4
and 2.5.5 are equivalent. A similar conjecture for G = Sn was made by Diaconis
and Graham in [DG]. Let us briefly formulate what is known in this direction:

Theorem 2.5.6 Wiegold’s Conjecture holds in the following cases:

(i) [Gi] G = PSL(2, p), where p ≥ 5 is a prime, and k ≥ 3,
(ii) [Ev3] G = PSL(2, 2m) or G = Sz(22m−1), where m ≥ 2, and k ≥ 3,
(iii) [Da] G = A6, A7, and k = 3,
(iv) [CP] G = A8, A9, A10, and k = 3.

Note that the case G = A5 is covered in (i): A5 ' PSL(2, 5). In fact, [CP]
proves that the stronger Conjecture 2.5.5 holds for k = 3 and G = An, 6 ≤ n ≤ 10.

Proposition 2.5.7 Let G = PSL(2, p), H = Gm, where m ≥ p (p + 1). Then
d(H) ≥ 3 and for every k ≥ d

(
G(m+1)

)
, the group H has only one Tk-system.

Further, if m ≥ p2(p − 1)(p + 1)2, then d(H) ≥ 4 and the product replacement
graph Γk(G) is connected.
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Proof. Recall that |PSL(2, p)| = p(p − 1)(p + 1), Aut(PSL(2, p)) = GL(2, p),
|GL(2, p)| = p(p − 1)2(p + 1). By Hall’s Theorem 1.2.1, the largest power N such
that d(GN ) ≤ 2 is given by

N = ϕ2(G) · |G|2

|Aut(G)|
<

[
p(p− 1)(p+ 1)

]2
p(p− 1)2(p+ 1)

= p(p+ 1).

Therefore for all m ≥ p(p + 1) we have d(H) ≥ 3. Analogously, whenever
m ≥ p2(p − 1)(p + 1)2, we have d(H) ≥ 4, which proves the first part of both
claims.

The second parts follows easily from Corollaries 2.4.4 and 2.4.5. Indeed, unique-
ness of Tk-system condition in 2.4.4,5 is satisfied by part (i) of Theorem 2.5.6. By
Hall’s Theorem, the condition m ≤ |Σk(G)| is equivalent to the condition k ≥ d(H),
so m < |Σk(G)| is equivalent to k ≥ d

(
G(m+1)

)
. This completes the proof. �

There is one more result in favor of Conjecture 2.5.5. To state it we need the
notion of spread (see [BW1]).

Definition 2.5.8 A 2-generator group G is said to have spread m if for every
m group elements g1, . . . , gm 6= id there exists an element h ∈ G such that 〈g1, h〉 =
· · · = 〈gm, h〉 = G.

Much is known about the spread of simple and quasisimple groups. We refer
to papers [BW1,BW2,GK,GS] for various extensions and references. Let us just
mention that all symmetric groups Sn and alternating groups An, n ≥ 5, have
spread 2 (see [Bi,BW1]).

Conjecture 2.5.9 ([BW1,GS]) All finite nonabelian simple groups have spread 2.

Theorem 2.5.10 ([GS]) All but a finite number of finite nonabelian simple
groups have spread 2.

Proof. By Theorem 1.1.8 (ii), PC(G) → 1 as |G| → ∞ unless G is isomor-
phic to alternating groups An or odd-dimensional orthogonal groups Ω(n, q) with
a bounded size q of the field.

Now let G be a simple group, C be a conjugacy class on which PC(G) is maxi-
mized. For any g1, g2 ∈ G we have

P
(
〈g1, h〉 = 〈g2, h〉 = G |h ∈ C

)
≥ 1− 2

(
1− PC(G)

)
.

Therefore PC(G) > 1/2 implies that P(·) > 0, and hence G has spread 2.
We conclude that for all but the two exceptional series there is only a finite

number of simple groups which have PC(G) ≤ 1/2. As we mentioned before, all
alternating groups have spread 2. The case of odd orthogonal groups is considered
separately (see [GK,GS]). �

Actually, one can describe explicitly the set of possible exceptions in Theorem
2.5.10. It would be interesting to check Conjecture 2.5.9 by computational means,
or otherwise.
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Definition 2.5.11 A generating k-tuple (g1, . . . , gk) ∈ Nk(G) is called redundant5

if it is not a minimal generating set, which means that one generators gi can be
omitted so that the remaining elements generate the whole group G.

Proposition 2.5.12 ([Ev3]) Let G be a 2-generated group of spread 2 and
let k ≥ 3. Then all redundant generating k-tuples belong to the same connected
component in Γk(G).

Proof. Clearly, every redundant generating k-tuple is connected in Γk(G) to a
k-tuple with some entry id. It follows from the proof of Proposition 2.2.1 that the
connected component in Γ̃k(G) which contains such a k-tuple is also connected in
Γk(G). Thus it suffices to prove that all redundant generating k-tuples belong to
the same connected component in Γ̃k(G).

Let (g), (h) be two redundant generating k-tuples. One can always permute
their elements and make the last element to be identity. Thus we can assume
that (g) = (g1, . . . , gk−1, id), (h) = (h1, . . . , hk−1, id). Without loss of general-
ity we can also assume that g1, h2 6= id. Since G has spread 2, there exists an
element z ∈ G such that 〈g1, z〉 = 〈h2, z〉 = G. Clearly, (g) is connected to
(g1, g2, . . . , gk−1, z), and therefore to (g1, h2, . . . , hk−1, z) and to (h1, h2, . . . , hk−1, z)
and (h1, h2, . . . , hk−1, id). This completes the proof. �

Observe that by Theorem 1.1.1 a random generating k-tuple in G must be re-
dundant with high probability (given k ≥ 3). Thus in a sense which will be made
precise in the next section, Theorem 2.5.12 and Theorem 2.5.10 imply that Con-
jecture 2.5.5 holds “for most” generating k-tuples of a large enough simple group
G.

We conclude with the following important observation:

Proposition 2.5.13 Let G be a 2-generated group of spread 2 and let k ≥ 3.
Then the connectivity of Σk(G) implies the connectivity of Γk(G).

Proof. Proposition 2.4.1 covers the case k ≥ 2 · d(G) = 4. It remains to be
proved that if G has only one T3-system, then Γ3(G) is connected. But this is a
simple combination of the proof of Proposition 2.4.1 with Proposition 2.5.12. In the
notation of the proof of 2.4.1, we need to show that ϕ(h) = (h′1, h

′
2, id) is connected

to (h) = (h1, h2, id). But that’s clear since G has spread 2 and both 3-tuples are
redundant. Proceeding as in the proof of 2.4.1, we obtain the result. �

Corollary 2.5.14 If G is a finite nonabelian simple group of spread 2, then
Conjecture 2.5.5 is equivalent to Wiegold’s Conjecture 2.5.4. �

Remark 2.5.15 As noted in [BW1], if G has spread r, so does any quotient H.
Also, if G1, G2 have spread 2, then G1 ×G2 has spread 1. It would be interesting
to investigate when Gm has spread 2, when G is simple. Let us note that the real
power of the bounds in [GK] combined with proof of Theorem 2.5.10 give large
spread for various series of simple groups (see [GS]). The latter can be used to show
that certain large powers of simple groups can have spread 2.

5Note that our use of the term is different from that in [Ev3,Da]
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Remark 2.5.16 Parts (i), (ii) of Theorem 2.5.6 are obtained by an elaborate
calculation using subgroup structure and conjugacy classes. It seems that gener-
alizations of the brute force technique to other series of groups (especially of rank
≥ 2) must be difficult.

The proof of David [Da] of the case (iii) is based on a tedious calculation. In
[CP] we present a “proof by computer” of part (iv). We describe the algorithm in
section 2.7.

Let us note that symmetric groups Sn, n ≥ 3, also have spread 2. This supports
the conjecture by Diaconis and Graham [DG] on the connectivity of Γ3(Sn) (see
above).

Clearly, Proposition 2.5.7 is slightly weaker than what one would like, which is
a condition k ≥ d(Gm) rather than k ≥ d(G(m+1)). Nevertheless for powers of
PSL(2, p) as in 2.5.7, the answer to the Question 2.4.6 is positive. Still, it would be
interesting to check whether Aut(Fk) acts as a symmetric or an alternating group
on Σk(G) (cf. Remark 2.4.7.)

Our proof of Theorem 2.5.10 by Guralnick and Shalev [GS], follows closely the
proof in their paper. As we mentioned above, it is a direct application of the
previous result of Guralnick and Kantor [GK].

2.6 The “large” connected component.

We give here a probabilistic approach to the connectivity problem, by showing
existence of the large connected component for k moderately large.

Theorem 2.6.1 ([P5]) Let {Gn} be a sequence of finite nonabelian simple
groups such that |Gn| → ∞ as n → ∞. Fix k ≥ 3. Then graphs Γk(Gn) have
connected components Γ′k(Gn) ⊂ Γk(Gn), such that

|Γ′k(Gn)|
|Γk(Gn)|

→ 1 as n→∞.

Furthermore, for n large enough Γ′k(Gn) contain all the redundant generating k-
tuples.

Proof. By Theorem 2.5.10, every large enough simple group has spread 2.
Further, by Proposition 2.5.12, the set of redundant generating k-tuples is connected
in Γk(G). Finally, Theorem 1.1.1 implies that, given l ≥ 2, a random l-tuple of
elements in G is a generating l-tuple, with probability → 1 as n → ∞. Taking
l = k − 1 and l = k, we obtain that a random k-tuple, k ≥ 3 is a redundant
generating k-tuple with the first (k − 1) elements generating the whole group G.
This completes the proof. �

In particular, the graphs Γ3(An) have a “large” connected component, i.e. a
component Γ′ = Γ′3(An) such that |Γ′|/|Γ| → 1, as N → ∞. Compare this with
Proposition 2.2.2, which proves connectivity for k ≥ d(An) +d(An) = 2 + (n−1) =
n+ 1 (see [Wh]).

The following generalization is straightforward:

Theorem 2.6.2 ([P5]) Let {Gn} be a sequence of finite groups, and let kn be
an integer sequence such that

ϕkn
(Gn)→ 1, as n→∞.
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Then the graphs Γn = Γkn+d(Gn)(Gn) have connected components Γ′n, such that

|Γ′n|
|Γn|

→ 1 as n→∞.

Furthermore, graphs Γ′n contain all the generating
(
kn + d(Gn)

)
-tuples of the form

(g1, . . . , gkn
, id, . . . , id).

Proof. The proof is an easy modification of the proof of Theorem 2.6.1. Indeed,
every generating (k+d)-tuple of the form (g) = (g1, . . . , gk, id, . . . , id), where k = kn,
d = d(Gn), is connected to a fixed (id, . . . , id, h1, . . . , hd), where 〈h1, . . . , hd〉 = G.
Now, by hypothesis, the fraction of elements (g) among all k-tuples goes to 1 as
n → ∞. Thus fraction of (g) among all generating k-tuples goes to 1 as n → ∞.
By the observation above, they all lie in the same connected component, which
implies the result. �

Note now that Corollary 1.5.2 proves the conditions of Theorem 2.6.2 in various
special cases. The first two cases which deal with nilpotent and solvable groups
were completely resolved by Dunwoody’s Theorem 2.3.6. In the last two cases we
have:

Corollary 2.6.3 The product replacement graphs Γn = Γkn(Gn) contain con-
nected components Γ′n such that |Γ′n|/|Γn| → 1 as n→∞ if one of the following
holds:

(i) kn = ω(n) · log(mn), and each given Gn is a product of finite nonabelian
simple groups,

with at most mn copies of each,
(ii) kn = log2 |Gn|+ d(Gn) + ω(n), for any {Gn},

where ω(n) is any function such that ω(n)→∞ as n→∞. �

Note that part (ii) implies that to have a large component in general product
replacement graphs it suffices to have d(G) + log2 |G| + C generators. This is
somewhat weaker than the result of Proposition 2.2.2 which proves that k = d(G)+
d(G) ≤ d(G) + log2 |G| is enough to imply connectivity. On the other hand, as we
have seen before, part (i) does not follow from 2.2.2.

We conclude with another unexpected bonus from Gilman’s Theorem 2.4.3,
which gives a generalization of Theorem 2.6.1 to any fixed power of a simple group.

Theorem 2.6.4 Let {Gn} be a sequence of finite nonabelian simple groups
such that |Gn| → ∞ as n→∞, and let m be a fixed integer. Fix k ≥ 3. Then the
graphs Γk(Gmn ) have connected components Γ′k(Gmn ) ⊂ Γk(Gmn ), such that

|Γ′k(Gmn )|
|Γk(Gmn )|

→ 1 as n→∞.

Furthermore, for n large enough Γ′k(Gn) contain all the redundant generating k-
tuples.

Proof. The orbit in Gilman’s Theorem 2.4.3 contains redundant elements by
construction (see [Gi]). This implies that Γk(Gmn ) contains a connected component
Γ′, where each of the m generating k-tuples of G is redundant. This component is
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“large” since as |Gn| → ∞, the probability that the k-tuple is redundant goes to
1. But, then the probability that m independently chosen k-tuples lie in different
orbits of Aut(Gn) and are all redundant goes to 1 as well. This proves the claim
that |Γ′|/|Γ| → 1. The second part is clear by construction. �

Remark 2.6.5 The results in this section are in [P5]. The concept of a “large”
connected component is not new as it is used heavily in various versions in the
random graphs community (see e.g. [ASE]).

Let us note that from the proof of Theorem 2.6.4 one cannot conclude that
Γk(An!/8

n ) has a large connected component. Indeed, by 1.1.2 (i), the probability
that all of the n!/8 k-tuples are redundant is about (1−1/nk−1)n!/8 → 0 as n→∞.
Thus for all k = o(n) the fraction of the k-tuples considered in the proof of Theorem
2.6.4, is “small”. On the other hand, for k = Ω(n) we already know that Γk(An!/8

n )
has a large connected component by Theorem 2.6.3 (i).

2.7 Checking connectivity.

Given the importance of the Problem 2.1.1 and Conjecture 2.5.4, one might ask
whether the claims are supported by the computational evidence. We describe here
a simple algorithm developed in [CP] (based on the “large connected component
concept” in section 2.6) for checking connectivity of product replacement graphs.

Let us remark first that beside the paper [CP], the only computational evidence
that we know, was reported in [DG]: John Laffretty and Dan Rockmore showed
in 1997 that Γ3(S4) and Γ3(S5) are connected. While they probably could have
checked Γ3(S6) by “näıve” methods, further progress is complicated by a super-
exponential increase in the complexity: |N3(Sn)| = 7

8 (n!)3(1 − o(1)). In fact,
|N3(S5) = 1, 401, 120 while 7

8 (5!)3 = 1, 512, 000 (see [DG]).

Problem 2.7.1 Prove or disprove computationally that Γk(G) is connected,
when G is simple of reasonable size, and k is small (3 or 4).

We will illustrate the algorithm of [CP] in the case G = An and k = 3. We start
with the following key observation: it suffice to show that all the generating k-tuples
lie in the “large” connected component. As we already know that all redundant
triples lie in the “large” component, so checking connectivity to redundant triples
gives an efficient check for inclusion in the “large” connected component. Once
formulated this way, one can also utilize the symmetry of the situation and obtain
a great speed up as compared to the “brute force” method.

By Rn denote the set of all redundant triples in Γ3(An). Recall that by Proposi-
tion 2.5.12. they lie in the same connected component. The algorithm checks con-
nectivity to Rn of all generating triples (σ1, σ2, σ3) of An such that 〈σ1, σ2〉 6= An.
To achieve this, we search over all tuples (M,σ1, σ2, σ3), where M is a maximal
subgroup of An and σ1, σ2 ∈M . The maximal subgroups M in An for small n are
known and can be precomputed. Of course some generating triples will be consid-
ered several times, but their fraction is small while speed up we achieve by pruning
our search based on symmetry is quite large.

Here is how the symmetry can be utilized. Fix an appropriate subgroup H of
the group of automorphisms of G. In our case we take G = An and H = Sn. If
(σ1, σ2, σ3) is not connected toRn in Γ3(An), then (σh1 , σ

h
2 , σ

h
3 ) is also not connected

to Rn for every h ∈ H.
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By On denote the set of orbits of the natural action of H on N3(An). For every
orbit O ∈ On, denote by η(O) the lexically first element in O. In our situation,
orbits of H = Sn on An correspond to partitions of n into an even or odd number
of parts (depending on the parity of n). Take σ1 ∈ An to be lexically first in the
conjugacy class corresponding to such a partition. The centralizer CH(σ1) fixes σ1,
so we can now take σ2 to be lexically first under action of CH(σ1), etc.

Now, for every such element η(O) we check whether it’s connected to Rn. To
do that we run the product replacement random walk until we find a redundant
triple. Note that of the three subgroups 〈σ1, σ2〉, 〈σ1, σ3〉 and 〈σ2, σ3〉, after either
of the Nielsen moves R±i,j , L

±
i,j , two subgroups will always remain. Thus at every

step it suffices to check whether the third subgroup is G. We simply check whether
both permutations in a pair lie in one of the maximal subgroups. Once the product
replacement random walk hits a redundant triple, we proceed to the next orbit
representative. The algorithm stops when all triples η(O) are checked.

We discovered in [CP] that not only is Γ3(An) connected, when n = 5, . . . , 10,
but also that it usually takes very few steps of the product replacement walk to
reach a redundant triple. This proves part (iv) of Theorem 2.5.6, and leads to the
following question.

Question 2.7.2 Is there a universal constant C such that every generating
triple (g) ∈ N3(An) is connected in the graph Γ3(An) to a redundant triple by at
most C steps ?

A negative answer to this question will shine a new light at the structure of
generating sets of alternating groups.

3. Mixing time

3.1 Preliminaries.

Let Γ be an r-regular connected unoriented graph, and let v ∈ Γ be a fixed vertex
in Γ. Consider a nearest neighbor random walk Wv = Wv(Γ) defined as follows:
start at a vertex v; at every step choose an adjacent edge with equal probability
and move along that edge; repeat this ad infinitum. For technical reasons it is often
useful to study lazy random walk W◦v , which is defined similarly, but now the walk
stays at the same vertex with probability 1/2 and moves along every adjacent edge
with probability 1/2r.

Denote by Qt
v the probability distribution of the lazy random walk W◦v after

t steps. Since the graph is connected and regular, the stationary distribution is
uniform:

Qt
v →

1
|Γ|
, as t→∞.

Recall the definition of the total variation distance of distribution P on Γ:

‖P−U ‖tv = max
B⊂X

∣∣∣∣P(B)− |B|
|X|

∣∣∣∣ =
1
2

∑
x∈X

∣∣∣∣P(x)− 1
|X|

∣∣∣∣ ,
where P(B) =

∑
x∈B P(x). To simplify the notation, denote dv(t) = ‖Qt

v − U ‖tv.
It is easy to see that 0 ≤ dv(t) ≤ 1, dv(t)→ 0 as t→∞, and that dv(t+1) ≤ dv(t)
for every t (see [AF]). Also, if d(t) = minv∈Γ dv(t), then d(t + s) ≤ 2 d(t) · d(s),
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so once the total variation distance becomes small, it decreases exponentially (see
[AF]).

Definition 3.1.1 Define mixing time mixv of the lazy random walk W◦v (Γ) as
follows:

mixv = min
{
t

∣∣∣∣dv(t) ≤ 1
4

}

Let A be the |Γ|×|Γ| adjacency matrix of graph Γ. The transition matrix of the
random walk W(Γ) is given by P = A/r. Let 1 = λ0 > λ1 ≥ · · · ≥ λ|Γ|−1| ≥ −1
be the eigenvalues of P (all eigenvalues are real since the matrix is symmetric,
the first inequality comes from the Perron-Frobenius Theorem). Now, for the lazy
random walk W◦ the transition matrix is given by P ′ = (Id + P)/2, and for the
eigenvalues of P we have λ′i = (1 + λi)/2, 1 = λ′0 > λ′1 ≥ · · · ≥ λ′|Γ|−1 ≥ 0.

Proposition 3.1.2 Let W◦v (Γ) be a lazy random walk on a regular graph Γ
starting at vertex v ∈ Γ. Then for the mixing time we have:

mixv ≤
4

1− λ1
log |Γ|

Proof. We have

(P ′)n · f = f0 + (λ′1)nf1 + (λ′2)nf2 + . . . ,

where f is a function on vertices of Γ and fi are projections of f on the eigenvectors
of P ′. Now take f to be a function concentrated at v ∈ Γ. Then Qt

v = (P ′)t · f ,
f0 = U, and ∣∣∣∣Qt

v(w)− 1
|Γ|

∣∣∣∣ ≤ (λ′1)t · |Γ|

for every w ∈ Γ. The proposition follows immediately. �

Remark 3.1.3 There are a number of distances on Γ one can study. While
total variation can be thought as rescaled `1-norm, one can also define `p-norms
for any 1 ≤ p <∞, as well as `∞-norm:

‖P−U ‖p =

(∑
v∈Γ

(
P(v)− 1

|Γ|

)p)1/p

, ‖P−U ‖∞ = max
v∈Γ

∣∣∣∣P(v)− 1
|Γ|

∣∣∣∣
It also useful to define a separation distance, which can be thought as a one-sided
`∞-norm:

sep(P) = |Γ| ·max
v∈Γ

(
1
|Γ|
− P(v)

)
Denote sv(t) = sep(Qt

v). It is known that the separation distance satisfies similar
monotonicity and submultiplicativity properties as the total variation distance (see
[AF,Di]). Also, dv(t) ≤ sv(t) for any t <∞.

Finally, let us note a straightforward generalization of Proposition 3.1.2 to all
these norms, including `∞-norm. We leave the details to the reader.
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3.2 The product replacement random walk.

Let Γk(G) be as before, the graph of generating k-tuples of the finite group G;
let (g) be a fixed starting k-tuple. By Γ′ denote the connected component of Γk(G)
which contains (g). By PR = PR(G, k; (g)) denote the lazy random walk on Γ′

starting at (g). By mix(g) denote the mixing time of PR(G, k; (g)). For the rest of
this section, let mix stand for the maximum mix(g) over all (g) ∈ Nk(G). We call
mix the mixing time of the product replacement random walk.

As far as theoretical computer science is concerned, the following conjecture is
central:

Conjecture 3.2.1 For every k ≥ d(G), the mixing time mix is polynomial in k
and log |G|.

In this section we will cover the known “general results” on the subject. Let us
note, however, that conjecture is wide open even for such special cases as k = 3
and G = Sn. But first a stronger version of the conjecture:

Question 3.2.2 Is it true that for every fixed k ≥ d(G) the relaxation time
τ = 1/(1− λ1(Γ′)) is bounded by a polynomial of k ?

Note that by Proposition 3.1.2 this would imply that the mixing time is linear
in log |G|.

Theorem 3.2.3 ([CG1,DS3]) Let G be fixed and let k →∞. Then the mixing
time mix of the lazy product replacement random walk PR satisfies:

mix = O(k2 log k).

In other words, for k sufficiently large, the product replacement random walk
mixes rapidly (compared to the size of the graph |Γ| ∼ |G|k). In fact, even more
rapid mixing has been conjectured (see [DS2,DS3]):

Conjecture 3.2.4 Let G be fixed and let k →∞. Then

mix = O(k log k)

The reasoning behind this conjecture is the following: for large k there seems
little interaction between components of the k-tuple. As |G| is bounded, we need
just a bounded number of times to “hit” each component to make it “random”
in G. Thus the problem becomes similar to the coupon collector’s problem with
k coupons, where each we need to collect a bounded number of times (cf. [Di,F])
This is where O(k log k) come from.

For G = Z2 an ad hoc method was used by Chung and Graham [CG2] to prove
Conjecture 3.2.4 in this case.

Remark 3.2.5 Recently the author announced [P6] a positive solution of Con-
jecture 3.2.1 in case when G is nilpotent. This itself is much stronger than the
partial solution when k and the nilpotency class i are bounded. It nevertheless
gives quite a large degree polynomial. The solution is yet to be checked and fully
written.
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3.3 The Diaconis and Saloff-Coste bound.

In an important paper [DS3] the authors found the first general bounds for the
mixing time of the product replacement random walk. Since the authors do not use
any special properties of the walk as compared to other random walks, the results
are quite weak from the theory of computation point of view (cf. Conjecture 3.1.1.)
On the other hand, a refined analytic technique used by the authors seem to be so
advanced that we expect the result to be difficult (if at all possible) to improve by
means of the better estimates.

Rather than give here the full power of the result by Diaconis and Saloff-Coste
(which may be difficult to quickly digest), we choose to sketch the approach and
state slightly weaker version of the main result.

The idea is that given any connected graph Γ one can bound the relaxation
time τ = 1/(1 − λ1) via geometric properties of the graph (we refer to [AF,DSt])
for references and details). Formally, for every two vertices v, v′ ∈ Γ fix a path
γ(v, v′). By ∆ denote the maximum length of such paths, and by N denote the
maximum congestion through edge e in Γ (the maximum of the number of paths
which go through e, divided by |Γ|). Roughly, the relaxation time τ is bounded by
a polynomial of ∆, N . The problem is that if the paths are chosen in a “stupid”
way, the congestion can be as large as size of the graph.

In [DS3] the authors consider an interesting set of paths (see p. 268) which split
into “big steps”: change any coordinate by any element (as long as k-tuple still
generates G). Now, these “big steps” can be easily used to connect any (h) ∈ Γk(G)
to any (g) ∈ Γk(G) (given that k is large enough, see [DS3]). Now big steps can
be decomposed into “small” steps of the walk on Γk(G) by use of the geometry of
generating sets, not unlike the one used in Proposition 2.2.2.

Now, once the path are constructed, “the fight” is over the final shape of the
estimates. The authors involve an advanced `2-technique and largely win this fight.
Still, they “lose the battle” since their paths are just too long and this problem is
inherent in the construction. One would suggest using short paths of Babai (see
the proof of Theorem 2.2.3), but these paths are of a special type and hard to
analyze for congestion. Thus in the final estimate Diaconis and Saloff-Coste have
the following parameter:

∆(G) = maximal diameter of the Cayley graph Cayley(G,S) over all generating
sets S ⊂ G

This ∆(G) is the main ingredient of the length of the small steps of nice paths of
Diaconis and Saloff-Coste. While ∆(G) is conjectured to be nice for various families
of groups (such as simple groups) it is provably large for a number of other families
(such as abelian and nilpotent groups). This is the key problem with the argument
which prevents the final bound on the mixing time from being polynomial (even in
the cases when it has been confirmed by other methods)

Now we are ready to formulate a “toy version” of the main result in [DS3]:

Theorem 3.3.1 (Diaconis, Saloff-Coste) Let G be a finite group, d = d(G),
d = d(G), k ≥ d + 2 d, ϕk(G) = |Γk(G)|/|Gk|, and let ∆(G) be as above. Let
mix be the mixing time of the lazy product replacement random walk on Γk(G) (the
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maximum is taken over all starting points (g) ∈ Γk(G)). Then

mix ≤ O
(
Ak2 log |G|

(
log k + log log |G|

) ∆2(G)
ϕ2
k(G)

)
,

where A is a parameter defined as follows:

A =
d2 · k(k − 1) · . . . · (k − d+ 1)

(k − 2d)(k − 2d− 1) · . . . · (k − 2d− d+ 1)
.

The actual result is much more refined, to the extend of being difficult to com-
prehend. Among others, the constant implies by O(·) notation is calculated (it is
about 80) and several little improvements are made. We present here just “the first
order” bound to give the reader an easy access to the result.

A few words about the quality of this result for general groups: when k = θ(d ·d)
we have A = O(d2). Now using bounds d, d = O(log |G|), ϕk(G) ∼ 1, we obtain a
bound on the mixing time which is polynomial in k, log |G| and ∆(G).

Perhaps comparison with the mixing of random walks on groups is in order. Let
G be a finite group, S be a symmetric (S = S−1) generating set, |S| = k, and
let ∆(G,S) be the diameter of the corresponding Cayley graph Γ = Cayley(G,S).
Then for the mixing time mix of the lazy nearest neighbor random walk on Γ
(starting at id ∈ G) we have:

mix = O(∆2(G,S) · k)

This result was proved in [DS1] and is an improvement over a more traditional
bound mix = O(∆2(G,S) ·k · log |G|). Note now the similarity with the main result
in Theorem 3.2.1. Observe that the bound obtained there is worse that the bound
on the mixing time of any random walk on the same group with the same number
k of generators. On the other hand, the main reason the product replacement
random walk is used, is because it mixes faster than the ordinary random walk.
We conclude that the bound in Theorem 3.3.1 by no means explains the rapid
mixing phenomenon of the product replacement random walk.

Example 3.3.2 Let G be abelian. Then ∆(G) can be as large as |G|2 (for
G ' Zn). Thus the mixing time bound in Theorem 3.3.1 becomes exponential in
this case (in log |G|) while as we show below (see Theorem 3.5.9) the mixing time
is in fact polynomial.

Example 3.3.3 Let G = Sn. It is conjectured that ∆(Sn) = O(n2), while
the best known bound is ∆(Sn) = exp(O(

√
n)) (see [Bb4]). Now observe that the

conjecture combined with Theorem 3.3.1 gives a polynomial bound on the mixing
time in this case. Analogously, for every simple group G it is conjectured that
∆(G) = (log |G|)O(1). See [Bb4,DS3] for references and details.
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3.4 Γk(G) as Schreier graphs.

Denote by Fk the free group on k generators x1, . . . , xk and let Aut(Fk) be a
group of automorphisms of Fk. Consider the set Υk of the following automorphisms:

R±i,j(xi) = xix
±1
j , and R±i,j(xl) = xl if l 6= i

L±i,j(xi) = x±1
j xi, and R±i,j(xl) = xl if l 6= i

These are exactly Nielsen moves when G = Fk. A classical result of Nielsen
[Ni] (see [LyS,MKS]) shows that Aut(Fk) is generated by the Nielsen moves and
elementary automorphisms of permutation and inversion of generators.

Proposition 3.4.1 Let A+ = A+(Fk) be the subgroup of Aut(Fk) generated by
Nielsen moves. Then A+(Fk) is a normal subgroup of index two in Aut(Fk).

The group A+(Fk) is called special group of automorphisms of a free group Fk.

Proof. The Proposition seems to be well known (cf. [Ge]). An easy proof
that A+ has index at most two follows along the lines of the proof of Proposition
2.2.1. As to why it’s exactly two, consider the natural projection π : Aut(Fk) →
Aut(Fk/[Fk, Fk]) ' GLk(Z). Observe that π(R±i,j) = π(L±i,j) ∈ SLk(Z) and gives
elementary transvections E±i,j , for all i 6= j. Therefore π(A+) = SLk(Z) and A+

has index at least two in Aut(Fk). �

Proposition 3.4.2 The graph Γk(Fk) has two connected components, each of
them is isomorphic to the right Cayley graph of the special automorphism group
A+(Fk) with respect to the Nielsen moves.

Proof. Indeed, Aut(Fk) acts simply transitively on the vertices of Γk(Fk). This
gives a one to one correspondence % between Aut(Fk) and Γk(Fk) defined as

% : α ∈ Aut(Fk)→
(
α(x1), . . . , α(xk)

)
.

It is easy to see that αR±i,j and αL±i,j correspond to the neighbors of %(α) ∈
Γk(G). This shows that Γk(Fk) is the Cayley graph of Aut(Fk) with respect to
the Nielsen moves. As they do not generate the group but rather a subgroup of
index two, the graph Γk(Fk) has two connected components, each one isomorphic
to Cayley

(
A+(Fk); {R±i,j , L

±
i,j}
)
. �

Let H and G be two (possibly infinite) groups and ψ be an epimorphism from
H onto G. Then ψ induces a map ψk : Γk(H)→ Γk(G), where

ψk : (h1, . . . , hk) →
(
ψ(h1), . . . , ψ(hk)

)
,

provided k ≥ d(H). It is easy to see that ψk is a projection of graphs which
preserves adjacency relations. For H = Fk with a little work one can deduce:

Proposition 3.4.3 Let X = Cayley (A+(Fk); Υk) be the Cayley graph of
A+(Fk) with respect to the Nielsen generators. Then for every G and every con-
nected component Y of Γk(G), there exists a surjective graph projection ψ : X →
Y .
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Proof. Identify Γk(G) with the set Epi(Fk, G) of all epimorphisms ψ : Fk � G,
where an epimorphism ψ is identified with (ψ(x1), . . . , ψ(xk)). Then A = Aut(Fk)
acts on E = Epi(Fk, G) by: α(ψ) = ψ ◦ α−1 for α ∈ Aut(Fk) and ψ ∈ E. Fix
ψ : Fk → G and let B be the subgroup of A+ = A+(Fk) defined as B = {α ∈
A+ |α(ψ) = ψ}. Then A+/B is naturally identified with connected component of
(g) = (ψ(x1), . . . , ψ(xk)) in Γk(G). Indeed, if α1, α2 ∈ A+, then α1B = α2B if and
only if α1(ϕ) = α2(ψ). Moreover,

[
R±i,j ◦ α

]
(ψ) and

[
L±i,j ◦ α

]
(ψ) are exactly the

neighbors of α(ψ). �

The proposition implies that every connected component of Γk(G) is a Schreier
graph of A+(Fk) with respect to the Nielsen moves Υk, modulo finite index sub-
group. This is a very strong property which will be used in the next section.

Note that we do not claim that ψk : X → Γk(G) is surjective. In fact this is not
true as graphs Γk(G) can have any number of connected components (see section
2.3). On the other hand, for finite groups the map this is indeed surjective, as
follows from Theorem 2.1.4.

Now let us generalize our results from free groups to “relatively free groups”.
Let W be a characteristic subgroup of Fk, i.e. α(W ) = W for every α ∈ Aut(Fk).
There is a natural homomorphism π : Aut(Fk)→ Aut(Fk/W ). Denote π(A+(Fk))
by A+(Fk/W ), and call it the special automorphism group of Fk/W . Note that in
general π is not necessarily an epimorphism, so A+(Fk/W ) can be of large (even
infinite) index in Aut(Fk/W ). Still, the Nielsen moves generate A+(Fk/W ) and we
have the following general result:

Proposition 3.4.4 Let W be a characteristic subgroup of Fk and G a fi-
nite quotient of Fk/W . Then every component of Γk(G) is a Schreier graph of
A+(Fk/W ) with respect to the Nielsen moves and modulo some finite index sub-
group of A+(Fk/W ). �

Example 3.4.5 Let W = [Fk, Fk] be the commutator subgroup of Fk. Then
Aut(Fk/W ) = GLk(Z) and A+(Fk/W ) = SLk(Z). The Nielsen moves R±i,j and
L±i,j correspond to the elementary matrices E±i,j with 1’s along diagonal, ±1 at the
(i, j) entry, and 0 elsewhere. We therefore conclude:

Proposition 3.4.6 Let G be a finite abelian group. Then any connected compo-
nent of Γk(G) is a Schreier graph of SLk(Z) with respect to the elementary matrices
E±i,j modulo a finite index subgroup of SLk(Z).6 �

Remark 3.4.7 Let G be as in Theorem 2.3.2. It is not difficult to see that
a finite index subgroup of SLk(Z) in Proposition 3.3.6 is a congruence subgroup
containing Ker

(
SLk(Z) → SLk(Z/m1Z)

)
, where m1 is as in Theorem 2.3.2. This

explains part (ii) of the Theorem.

Example 3.4.8 Define the lower central series of Fk by γ1(Fk) = Fk and
γi+1(Fk) = [Fk, γi(Fk)]. Let W = γi+1(Fk), so Fk/W is the “free nilpotent group of
class i”. Let A+(Fk/W ) and Aut(Fk/W ) be as above. It is known that when k ≥ 2

6Formally, one should include each elementary matrix E±i,j twice, which is due to the fact that

L±i,j = R±i,j for abelian groups.
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and i ≥ 4, A+(Fk/W ) is of infinite index in Aut(Fk/W ) (see [An,Bh]). Nevertheless,
we still have that for every nilpotent group G of class i, every connected component
of Γk(G) is a quotient of the Cayley graph of A+(Fk/W ) with respect to the Nielsen
moves.

3.5 Kazhdan’s property (T) and mixing.

The main result in this section is a connection between Kazhdan’s property (T)
and the mixing time of the product replacement random walk. The exposition
follows the paper [LP] of Lubotzky and the author.

Definition 3.5.1 A topological group G is said to have (Kazhdan) property (T)
if there exists a compact subset Q of G such that K = K(G,Q) > 0, where

(∗) K(G,Q) = inf
ρ

inf
v

max
q∈Q

‖ρ(q) v − v‖
‖v‖

,

where ρ runs over all unitary representations (H, ρ) of G which do not contain the
trivial representation (i.e., no non-zero G-fixed vector), and v runs over all vectors
v 6= 0 in H.

We say that (Q, ε) is a Kazhdan constant for G if ε ≤ K(G,Q) (see [Lu1]).

Let now Γ be a discrete group. It is well known and not difficult to prove that
if Γ has (T), then Γ is finitely generated, and if (Q, ε) is a Kazhdan constant for
Γ , then Q generate Γ (see [Kz,Lu1]).

Open Problem 3.5.2 Does Aut(Fk)
(
or equivalently A+(Fk)

)
has property

(T) with respect to Nielsen generators, given k > 3 ?

Remark 3.5.3 For k = 2, 3 the answer is negative. This follows from [Lu1,Mc].
Let note also that if Aut(Fk) has (T), then in view of Gilman’s Theorem 2.4.3
and his part (i) of Theorem 2.5.6, one can obtain constructions of expanders from
Cayley graphs of the alternating groups (cf. [Mr,Lu1]). This would solve positively
open problem 10.3.4 and negatively Open Problem 10.3.2 in [Lu1].

Proposition 3.5.4 ([HRV]) Let Γ be a discrete group generated by a finite set
S. Assume Γ has property (T) with Kazhdan constant (S,K). Then for every finite
index subgroup N of Γ , the Schreier graph X on Γ/N with respect to S satisfies
β ≥ K2/2|S|, where β(X) = 1− λ1(X) is an eigenvalue gap of X.

The proof can be found in [HRV], Corollary to Proposition III, p. 89.

Proposition 3.5.5 ([PZ] In condition of Proposition 3.5.4, assume that there
is a finite group H < Aut(Γ ) such that H(S) = S and action of H on S has m
equal size orbits. Then β ≥ K2/(2m).

The proof will appear in a forthcoming paper [PZ]. Let us note that one can
always take H = {1}. Then m = |S| and the bound in Proposition 3.5.5 coincides
with a bound in Proposition 3.5.4.

As a combination of Proposition 3.5.5 and 3.4.3 we obtain:
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Theorem 3.5.6 ([LP]) If Aut(Fk)
(
or equivalently A+(Fk)

)
has Kazhdan’s

property (T), then for every finite group G generated by k elements, the mixing
time mix(g) of the lazy product replacement random walk on a connected component
Γ′ ⊂ Γk(G), (g) ∈ Γ′, is bounded as

mix(g) = C(k) log |G|,

where C(k) depends only on k.

Analogously, for “relatively free groups” we have:

Theorem 3.5.7 ([LP]) Let W be a characteristic subgroup of Fk. If the special
automorphism group A+(Fk/W ) has (T), then the conclusion of Theorem 3.4.5 is
satisfied for every finite quotient G of Fk/W .

Example 3.5.8 Let W = [Fk, Fk] be as in Example 3.4.5. Then A+(Fk/W ) '
SL(k,Z), which indeed has property (T) (see [Lu1]). Further, recently Shalom
[Sh2] gave bounds on the Kazhdan constant exactly for the elementary matrices as
a generating set. Combining all these results we get:

Theorem 3.5.9 ([LP]) Let G be an abelian group, (g) = (g1, . . . , gk) be the
initial generating k-tuple, and let Γ′ ⊂ Γk(G) be a connected component containing
(g). Then for the mixing time mix(g) of the lazy product replacement random walk
PR starting at (g) we have

mix(g) ≤ C · k5 · log |G|,

where C is a universal constant.

Remark 3.5.10 Note that we write mix(g) as we prove rapid mixing for random
walks on every connected component. If the connected component Γ′ is small
compared to Γ, one can use mix(g) ≤ C · k4 log |Γ′| bound instead.

A very special case of groups Zmp , p-prime, was consider earlier in [DS2]. The
authors obtained a bound on the mixing time by using just diameter bound for
SL(2, p), supplementing it with random walk techniques. The resulting bound for
G ' Zp is mix = O(k4 log3 p). As in situations of interest k = O(log p), this bound
is weaker than that in Theorem 3.5.9. Still, this suggests possible improvement of
the power k5 in the latter bound.

Example 3.5.11 Let W = γi+1(Fk) be as in Example 3.4.8. Then, as showed
in [LP], the quotient Fk/W has property (T). The problem is that we have yet to
estimate the Kazhdan constant in this case. Still, this implies the following weak
generalization of Theorem 3.5.9:

Theorem 3.5.12 ([LP]) Let k, i be fixed, and let G be a nilpotent group of class
at most i, d(G) ≤ k. Let (g) = (g1, . . . , gk) be the initial generating k-tuple, and
let Γ′ ⊂ Γk(G) be a connected component containing (g). Then for the mixing time
mix(g) of the lazy product replacement random walk PR starting at (g) we have

mix(g) ≤ C(k, i) · log |G|,
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where C(k, i) is a constant which depends on k, i, and is independent of the group
G.

Conjecture 3.5.13 The constant C(k, i) is bounded by a universal constant
C(k), independent of i and polynomial in k.

Remark 3.5.14 The proof of the Theorem 3.5.12 is based on first proving
that the corresponding Lie group has property (T), which is based on the Mautner
phenomenon (see [Wa]). Unfortunately it is often difficult to obtain good bounds for
Kazhdan constants of lattices (cf. [Bu,Sh1,Sh2]). Still, we have a high confidence
that some, perhaps an exponential bound, can be obtained for C(k, i). The idea
is based on applying the technique of Shalom [Sh1] combined with the bounds in
the work [KB] on the Smith normal form. We challenge the reader to obtain any
bounds on C(k, i) in this direction.

4. Putting it all together

4.1 What one would like to have.

Let G be a black box group with the cost µ of multiplication and inversion (see
[Bb5,KS,P2] for definitions). For convenience, one can simply assume that G is
given as a subgroup of a large permutation or matrix group (over the finite field).
We also assume that an upper bound N is given for log |G| (say, the bit length of
the encoding of groups elements).

One would like to design a routine which when given generators g1, . . . , gk of G,
outputs independent elements of G from a certain distribution P on G such that
‖P − U‖tv ≤ 1/4. The cost ρ of such a routine should be polynomial in both N
and k:

ρ = Poly(N, k) · µ

Note that successive iterations of the routine give a number of independent “ran-
dom” elements of G. Taking their product gives better approximations of the
uniform distribution U, as good as one likes (in any of the distances mentioned in
3.1.3) This is what we wanted at the first place. We call elements sampled from
the distribution P as above the (nearly) uniform groups elements. Also, from now
on we will replace N by O(log |G|) hoping this does not lead to confusion.

Now, the product replacement algorithm is yet to be proves a legitimate can-
didate for such a routine. In the meantime one should ask whether there is any
algorithm which satisfies the above requirements. The answer is yes: there is one
provably correct known example of such an algorithm; it was discovered by Babai
in his pioneer paper [Bb3]. We will sketch the algorithm below for the reader’s
convenience.

Algorithm 4.1.1 (Babai)

0) Use “random subproducts” routine to reduce the number of generators in a
generating set S from k to O(log |G|).

1) For C1 · log |G| rounds repeat the following procedure. Run a simple random
walk on the Cayley graph Cayley(G,S) starting at id ∈ G, for C2 log4 |G| steps.
Then add the endpoint of the walk to S and repeat.
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2) Use the “Erdős-Rényi machine” to generate the output.

Theorem 4.1.2 ([Bb3]) The above algorithm produces m independent (nearly)
uniform elements of G at a cost O

(
k log |G|+ log5 |G|+m log |G|

)
· µ.

We will always assume that k = O(log |G|). Then the preprocessing part 0) can
be skipped. The “Erdős-Rényi machine” will be touched upon later in this section,
but it is also unnecessary for our current purposes: one can simply replace it by
additional rounds of a simple random walk of length O(log2 |G|) with the stopping
points output as “random elements”7. Thus we will concentrate on the main part 1)
of the algorithm.

Several remarks before we analyze part 1). First, constants C1, C2 are universal
and have been explicitly computed in [Bb3]. Second, for technical reason in the
original paper the stopping time of the simple walks was chosen from a certain
distribution. Recent advancements in the random walk technique proved this to
be unnecessary so we use here a simplified version so as not to alarm the reader.
Finally, for a reason of saving a small constant factor the author made the lengths
of the walk to be increasing. We ignore this difference.

Now, the main result of Babai is based on the following lemma:

Lemma 4.1.3 After round C1 · i, for a generating set S = {g1, . . . , gr}, r =
k + C1 · i, the number of distinct elements in C(S) = {gε11 · . . . · gεr

r } is w.h.p.8 at
least 2i, where i ≤ log2 |G| − 1.

Basically, the length C2 log4 |G| is chosen so that the size of the “cube” C(S)
is doubled with positive probability after a constant number of steps. At the end,
when the diameter of the Cayley graph ∆(G,S) becomes of the order O(log |G|)
while |S| = O(log |G|), the simple random walks on G mix rapidly (after a careful
analysis, one can show that mix = O(log2 |G|) ).

When compared to the product replacement random walk, few similarities are
clear. Both walks use constantly changing generating sets to “reach” to more distant
elements in the original Cayley graph. Both walks use the result of the previous
walk as its “generating set” to make these steps.

The main difference is that the size of the generating set in the algorithm of Babai
is increasing, absorbing all the new generators. As a result, in Babai’s algorithm,
after log |G| rounds the size of the generating set becomes ≥ log |G|. Since each
short walk must be of length at least Ω(log |G|), the lower bound of Ω(log2 |G| · µ)
is in order9.

On the other hand, in the product replacement random walk, the size k of the
generating set remains fixed. Thus, theoretically the cost of the algorithm can be
as small as O(kc · log |G| · µ), i.e. linear in log |G|. In fact this would be the case
if Open Problem 3.5.2 had a positive solution. While formally k can be as large as
log2 |G| (say, for G ' Zn2 ), and the constant c can be larger than 5, in the practically

7Of course, the use of the “Erdős-Rényi machine” has an important theoretical and perhaps

practical advantage (see [Bb2,Bb4]). We skip it here for simplicity.
8w.h.p. = with high probability. Let us be somewhat vague here as one can always refer to

[Bb3] for technical details.
9An improved lower bound Ω(log3 |G| · µ) for any version of Babai’s algorithm seems also

reasonable.
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important case when k is small this gives a desired speed up and seems to explain
the rapid mixing phenomenon.

We realize that at present the above “explanation” is nothing but a speculation.
However a fine distinction between the algorithms seem important to preserve and
use small k in the product replacement algorithm, rather than take k = θ(log |G|)
as done in Theorem 2.2.3 and Theorem 3.3.1.

4.2 Running the Product Replacement Algorithm.

As we describe earlier, to run the product replacement algorithm, even before
analyzing the mixing time, one needs to remove two main obstacles: connectivity
and bias. Rather than repeat much said in sections 1, 2 about these two, let us
summarize what could be done in a general case.

As noted in sections 1.5 and 2.6, both obstacles can be removed by taking k
large enough so that ϕk(G) → 1. Then bias is avoided automatically and when
d(G) is added to k, the graphs contain a large component containing the initial
generating set (see Theorem 2.6.2.) Together the result is quantified in Proposition
1.5.1, while Corollary 1.5.2 summarizes what’s known in special cases. We believe
that a good rule of thumb is given by Conjecture 1.5.3: take k = C(.G) log log |G|.
This probably removes both obstacles, and the factor O(log log |G|) is still a small
price to pay for that (as compared to θ(log |G|)).

How long should one run the product replacement random walk? Well, for the
mixing time mix steps, after which one obtains a (nearly) uniform generating k-
tuple (with all components equally useful for random generation). Of course, we do
not have good theoretical bounds on mix barring few special cases (see section 3.3,
3.5.) Determining mix in practice is not an easy task. Thus from the theoretical
point of view the algorithm should not be use other than in Las Vegas applications,
which is to say that any Monte Carlo estimates are largely unreliable.

4.3 Modifying Product Replacement Algorithm.

It was proposed recently [LG] by Leedham-Green et al. that while running the
product replacement random walk one should consider a simple random walk on
a group with a generating k-tuple as a generating set. Thus the generating set of
this new random walk on will change with time. The stopping state of the walk
is assigned to be the output. This modification10 is proposed to remove the bias
obstacle ([LG]).

We see several problems with such an approach. First, while it formally removes
the bias obstacle, it doesn’t remove the connectivity obstacle and tells nothing about
the mixing. Second, it is seemingly worse than running a simple random walk on the
generating k-tuple obtained at the end of the product replacement random walk.
Indeed, heuristically one “wastes time” by running a simple random walk with the
initial “bad” generators, rather than wait till the end of the product replacement
walk and use these “good” generators. The reason being that initial generating set
may correspond to the “worst case” of a random walk, while the k-tuple obtained
after running product replacement gives an “average case” of a random walk. Note
that random walks on random generating sets is a known concept in the theory,
and are called sometimes “random random walks” (see [P3] for the references).

10The authors gave colorful British names to each version of the algorithm. We decided to
avoid this terminology for the sake of clarity.
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Another cheap method to avoid bias is to use the “Erdős-Rényi machine” of
Babai mentioned above. Simply take the resulting generating set of k elements and
output random elements of the “cube” (these elements are also known as “random
subproducts”). This method provably works for k ≥ 2 log2 |G|, but has yet to be
analyzed for smaller values of k (see [ER,Bb3]). In fact, this approach is again
intimately related to taking simple random walks on G with this generating set: we
refer to [P3] for making this claim formal.

If the author was to modify the algorithm, it would be the following construction.
Simply run the product replacement random walk, but from time to time multiply
random elements of the k-tuple by one of the randomly chosen original generators.
Then one preserves the structure of the walk as a random walk on a Schreier graph
of Aut(Fk), while ensuring that the stationary distribution is uniform. Basically
the walk will be moving from one connected component of Γk(G) to another when
we multiply by the original generators. As a bonus, in the limit all the components
in an obtained k-tuple are uniform and independent in G, which is an improvement
over a single such element in the previous versions of the algorithm.

Finally, let us conclude by saying that the product replacement algorithm is still
largely mysterious and is perhaps a detour from the “right” solution. The problem
of generating random group elements remains a challenge, and we hope that some
radically new provably correct algorithms will appear in the future.
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