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ABSTRACT. Let T be a finite set of tiles. The group of invariants G(T), introduced
by the author [P], is a group of linear relations between the number of copies of tiles
in tilings of the same region. We survey known results about G, the height function
approach, the local move property, various applications and special cases.

Introduction

The problem of tileability of a region is very old, and in many instances com-
putationally hard, even for small sets of tiles (see e.g. [MR,Ro]). The subject of
this paper is different, although not unrelated. We study a group of invariants
G = G(T), associated with a set of tiles T. This notion was introduced in [P], and
further studied in [MuP,MoP]. The elements of G correspond to linear relations for
the number of copies of tiles used in different tiling of every fixed region I'. Turns
out, this group has various nice properties, and in certain special cases can be fully
computed.

In this paper we survey much of what is known about G, the basic algebraic
properties, some complexity results, as well as some applications and special cases.
We describe some examples when coloring arguments do not suffice, while a different
technique can be applied. A number of results never appeared before; their proofs
will be sketched. We also include conjectures and open problems for further study.

Rather than define the group of invariants here, let us discuss a small but very
interesting example of domino tilings, which was one of our motivations. Denote
by 71, 72 the vertical and horisontal domino tiles, and let T = {7y, 72}. Let I" be a
connected region on a square grid. The problem of tileability of I' by T corresponds
to finding a perfect matching in a dual graph, so it can be solved in polynomial
time [LP].

Now, let A be a tiling of I' by dominoes. Denote by a;(A), az(A) the number
of times tiles 71, 7 appear in A. Clearly, a;(A) + a2(A) = |I'|/2, which follows
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height function.
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from the area consideration. Also, one can show that a;(A) = const(I') mod 2,
where the const depends only on the region I', and not on the tiling. This follows
from a simple coloring argument [P]. We call the linear relations as above the tile
invariants. In general, tile invariants are the linear relations of the type

(*) coar(A) + e az(A)+ ... = const(l') mod m,

where the const(I') depends only on the region I', and not on the tiling A of I';
¢i € Z,and m = oo is allowed. The group G(T) can be defined as the group of such
invariants, with addition as a group operation (the precise definition will be given
in section 1). In the case of dominoes, the group of invariants is G(T) = Z X Zs,
generated by the two invariants described above.

Our goal is to determine the group of invariants, and compute it in some special
cases. For example, as in the case of dominoes, tile invariants can often be derived
from certain colorings of the squares. In section 1 we follow [P] and introduce the
group of valuations E C G, closely related to the extended coloring arguments. As
we mentioned above, in general not all tile invariants can be obtained by the ex-
tended coloring arguments. This difference can be underscored by the complexity
results. We show that in general case computing G is NP-hard, and even undecid-
able when considered on the whole plane. At the same time, E can be determined
in polynomial time (see section 3.)

Now, if the group G(T) is computed, one can use it to obtain criteria for tileabil-
ity of regions I tileable by T with a proper subset T’ of tiles. Indeed, in this case
the number of times «; the tiles 7; € T' can occur in the tiling of I' must satisfy a
number of linear relations. Existence of integral solution of these relations gives a
tileability criteria. This approach was pioneered in [CL] and later successfully used
in [P] to obtain tileability results which cannot be proved by coloring arguments
(see section 9.)

The difficulty with the group of invariants is proving that a suspected relation
is indeed a tile invariant. At the moment we see only two ways of proving such a
result. The first has to do with the local move property. Recall that one can obtain
any domino tiling A; of a simply connected region I' to any other domino tiling
A, of T by a sequence of 2 x 2 moves (see e.g. [LP,T].) Now, in general, it suffices
to check that a given relation is preserved by such moves. In fact, one can easily
compute the whole group of invariants in this case (see section 4.)

FiGure 0.1. Local 2 x 2 move.

Unfortunately, very few sets of tiles have a finite number of local moves. For
example, even for dominoes in three dimensions there exist infinitely many princi-
pally different simply connected regions which have exactly two domino tilings. In
the other direction, even when we believe that there exist a finite number of local



TILE INVARIANTS: NEW HORIZONS 3

moves, even when we conjecture we know them all, the problem of proving this
claim may be very hard.

The second and the most successful at the moment approach is based on the no-
tion of height function, and was inspired by the Conway group [CL] and Thurston’s
article [T]. Roughly, Thurston defined a function from edges in the grid into a
line, which maps tileable regions into loops. This approach is useful for proving
local move property and finding new tile invariants [T,CL]. In the case of domino
tilings, Thurston’s height functions proves the connectivity of tilings by the 2 x 2
moves. It also gives a remarkable linear time algorithm for testing tileability of
simply connected regions [Ch,F]. In sections 4, 5 we present general conditions for
the technique to succeed.

While our exposition is somewhat brief due to the space limitations, we include a
large number of examples and references when the techniques in the survey were suc-
cessfully applied to various tiling problems. Among others, we present a final result
of computation of the ribbon tile invariants [MoP], started earlier in [CL,MuP,P1]
(see section 6). We also go at length to describe the Generalized Sperner’s Lemma
which can also be defined as a tile invariant for a special set of tiles (section 8.1).
We conclude with the heuristic method for study of general set of tiles.

Many results are only stated in the main body of the paper. We sketch the
proofs of new results in section 10.
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1. BASIC DEFINITIONS

The most general tiling problem can be formulated as follows. Let A be a finite
or infinite set, and let B be a collection of finite subsets, which we call regions. Let
‘~’ be an equivalence relation on B. We will assume that ‘~’ preserves size (the
number of elements in the region). Finally, let T be a finite subset of B (the set of
tiles). Denote by T the set of regions 7 € B such that 7 ~ 7' € T. We assume that
To7 forall 7,7 € T.

A typical example is a square grid A = Z? with a set of simply connected regions
B and translation equivalence ‘~’. Note that we view tiles here as subsets of squares,
for example dominoes correspond to pairs of adjacent squares in the grid.

The problem of tileability by the set of tiles T is a decision whether a given set
I' € B can be presented as a disjoint union of regions in T:I'=U T;, where 7; € T
for all i. We denote such tilings by A and write A - I". This problem is hard even
in some very simple special cases, and will not be studied in this paper. Instead,
we will study an abelian group G(T, B) which can be defined as follows.

Let T = {r,...,7} be the set of tiles, where k = |T|. For every tiling A of a
region I' € B denote by «;(A) the number of tiles 7 € A such that 7 ~ 7;. Now let

G(T,B) = Z*/Z{(c1 (A) — a1 (4A"), ..., ar(A) — ap(4")), VI € B, VA, A' - T),
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where on the right hand side we have a subgroup of k-vectors with A, A" any two
tilings by T of the same region I' € B. This is a group of invariants, the main
subject of this paper. The elements of G(T, B) are called tile invariants.

In general, G(T,B) may depend heavily on the set of regions (all regions vs.
simply connected regions) as well as a set of tiles (adding one tile may destroy
most of the tile invariants). Note also that if By C Bs, then G(T,B;:) D G(T, Bs).
Similarly, if T; C T, then

G(T3,B) C G(Ty,B) x 7,|T2|=|T1|
Define a coloring group
O(T) = Z*/Z{ar + -+, = 0, V7 = {1, ... ,ar} € T).

One can think of elements of O as of functions f : A — Z, such that f(I') =
Yower f(x), and f(7) =0 for all T € T. The function f is called a coloring map.
Before recently, coloring maps were the main tool to prove untileability [G]. Indeed,
if f(T') # 0, this immediately implies that ' is not tileable by T. In this case we
say that a coloring argument f rejects tileability of . Let us add that any map
f A = @G, where G is abelian, can obtain from the above functions. In other
words, if any coloring arguments f : A — G rejects tileability of I', for some abelian
group G, it also rejects tileability for some f : A — Z,,.
Now, define an extended coloring group

O(T) =ZYZ{z1 + -+ zr = y1 + - + ),

where 7 = {z1,...,2,.}, 7 ={y1,...,r-},and T ~ 7' € T. Clearly, O(T) Cc O(T).
One can think of the elements of O(T) as of functions f : A — Z, which are
constant on equivalent tiles in T. We call such functions an extended coloring
maps.

There is a natural map v : O(T) — ZT which maps the functions to their values
on tiles in T. We have Q(T) = v~1(0). By definition, the value f(I') of a function
in O(T) is independent on the tiling by T, so v extends to the quotient group G(T).
Denote by E(T) the image of v in G(T). We call E(T) the group of valuations of
the set of tiles T. From above,

E(T) ~ O(T)/O(T).

By definition, the subgroup E(T) C G(T) consists of all tile invariants which follow
from the extended coloring maps.

Computing the coloring group and the group of valuations is of interest, so as
to see which tileability criteria and which group invariants are “easy to obtain”.

Unless stated otherwise, for the rest of the paper we will assume that A C Z?,
where Z* denotes the square grid with elements - 1 x 1 squares. Denote by B, Bse,
By the set of all regions, of all simply connected regions, and the set of regions
in NV x N square. The equivalence relation consists of parallel translations of the
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regions (no rotation or reflection is allowed). Let the set of tiles T consist of some
k tiles, each of size < R. By abuse of notation, we use 7 € T to denote 7 € T.
The main questions of this paper can be stated as follows:

Group of Invariants Problem (GI) :
Given T C Z?, compute G(T, B) (or G(T, Bs.), G(T, By)).

Tileability Problem (T) :
Given T C Z%, T € B (or By, By), decide whether T is tileable by T.

Group of Valuations Problem (GV) :
Given T C Z?, compute E(T).

Coloring Group Problem (CG) :
Given T C Z?, compute O(T).

The last two problems are very much related, but we decided to separate them
for convenience.

We say that a tile invariant is finite (infinite) if the order of the element in G is
finite (infinite). Using definition (x) in the introduction, the invariant is infinite if
m = oo. We will come back to tile invariants in the next section.

Remark 1.1 Much of this survey can be understood with conventional defini-
tions of the tilings on a square grid. The point of this somewhat overgeneralized
section was to introduce the general concepts and notation we use throughout the
paper, as well as to prepare the reader to possible extensions and generalizations.
While much of the results in the paper can be generalized by verbatim, we decided
to keep the presentation simple for the sake of clarity. At the same time we hope
that after reading this section the reader is fully equipped to generalize the results
to any appropriate level.

Remark 1.2 One should keep in mind that the tile invariants were implicitly
introduced in [CL] in order to obtain new tileability criteria. Although we downplay
the connection in this paper, the results that are obtained in this direction can be
judges as the most unexpected. See section 9 for for details.

2. ALGEBRAIC ASPECTS

Fix a set of tiles T = {r,...,7} C Z*. Consider G = G(T,B). Since G is
abelian, it can be presented as

G Z" % (Za)"™ X (Zg)™ X v X (Lpe)™ % ...

)

where r < k is called the free rank of G, denotes rk(G), and Z'* C G is called the
free subgroup of G. Similarly, denote by M = Zq:pc my the torsion rank of G, and
T = (Z2)™ x (Z3)™ x ... C G is called the torsion subgroup of G. By construction,
the torsion subgroup is always finite.

Proposition 2.1 For N sufficiently large, we have G(T,Bn) = G(T, B).
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Sketch of proof. Consider a sequence of subgroups Gy = G(T, By ). Recall that
Gy D Gn41. By Hilbert Basis Theorem, this sequence stabilizes. O

Now let us turn to signed tilings and the coloring group. Denote by x(I') € RA
the characteristic function of a region I'. One can think of a tiling of I' by T as of
decomposition x(I') = x(7) + x(7') + ..., where 7,7',--- € T. The signed tiling
is similar decomposition, where each tile is used with a positive or negative sign.
Note that the notion of the coloring argument extends to signed tilings as well.

Theorem 2.2 [P] A region I has a signed tiling by T if and only if there is no
coloring argument which would reject tileability.

Sketch of proof. Note that signed tilings by T form a group S(T), with addition
as an operation. By definition, we have O(T) = ZT/S(T), which is a reformulation
of the result. O

Similarly to the coloring arguments, consider the extended coloring arguments
for signed tilings. Define E,(T) = E(T U —T'), where —T contains the negative
tiles —7, with x—, = —x,. We claim that

Indeed, let f : A — Z be any extended coloring map. Since x_, + X, = 0, we have
f(—=7) = = f(7) and thus E, (T) C E(T). On the other hand, E(T) C E, (T) since
every extended coloring map by definition corresponds to an extended coloring map
for signed tiles T U —T, and therefore defines a proper valuation on T U —T.

An interesting class of tile invariants are the abelian invariants, which are defined
as tile invariants which remain invariants for signed tilings. Define group of abelian
invariants A(T) = G(T U —T). From above, we conclude that E(T) C A(T). In
fact, this is an identity:

Theorem 2.3 A(T) =E(T). O

The real meaning of Theorem 2.3 can be seen in the following observation. If
for some reason we have an abelian invariant, we can conclude that there exists
a coloring map which defines it. In practice, finding such coloring map can be
complicated. We leave the proof to the reader.

3. COMPLEXITY ASPECTS

It is well known that the tileability problem is NP-complete when I is finite [GJ].
It is also undecidable when I' is the whole plane [Be,Ri]. We shall prove that the
similar situation holds for GI Problem. But first we need to state it as a decision
problem.

GI-rank Problem: Given T, r, decide whether rk G(T,B) > r.
Bounded GI-rank Problem: Given T, r, N, decide whether rk G(T,By) > r.

Theorem 3.1 The GI-rank Problem is undecidable. Similarly, the Bounded
GI-rank Problem is NP-hard.
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The proof is given below in section 10. Roughly, Theorem 3.1 implies that
computationally GI is intractible. A simple check shows that Theorem 3.1 extends
to simply connected regions as well (i.e. computing the rank of G(T, By.) is also
undecidable). It seems likely that the proof can be modified to show that computing
any of the exponents m,, in the torsion group is also undecidable.

Now, let us fix the set of tiles T. Recall that rk(G) < |T|. Proposition 2.1
implies that the negative answer to the Bounded GI-rank Problem can be obtained
by an exhaustive search for some finite N = N(T). In other words, a sequence of
Bounded GI-rank Problems is in co-NP (as N grows). The certificate for rk(G) < r
is a collection of I > n — r bounded regions I';, 1 < i <[, and two collections of
tilings A;, A; F I';, such that

rkZ{(ay(Ai) —on(A)), ... ap(As) —ar(4)),i=1...1) > n—r.

In a way this makes it unlikely that there is a good generic way to establish the
tile invariants for general sets of tiles. For example, if height functions exist for
a given set of tiles, this puts the Bounded GI-rank Problem into NP. However, it
is believed that an NP-hard problem cannot be in NP N co-NP [GJ]. We will not
attempt to formalize and extend this observation.

For the signed tilings, one can define the Signed Tileability Problem (ST) by
analogy. Observe that Theorem 2.2 can be used now to establish the certificates
for rk(Q) > r, my(0) > m. Using the logic as above one would conclude that ST
and CG must have efficient solutions. This is true indeed.

Bounded CG-rank Problem: Given T, r, N, decide whether rk O(T, By ) > 7.
Bounded GV-rank Problem: Given T, r, N, decide whether rk E(T, By) > r.

Theorem 3.2 Bounded CG-rank Problem and Bounded GV-rank Problem are
in P.

The proof is based on a simple reduction to a linear algebra problem, and is
given in section 10. We believe that currently known algorithms for solving linear
equations over the integers (see [BK,LLL,Sc]) can be used to determine the full
groups O(T, By ), E(T,By). Further, we conjecture that there exist an efficient
algorithm for computing O(T, B), E(T, B). We hope to return to this problem in
the future.

4. HEIGHT FUNCTIONS

There seem to be no general agreement as to what exactly is the method of
height functions, especially when dimension increases. Here we present our personal
approach with no attempt to justify it.

Suppose T is a fine set of tiles of the plane Z*, or any other plane graph L
with straight edges for that matter (for example L can be triangular of hexagonal
lattice). Let V' be a different plane, which will also be fixed. Suppose the edges of
L are oriented, and there is a function ¢ : L — V which maps oriented edges into
vectors in V. Also, let ¢(x,y) = —(y,x) for all edges (x,y) € L oriented from y
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to . Now, every path 3 — x2 — 3 — ... can be mapped to a path in V' (up to
translation): vy — vo — vs — ..., where v;11 —v; = (i, zi+1). We think about
the image of the path on a graph as a polygon in V' with straight edges.

The function ¢ is called a height function if the following condition is satisfied:

(%) For every simply connected region T tileable by a set of tiles T, the image
@(0I') is a closed loop.

Here the boundary 0T is a closed path with any fixed starting point and oriented
counterclockwise. We will always assume that there is a finite number of equivalence
classes of values ¢(x,y) for all (z,y) € L. The condition (x) may seem difficult to
check, so the following result helps to simplify it.

Theorem 4.1 [t suffices to check (x) only for the tiles 7 € T.

The theorem follows easily by induction from the following lemma of independent
interest.

Lemma 4.2 Let I' C R? be a simply connected region and is tiled by simply
connected regions Ty,...,Tk- Then there exist © such that T — 7; is also simply
connected.

Lemma 4.2 seems to be well known in geometric group theory, although we were
unable to obtain any reference to that. In this context it was sketched in the pioneer
paper [CL]. A simple proof can be found in [MP] (see also [Pr]).

Let us remark that in 3 and more dimensions Lemma 4.2 as stated is incorrect!.
On the other hand, proof of Theorem 4.1 requires a result somewhat weaker that
that in the lemma. For example, one can change the statement to “there exist
i1,...,4 such that regions 7;; U ... UT;, and T — (Til Uu...uU Ti,) are simply
connected®”. We do not believe that even this weaker condition holds. It would be
interesting to find an explicit counterexample to that.

Now, once the height function is given, it can be used to prove certain tile
invariants for the set of tiles T, not unlike the extended coloring arguments. Indeed,
consider any extended coloring argument f : V — G (G is abelian), where now we
require the value f(p(7)) to be invariant of the location of the 7 on the plane. By
construction, f(p(T)) is always the sum of the f(¢(7;)) and is independent of the
tiling. Therefore the values ¢; = f(¢(1:)), 7 € T define a tile invariant for T.

Formally, denote by E, (T) the group of valuations of extended coloring argu-
ments on V for the set of tiles ¢(7;). Then

(xx) E,(T) € G(T, Bsc).

This means that in certain cases when there exists a height function, one can
obtain proofs of certain tile invariants by finding an appropriate extended coloring

LA counterexample is a family of six blocks which form a three dimensional cross shape figure,
and is hard to disassemble. In this case no block can be removed without the remaining union of
five blocks having a hole inside. Versions of this puzzle can be often found in toy stores.

2 Actually, we need a slightly stronger condition on the intersection of the two simply connected
parts.



TILE INVARIANTS: NEW HORIZONS 9

argument in V. In other words, one can sometimes compute the whole group of
invariants G(T, Bsc ).

We should note here that condition (x) does not necessarily imply that p(A4),
A F T is a tiling of I with tiles (7;)3. Rather, we obtain a signed tiling of o(T").
Still, the conclusion (xx) remains valid in view of results in section 3.

Let us emphasize once again, that the relationship
height functions <— tile invariants

seem to go smoothly only on a plane. In principle, of course, neither A nor V' have
to be planar. There are several interesting example of the height functions when
V is a line and dimension of A varies. We will come back to such examples in the
next section. Let us note also that we don’t seem to have any nontrivial example
of two-dimensional height functions when A is not planar, and nothing at all when
V' is three and more - dimensional.

5. LOCAL MOVES

5.1 One-dimensional height functions.

Let T be a finite set of tiles, B be any set of finite regions. We say that T
satisfies local move property with respect to B if there exists a finite set of regions
I'y,...,Iy € B, and two collections of tilings A;, A} - T';, for all 1 <4 < £ (cf.
section 3), such that

(¢) For every ' € B and two tilings A, A" =T, there exists a sequence of tilings
A=By = By — ... » B, = A', where the arrow X — Y is between two tilings
which differ in a region I ~ T';, with the tilings X,Y restricted to I'' C T, being
the tilings A; and Aj.

Theorem 5.1 If T satisfies local move property with respect to B, then the
GI-rank Problem is in P.

The main problem with the local move property is scarcity of the sets of tiles
which have it and difficulty of proving it in this case. Most known approaches are
more or less ad hoc, with a small exception of the height function approach. Again,
there seem to be no consensus of how this should work in general. We describe here
a version of it, following [T,Ch,ST].

Let A C R? be a d-dimensional structure (set of lattice cubes, simplices, etc.)
For every I C A denote by T the set of points z € R? inside I'. Suppose ¢ : A - R
is a one dimensional height function, such that ¢ : 7 — R can be defined at all
points z € 7 (by using piecewise linearity, or otherwise). This defines a function
PAa : T — R for every tiling A - I'. We say that p(A) < p(A"), where A, A’ - T, if
for all points « € T we have @ (z) < pas(x). Finally, denote by ‘<’ a partial linear
order on tilings A, A" - I

A< A" if and only if ¢(A) < (4.

3The tiles ¢(7;) C V may also not be uniquely defined. The extended coloring argument f
defined above must be constant on all such tiles though.
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Note that a priori there could be incomparable tilings.
Now, suppose the “suspected” set of local moves

satisfied the following properties:
(o) Either A; < A} or A; > A} for all 1 <i < (.

(e0) Ifz € r— T, is a local mazimum of pa, A T, then there exists a local
move A — A’ such that A’ < A.

(e ®e) For all x € O there exists a unique tile 7., T 3 x, such that if © is a
local mazimum of pa, AT, then A> T.

Theorem 5.2 Let B = By, and d = 2. If (O) and a one-dimensional height
function ¢ satisfies (o) — (o ® ®) for all T € B, then T satisfies the local move
property with respect to B, with (O) as a set of local moves. Further, the mazimum
number M of local moves to be made satisfies M < c|U'|?, where ¢ = ¢(T) does not
depend on U'. Finally, the Tileability Problem is in P in this case.

To avoid problems related to generalizations of Lemma 4.2, the above result
covers only the case d = 2. For d > 3 we need an additional geometric condition to
compensate for absence of the Lemma. Formally, consider the following property:

(%) For every local maxima « € 9T, I’ € B we always have I' —7, = T'UT" ...,
where I, T, ... € B.

It is easy to see that By satisfies () for d = 2, so the following result is a
generalization of Theorem 5.2.

Theorem 5.2' If in condition of Theorem 5.2 the property (&) is also satisfied,
then conclusion of Theorem 5.2 holds for all d > 2.

Note that the conclusion of Theorem 5.2 implies, by Theorem 5.1, that the GI
Problem is also in P in this case. As we shall see, the examples include domino
tilings, zonotopal tilings, etc. It would be interesting to find analogs of (e) for
two-dimensional height function. This could positively resolve the connectivity
conjecture for ribbon tilings.

Conjecture 5.3 If T satisfies the local move property with respect to Bsc, then
Tileability Problem for regions I' € By is in P.

While we have only few known examples of the local moves property, the conjec-
ture seem to hold. Theorem 5.2 seem to support the conjecture. Note that if I' € B
is untileable, then (o) holds by default. Heuristicly, the conjecture suggests that for
any set of local moves one should be able to define a “generalized one-dimensional
height function”, and apply the analog of the last part of Theorem 5.2.

5.2 Tiling Polytope.

Let us conclude this section with a polytopal interpretation of the local moves.
Define rational tilings (cf. [SU]) to be decompositions x(I') = & x(7)+&" x(7')+. ..,
where 7,7',--- € T, k,K',--- € Q.
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Theorem 5.4 Rational Tileability Problem is in P.

Proof. Let ‘<’ be a lexicographic order on A. For any 7 € T, denote by 7, the
unique tile ~ 7, such that x < y for all y € 7,. In other words, let 7, be the tile
obtained by translation of 7 such that x is the smallest element in 7,.

Let & = |T|. For any region I' € B, consider a polytope Pp C R =
]R( azr, x€l,TE T>, defined by the following linear equations and inequalities:

azr >0, Veel,7eT,
Z azr =1, Vyel.

T,T: T DY

Now, every rational point (a) in the polytope Py corresponds to a rational tiling
with k,, = a,,,. Since the system is rational, the rational tileability is equivalent
to P, being empty or not. The latter can be determined in polynomial time (see
e.g. [Sc]). O

Proposition 5.5 Let Pr be the polytope defined in the proof of Theorem 5.4.
Then the integer points in Py correspond to the (usual) tilings of T with the set of
tiles T. O

One can think of the points in Pr as of nonnegative real tilings of I'. All the
vertices are the rational tilings. Unfortunately, not all of them are integer (the
usual) tilings. Denote by Pr C Pr a convex hull of the integer points. We call Pr
the tiling polytope. By definition, f’r is a 0 — 1 polytope.

Let A, A’ - T. We say that a local move A — A’ is primitive if for no B+ T we
can have two nonintersecting local moves A —+ B and B — A’.

Theorem 5.6 The primitive moves A — A’, where A, A" =T, are in one-to-one
correspondence with edges in the tiling polytope Prp.

We should mention here that for large I' the set of edges of the tiling polytope is
much larger than the set of local moves described in the beginning. Indeed, while
the local moves can be (and usually are) primitive moves, the minimal set of local
moves is a very small subset of primitive moves which can be compositions of a
number of (intersecting) local moves.

It is tempting to study the simplex method or other optimization problems on
tiling polytopes. The difficulty is that the minimum number of linear relations and
inequalities which define Pr is probably exponential in |I'| (it’s superpolynomial
unless P=NP).

5.3 Zonotopal tilings.

It was noted on many occasions that one can think of tilings by “lozenges” (ana-
logues of dominoes in the triangular lattice) as of projection of the cubic surface, at
least for certain nice simply connected regions. In fact, Thurston’s height function
coincides with the height of the surface in these cases (see [T,ST]). Let us briefly
mention here that one can consider zonotopal tilings which extend this observation.
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Let M be a finite set of vectors in V' = R? and suppose (M) = V. Consider a
polytope Py defined as a Minkowski sum of elements in M (considered as intervals).
Such polytopes are called zonotopes. Call basis blocks zonotopes Pp such that
B C M, (B) = B = d. Polyhedral subdivision of P,, into basis blocks are called
zonotopal tilings. They have a number of interesting properties, in particular the
basis blocks in every zonotopal tiling are in one to one correspondence with bases
of a matroid M [BLSWZ,St,Z]. In fact, much of the information about Pj; and
zonotopal tilings can be obtained from from the (oriented) matroid structure of M
(see references above).

FiGURE 5.1. Two zonotopal tiling of a centrally symmetric 10-gon.

Among the most interesting properties of zonotopal tilings is (non)existence
of a one-dimensional height functions. The latter correspond to the so-called 1-
extensions of M (into R¥™!). One can show that all zonotopal tilings that arise
from every such extension are connected by “local moves” (in zonotopes generated
by d+ 1 vectors). While 1-extensions of M may generate all tilings, all 1-extensions
can make a graph of zonotopal tilings connected (there is a related notion of a co-
herent subdivision [GKZ,Z]). Still, there exist zonotopal tilings disconnected from
the others. We refer to the above mentioned [BLSWZ,GKZ,St,Z] and the references
therein.

6. RIBBON TILES

6.1 Basic definitions.

Let A = Z* be the square grid. Let = = (i,5) € A be the square in Z* with 4
increasing downward and j increasing to the right. As before, let ‘~’ be defined by
translations.

Fix an integer n > 2. A region 7 € By is called a ribbon tile if every diagonal
1 — j = const contains at most one square of 7. Denote by T, the set of ribbon
tiles with n squares. It is easy to see that |T,| = 2" !, with tiles 7 encoded by
€ = (e1,...,€n—1), €& € {0,1} as follows. Start in the lower left corner of 7 and
move northeast; each upward move encode with 1, each right move with 0. Denote
by 7. the tile as above, and by «a,(A) the number of times tile 7. occurs in a tiling A.

Define 2-moves to be the local moves which involve exactly two ribbon tiles. For
description of all such moves see [P]. As observed by Adin [Ad], the total number
of such moves is (‘rg"l). This formula is somewhat misleading since not all pairs of
ribbon tiles can form a 2-move, while some pairs can form it in several ways.
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FIGURE 6.1. Ribbon trominoes.

FIGURE 6.2. Example of 2-move for ribbon tiles.

The main object of this section is the successful computation of G(T), ), and the
local move property with respect to 2-moves. Note that there is an obvious area
invariant which states that the total number of tiles 7 is |['|/n.

6.2 Dominoes.

This is a classical example studied for decades (see e.g. [G,Ka,LP,TF]). Thurston
[T]. defined an important one-dimensional height function ¢ which became a model
for our generalization in section 5. Color the squares with two colors (black and
white) in a checkerboard fashion. Orient all edges upward and to the right. The map
¢ is defined on edges in Z?, and is +1 (—1) if the edge is moving counterclockwise
(clockwise) around a black square.

One can show that the above height function with the set of 2-moves satisfies
(o) — (e ®e). From here we obtain the local move property for 2-moves with respect
to Bse as an immediate conclusion of Theorem 5.2. An elementary example shows
that this does not hold for non simply connected regions. We should mention here
that the result can be generalized to any planar regular graph with a bipartite dual
graph [Ch]. Also, a careful look at the tileability algorithm reveals that it has cost
O(|T']), faster than other (general) matching algorithms [LP,Sc]. This result can be
extended to non simply connected regions as well [F].

As mentioned in the introduction, the group of invariants G(T3) ~ E(Ty) ~
7 x Zs in this case.

6.3 Ribbon Trominoes.

The set of ribbon trominoes is the celebrated example, studied Conway and
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Lagarias [CL]*. They defined a two-dimensional height function ¢ which maps edges
of the square lattice into a Cayley graph of a specially chosen group embedded in
R?. The latter consists of hexagons and triangles. The sum of the winding numbers
around centers of hexagons gives a nonabelian tile invariant:

ap1 — aig = const(I).

One can conclude from here that the group of invariants G(T3) ~ Z2 On the other
hand, direct computation shows that E(Ts) ~ Z x Z3 [CL,P], so the infinite tile
invariant above cannot be proved by means of coloring arguments.

The local move property for 2-moves with respect to By. remains open (see
below). A special case was considered in [We] for the starecase shaped regions
introduced in [CL] (see also [P]).

Before we conclude, let us mention here that the approach was later modified by
Muchnik and the author [MuP] to prove that G(T4) ~ Z? X Zs. At the same time,
E(T4) ~7 X Z4 [P]

6.4 The general case.

It was recently shown in [MoP] that for all n > 2 :

G(T,., Bse) ~
( sc) Z™ Y X Ty, ifn=2m.

{Zm, ifn=2m+1,

This proved the conjecture of the author [P], previously known only for n < 4. The
main result of [P] is a similar result for a smaller set of regions G(T,, By.), where
B:.) is the set of row convex regions. The author in [P] also found an explicit basis
for the group:

Z Qe — Z ae = const(I"), 1 <i<n/2,

€ €,=0,€,_;=1 € e;=1,€6,_;=0

and
Z a. = const(I') mod 2, n=2m.

€ €n/2=0

On the other hand, it was shown in [P] that E(T,) ~ Z x Z,, and all tile invariants
in the basis do not follow from the extended coloring arguments.

The technique used in [MoP] is notable since it used a new construction of the
two-dimensional height function ¢, which mapped the edges of the square lattice
into {w*,0 < k < n— 1} C C, where w = exp(2mi/n). Then the authors take a
signed area in C as a the generalized coloring argument. Remarkably, this single
real-valued invariant contains all tile invariants presented above.

Denote by By and B,y the set of regions with Young diagram and skew Young
diagram shape (see e.g. [M,JK]). It was shown in [P] that T, has local move
property (for 2-moves) with respect to By. The result, already more general than

4They actually considered one additional disconnected tile which we ignore. This set of tiles
appeared after translation of the trominoes in hexagonal lattice into the square lattice [CL].
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FIGURE 6.4. Ribbon tile 7 = 79011, vectors w”, height function (7).

[We], was later extended by the author to include Bsy (unpublished). Following [P],
we conjecture the local move property with respect to all simply connected regions.
The computation of G(T,,, Bs.) and the height function arguments [MoP] seem to
support the conjecture.

7. SMALL SETS OF TILES

7.1 T-tetrominoes.

It was shown in [Wa] that four rotations of T-tetromino can tile a m x n rectangle
if and only if 4 divides both m and n. It is easy to see that the result cannot be
proved by the coloring arguments. Nevertheless, no height function argument is
known.

FiGuRre 7.1. Four T-tetrominoes.

FIGURE 7.2. Local moves: 2-move and 4-move.

The set of tiles is of interest since it also seem to have a local move property.
Observe that besides the 2-moves there is also a 4-move involving a reflection in
a 4 x 4 square. We conjecture that these local move suffice. It seems that the
combinatorial technique in [Wa] can be extended to prove the local move property
with respect to rectangular regions.
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7.2 Bars and Rectangular shapes.

Let T be a set of two “bars”, i.e. of m x 1 and 1 x n rectangles. Claire and Rick
Kenyon found a remarkable application of the height functions in this case [KK].
They introduced a tree-valued height function, and proved properties (o) — (e ®e) in
this case. From here they deduced the local move connectivity (the only local move
required is Ay — As, where Ay, Ay b m X n rectangle), obtain the general bound on
the distance (it’s O(|T'|*/?) in that case) and present a linear algorithm for testing
tileability. The authors show that their analysis can be modified to rectangular
regions m X n and n X m. In particular, the authors present a quadratic algorithm
for tileability and prove the local move property for 2 x 3 and 3 x 2 rectangles.

While the authors do not compute the group of invariants, it can be easily
determined from either local move property or coloring arguments. Let us note that
the polynomial algorithms for tileability exist only for simply connected regions, as
in general case the problem is NP-complete [Ro] (see also [BJLS]).

7.3 L-trominoes.

Let T be the set of four rotations of L-trominoes. We showed in [P] that
G(T,B) = E(T) = Z x Z2. The proof involves some explicit coloring arguments.

FiGuRre 7.3. Four L-trominoes.

The set T has no local move property, as shown in [P]. There, we constructed
large regions with exactly two tilings. Also, for general regions the tileability is
NP-complete [MR]. It would be interesting to see if the same is true for simply
connected regions. Let us mention here an old result that a n x n square with one
square deleted can be tiled with T unless n is divisible by three [CJ].

7.4 Skew and square tetromino.

This example wa introduced by Propp, who found a very nice application of
the height function approach [Pr]. The group of invariants G can be computed
completely in this case, by using the coloring arguments and a nonabelian tile
invariant presented in [Pr], which implies that rk(G) = 2. There are two interesting
features in this case. First, the authors makes a distinction between “odd” and
“even” 2 x 2 squares. In principle, this can be done in other special cases, by
taking a smaller group of translations. Still, this is by far the most interesting such
example, as the infinite tile invariant becomes a finite tile invariant when odd and
even squares are identified.

For the second feature, Propp in [Pr] defines a tile invariant as a signed area,
refraining from the “winding number” approach in [CL]. This was the approach
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FiGURE 7.4. Skew and square tetromino.

continued in [MoP]. We hope the reader will enjoy this well written article and
completes the computation of the full group of invariants as an exercise.

7.5 Dominoes again.

Let T' be a simply connected region, and let k& be a fixed integer. Consider all
domino tilings of I' with exactly k£ vertical domino. Recall that k& can vary for
different domino tilings, although its parity remains fixed. It was noted by Gupta
[Gu] that sometimes one can make a connected graph G(T',k) on these domino
tilings by introducing 2 x 3 moves (see Figure 7.5). He showed that G(I',k) is
connected when I is a rectangle, the Aztec diamond, etc., but not in general case.
We refer to [Gu] for the details.

FIGURE 7.5. 2 x 3 moves.

In general, suppose T is a finite set of tiles and I is a tileable region. One can
ask whether local connectivity exists for tilings A - I' with given set of numbers
a;(A), defined as in the introduction. The work of Gupta suggests that certain nice
sets of tiles and certain regions might satisfy this remarkable property.

7.6 More examples.

Consider the following two sets of tiles T, Ts. The first contains two rotations
of T-tetromino and skew tetromino which fit into 2-row strip (see Figure 7.6). The
second contains two rotations of T-pentamino, S-pentamino and skew tetromino,
which fit into 3-row strip (see Figure 7.7). As before, we allow only translations of
the tiles.

We are interested whether either or both sets have nonabelian tile invariants,
local move property, height functions, etc. It is an exercise to establish these prop-
erties for regions which fit in 2-row and 3-row strip tiled by T; and T respectively.
Also, replacing skew tetrominoes with a square tetromino gives an interesting mod-
ification of T2. We challenge the reader to resolve these problems.

7.7 Other lattices.
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FIGURE 7.6. 2-row skew and T-tetrominoes.

152 rhidh

FiGure 7.7. S and T - pentaminoes and skew tetrominoes.

It was realized rather early that tiling problems are of interest on other lattices
as well [G]. The original question in [CL] comes from a hexagonal lattice, and the
running example in [T] is the set of “lozenges”, analogues of dominoes on a trian-
gular lattice. A number of results for small sets of tiles on a triangular lattice was
discovered recently by Rémila [Ré]. The author’s approach is somewhat different
from this article’s main theme, and we strongly suggest it as a complimentary read-
ing. Finally, a nice local connectivity result for squares-and-octagons was obtained
by Gupta in [Gu].

8. TILINGS IN MANY DIMENSIONS

There is little known about tilings in many dimensions, although there seem to be
no clear reason for that. As mentioned before, we do not know of any nonabelian tile
invariant even for three-dimensional tiles. Without attempt to review the subject,
let us present few examples that seem relevant.

8.1 Generalized Sperner’s Lemma.

The Sperner’s Lemma is the following classical result. Let A be a triangular
lattice, I' be a n-triangle with deleted three corner triangles. Color the vertices of
the triangle with colors {0, 1,2}, so that the sides are colored with 0, 1, 2 (clockwise).
Then there exists a (0, 1, 2) colored triangle. In fact, the number of (0, 1, 2) triangles
minus the number of (0,2, 1) triangles (reading colors clockwise) is always 1.

While the Sperner’s Lemma is often associated with Brouwer’s fixed point the-
orem (see e.g. [Sh]), its generalizations are easier to obtained in the context of the
Stokes Theorem. We present here the Generalized Sperner’s Lemma, which implies
an abelian tile invariant for a certain set of tiles. While the generalization below is
probably well known (and follows easily from Stokes Theorem) the interpretation
of it in the language of tile invariants seems new and will be presented here along
with a short proof of the lemma.

Let us state the Generalized Sperner’s Lemma first in two, and then in all di-
mensions. Let I be any region on a triangular lattice colored with {0, 1,2}. Denote
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FIGURE 8.1. Sperner’s Lemma.

by a4 (') and a_(T') the number of triangles with all three colors (0,1,2), going
clockwise and counterclockwise respectively. Then oy — a— = const(9T"), where
¢ = const(0T") depends only on the coloring of the boundary. Note that we do not
require I' to be simply connected. The boundary 0I' may be disconnected, but the
coloring must be fixed on vertices of each connected component.

In general case, let I' be any region in V = R? with a fixed simplicial subdivision.
Fix an orientation in R? by taking a basis (e1,...,eq) in V. Consider any coloring
of vertices of I with d+1 colors {0, 1, ...,d}. We say that I'is (d+1)-colored in this
case. We say that a simplex is positive (negative) if it is (d + 1)-colored with basis
((ﬁ, 03, ey O_C)i) having a positive (negative) volume, defined as a determinant of
the corresponding linear transformation. Denote by a4 (I") and a—_(T") the number
of positive and negative simplices in I, respectively. Then a4 — a— = const(9l'),
where the constant depends only on the coloring of OI", and not on the interior of I'.
Let us state this result as follows.

Theorem 8.1 (Generalized Sperner’s Lemma) Let ' be a triangulated
region in R with a fived (d + 1)-coloring of the boundary OT. Let A be a (d + 1)-
coloring of the interior vertices. Then

at(A) — a_(A) = const(9I),

where const depends only on the coloring of the boundary, and not on coloring A.

Now, the lemma can be reduced to an infinite tile invariant for a special set of
tiles. First, take the tiles to correspond to (d + 1)-colorings by somewhat changing
the boundaries around the vertices in a consistent way which depends on the color
(cf. proof of Theorem 3.1). For example, a small simplex can be added to, or sub-
tracted from the sides of a large simplex so that only simplices with the same “color”
can fit together (see Figure 8.2). Denote by T this new set of tiles, corresponding
to all possible (d + 1)-colorings of vertices of d-dimensional simplices. In Figure 8.2
we exhibit one such two-dimensional tile corresponding to (1,2, 3)-coloring.

Now notice that the “coloring” of the boundary uniquely defines the shape of
the boundary. Thus the “colorings” of the interior vertices of I' are in one-to-
one correspondence with tilings of I' with T. Consider the tiles which correspond
to (d + 1)-colorings with distinct colors, with positive and negative orientation.
Theorem 8.1 implies that the difference between the number of certain “positive”
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FiGURE 8.2. Modification of a 3-colored triangle.

and “negative” tiles is an fixed integer which depends on the boundary 9I'. We
suggest the reader think through this simple, almost classical construction.

Let us note that from the proof (see section 10) it follows through verbatim
that the infinite invariant defined in the lemma holds for signed tilings by T as
well. Thus the tile invariant is abelian, and by Theorem 2.3 can be obtained by an
extended coloring argument. Interestingly, this coloring argument is not obvious,
and depends heavily on the way the set T is constructed.

Remark 8.2 The Sperner’s Lemma has a number of variations, generalizations
and applications. Let us first mention a similar in the spirit work [SS] where
Sperner’s Lemma is used to obtain relations for the volume(s) of simplices in tilings.
The first d-dimensional version of the lemma can be found in [BC]. The cubical
version, perhaps more acceptable for traditional tiling concepts, can be found in
[Wo]. We refer to [Sh] for various application to fixed point results.

8.2 Parity check.

We will adopt the same notion of as in the previous subsection. Consider any
triangular lattice A C R?, such that the dual graph is bipartite. In other words,
we assume that the simplices are colored with black and white. An example is a
regular partition of the cubic lattice with each cube partitioned into d! simplices
corresponding to permutations of basis vectors. The sign of the permutation then
determines the color of the simplex.

Now consider colorings of vertices with m colors, m > d. We say that a simplex
is r-deficient if it has exactly (d + 1 — r) distinct colors of the vertices. Let I' be
any region in A with a fixed coloring of the boundary, and let A be any coloring
of the interior vertices. Denote by py(A) (p—(A)) the number of black (white)
1-deficient simplices. Similarly, denote by ay(A) (a4 (A)) the number of black
(white) O-deficient simplices. Finally, let p = py —p_, a = a4 —a_.

Theorem 8.3 We have 2p(A) + (d + 1)a(A) = const, where const = const(I")
depends only on the coloring of the boundary OU and not on A.

The proposition can be restated as an infinite abelian invariant of a certain set of
tiles. We leave the details to the reader. As a bonus, the theorem implies that for
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odd d the total number of 1-deficient tiles has a fixed parity even when black and
white tiles are indistinguishable. Even this is a nontrivial finite abelian invariant.

Let us conclude this part by presenting a special case when two independent tile
invariants appear from such construction. This result is due to Moore and Newman,
and it appeared in [MN]. We follow [Mo] in our presentation.

Consider any triangular lattice A C R? with a bipartite dual graph. Fix a
black/white coloring of triangles. Let I' be a region in A with a fixed coloring of
the boundary with colors {1,2,3,4} = I. Denote by p(i,j, k) and p_(i,7j, k) the
number of black and white triangles colored with 4, j,k € I. Let

ar =p(1,1,2) +p1(1,2,2) + p£(3,4,4) + p+(3,3,4),

B =px(1,1,3) + p£(1,3,3) + px(2,4,4) + px(2,2,4),

Y+ = p+(1,1,4) + pi(1,4,4) + p£(2,3,3) + p£(2,2,3),
a=ar—a-, =0y —-f-, v=74—7-.

Theorem 8.4 ([MN]) We have a(A) — 3(A) = consty, S(A) —(A) = consty,
where consty, conste depend only on the coloring of the boundary 0T and not on A.

We challenge the reader to obtain a proper generalization of the theorem to
higher dimensions [Mo].

8.3 3-dimensional dominoes.

While dominoes on a square grid satisfy the local move property with respect
to simply connected regions, this is no longer true for 3-dimensional dominoes.
Heuristicly, in three dimensions there is enough space to make large simply con-
nected “local moves”. Formally, for any n there exist a simply connected region I'
with exactly two domino tilings A;, Ao - T, so that the move A; — A, involves at
least n dominoes.

Indeed, consider a cycle of size 4 n with a (n — 1) x (n — 1) square shaped hole
inside. Think of the cycle lying in a (z,y) plane. Color this square with black
and white colors in the usual checkerboard fashion. Fill this hole with dominoes
pointing up or down (in the direction z), depending on whether the square is black
or white. Now notice that there are exactly two domino tilings of this region I, as
the positions of the vertical dominoes are fixed by the construction, and the only
freedom we have is given by two possible tilings of the cycle. The move will involve
2n dominoes then, which proves the claim.

The construction naturally extends to tilings in any d > 3 dimensions. This
makes it rather unlikely that there exists a one-dimensional height function as
described in section 5.1. On the other hand, the tileability by dominoes is in P for
any d (see [LP]).

Let us note that there are other generalizations of the 2-dimensional dominoes.
For example, in three dimensions, one can consider 2 x 2 x 1 blocks. The similar
construction to the one above shows that there is no local move property with re-
spect to the simply connected regions. It would be interesting to see if the tileability
is also in P in this case (cf. [MR]).
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8.4 Generalized ribbon tiles.

During the search of the nonabelian tiling arguments in many dimensions, one
may ask as to whether some generalization ribbon tiles have any. Consider the
obvious generalization, corresponding to connected d-dimensional tiles with at most
one cube in every plane L. : ¥; + ... + x4 = c. Denote by T¢ the set of such tiles
in d dimensions with n cubes. Note that |T¢| = d"~!. The problem of finding
the tile invariant group G(T¢,Bs.) remains open in general case. Preliminary
computations (for d = 3, n = 3,4) suggest that rk G(T?,Bs.) = 1, i.e that there
is no infinite nonabelian invariant in this case (area is clearly an infinite abelian
invariant). We conjecture that tk G(T%,Bs.) = 1 for all d > 3. It is conceivable
however, that the rank may increase if the set of regions is more restrictive. It
would be interesting to find a nontrivial example of that.

9. FINAL REMARKS

Let us begin by saying that in our opinion, papers [T], [CL] had a profound
effect on the study of tilings, by introducing new techniques and methods into the
field. The notion of tile invariants and the group of invariants [P] were inspired
by [CL] and f-vectors in simple polytopes [Z]. Tile invariants have yet to become
widely accepted. It is our goal here is to convince the reader that computing G(T)
for various sets of tiles T is an important problem, which might lead to a better
understanding of tilings.

To summarize this paper, me propose a new approach to the study of any fixed
set of tiles T. Fist, one can compute the coloring group O(T), an extended coloring
group O(T) and the group of valuations E(T) (cf. Theorem 3.2). Then one should
attempt to determine G(T, Bs.) by computing Gy = G(T, Bsc N By) for N large
enough. If at some point Gy = E(T), this implies that there are no nonabelian
invariants (cf. Proposition 2.3), so the set T is not so interesting.

Suppose, on the other hand, that the calculations suggest existence of some
nonabelian invariants in G(T). Then, one should check whether T satisfies local
move property. If yes, attempt to find a one-dimensional height function which
proves that (cf. Theorem 5.2). Then compute G(T) from local moves. If T does
not satisfy the local move property, one should attempt to find nontrivial height
functions ¢, and compute groups E, (T) # E(T). Since E, C G(T, Bs.), one might
be able to compute the whole group of invariants that way (cf. section 6.3,4).

While Theorem 3.1 seem to suggest that the above prescription works only for
special sets of tiles, we consider a success a proof of any nonabelian tile invariant
or any local move property. The theory is still in the early stages of development,
so even partial results are of interest.

Few words about the tileability applications. After all, tileability of the starecase
shaped regions by the ribbon L-trominoes was the original motivation in [CL]. In
general, suppose we are given two sets of tiles T C T, and a fully computed tiling
group G(T',B). Now let I € B be a region tileable by T'. This determines all the
constants const(I') for all tile invariants (*). Now restriction of the tile invariants
for TV to T gives a number of integer linear equations which may or may not have
integer solutions. In the latter case the region is untileable by T (see [CL,P]).
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From the point of view of tileability criteria, this seem like a weak approach.
Indeed, in general, we need at least as many invariants as the number of tiles |T|,
and these tile invariants are hard to find and to prove. On the other hand, the
integrality of solutions helps. In [P] we found several (un)tileability results in this
direction. As a bonus, an easily computable coloring group O(T) can determine
whether a certain tileability argument follows from the coloring argument. Or, as it
was done in [CL], one can prove untileability of a I and then find a signed tilings of
I' by TU—T. By Theorem 2.2 one cannot prove untileability of I by the coloring
arguments then.

There is a number of open problems that remain unresolved. Beside those men-
tioned earlier (Conjecture 5.3, questions about various small sets of tiles, etc.), let
us stress again that we have yet to find an efficient algorithm for computing E(T)
on the whole plane. It would be interesting to find other approaches to computing
the group of invariants, besides the height functions, or find a reasoning why there
cannot be any. It would be also very exciting to prove a local move property for
some natural large set of tiles.

Let us conclude by saying that the local move property and one-dimensional
height functions have important consequences in Statistical Physics and in study of
Markov chains. Roughly, random application of local moves gives an easy way to
sample random tilings; existence of the height function representation assists one
in proving the rapid mixing. We refer to [BH,MN,PW LRS ,RY] for references and
details.

10. PROOF OF RESULTS

Proof of Theorem 3.2 (sketch).

We need to show that given N, T = {r,..., 7}, || < R, one can solve Bounded
CG-rank and Bounded GV-rank Problems in time polynomial in N, k, and R.
Without loss of generality we will assume that N > R.

Denote by S the N x N square. Counsider first a coloring group O(T,By). It
is defined as Z° quotient by the relations corresponding to translations of the tiles
7; € T which lie in S. The rank of O is equal to the dimension of the corresponding
real vector space (with the same integer linear equations).

There are at most N2 translations of each tile, there are k tiles. In total, we need
to calculate the rank of the system of at most N2k equations with N2 variables.
This can clearly be done in polynomial time.

For the extended coloring group O(T,By), we obtain a somewhat different set
of equations. Fix one translation 7; C S of each tile 7; € T. Now, each translation
7/' gives an equation corresponding having to sum of the function on squares in 7}’
equal to the sum of the function on squares in 7{. Again, we need to calculate the
rank of the system of at most N2k equations with N? variables.

Now, for the rank of the group of of valuations we have

I'kE(T,BN) = rk@(T,BN) - rk(O)(T,BN).

This completes the proof. O
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Proof of Theorem 4.1 (sketch).

Use induction on the number of tiles in I' to prove (). The base is tautological.
For the step of induction, consider 7 from Lemma 4.2 such that I'' = I — 7 is simply
connected. Fix a counterclockwise orientation on 07, dI', and OI''. Let = € OI be
the starting point of the path P along the boundary. The paths P’, R along the
boundaries of IV, 7 are mapped into loops by inductive assumption. Observe that
the intersection P'UR will appear twice, once in each direction. On the other hand,
P =(P'—P'NnR)U(R- P'NR). Adding the values of the height function ¢ along
P as above, we obtain that P is also mapped into a loop. This completes the step
of induction. O

in .

FIGURE 10.5. Simply connected regions I'; 7 and IV — 7.

Proof of Theorem 5.1 (sketch).

We need to determine the group of invariants G(T,B) in time polynomial in
k= |T|, g, and M = max; |Fz|

Indeed, tile invariants are precisely the maps f : T — Z which are invariant
along the moves. In other words, we have

G(T) = Z%/Z((en(Ai) — ar(A}), .., an(Ai) — ag(A))), 1<i <L),

Now, calculating all «;(A4;) is polynomial in k, M. Proceed as in the proof of
Theorem 3.2. Indeed, it remains now to determine rank of the system of ¢ linear
equations (over R). This can be done in polynomial time [Sc|. O

Proof of Theorem 5.2 (sketch).

Denote by A = A(T") the poset of all tilings A - T', with ‘<’ as an order relation.
We claim that A has a minimum element Ay. Indeed, start with any tiling A - I"
and calculate p4. We claim that there exists a sequence of local moves from A
to Ag. First, find any local maximum z € L. Ifz ¢ OI', then apply a local move
A — A’, and proceed by induction. If z € 9T", then both A, Ay contain 7,. Delete
7 from I'. Observe that we obtain either one region with smaller area or several
smaller regions. Again proceed by induction. This proves the local connectivity
property with respect to B.

The second part follows from the following observation. Denote by Aj the largest
element in A. Then M < 2A, where A is the number of local moves from Ay to
Ar. Fix a value 0 of any point z € OI'. Let ¢o = pa,, vr = pa,. Let h be the
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maximum value of ¢ on edges of A. Then for the maximum value H; of p; we have
H; < h|OT| < ch|T|, where 0 < ¢ < d2?. Similarly, for the smallest value Hy of ¢y
we have H > —ch|T|.

Now, for every A  T" define

b(A4) = / oa(@) dp,

where the integration is taken over [ and dp is the usual euclidean measure on R?.
We have R
W(Ar) = 9(4o) < u(D)(Hr — Ho) < [T,

where ¢’ is a constant which depends only on T. Denote by § the smallest change
of ¥ under the local move:

5 = min [1:(4;) — v(A)] > 0.

We conclude that A < (¢//§) |T)? < ¢ |T|?, which proves the claim.

For the last part, consider the following algorithm. Compute ¢ on OI'. From
above, the local maxima of ¢y = @4, are on the boundary. Find a maximum value
of z € OI'. This is clearly a local maximum of ¢o. Now delete 7, from I' and
proceed accordingly. Eventually we either determine Ay completely, or at some
point we have to delete 7, from I' in an impossible situation. Since Ay is unique,
this implies untileability of ' in that case. Note that the cost of the algorithm is
O(|T|*¢k). This completes the proof of the theorem. [

Proof of Theorem 5.6.

First, observe that tilings A F I' correspond to vertices of Pp. Indeed, suppose
otherwise. By abuse of notation we can write this as A = ; By + 32 Bs + ...,
where 1,2, -+ € Ry. But that means that zeroes of (a, ) on the left hand side
correspond to zeroes on the right hand side, i.e. By, Bs,--- = A. This proves the
claim.

Similarly, consider two tilings A;, Ao - T'. Let

Ax=2AA1+(1-NAy =B +pBs+...,

where 0 < A < 1. The point Ay lies on the interval [4;, A2]. By the observation
above, only tiles that are in A;, As can appear in B;. Therefore all tiles that lie
in A; N As must also appear in each of the B;. On the other hand, a tile 7, € A
must appear in B; with the total weight A. Having or not having 7, splits the set
of tilings B; into two subsets. Since every element y € A must belong to some tile,
the total set of tiles splits between tiles that contain and don’t contain 7,. Denote
these sets of indices by I and J. The above implies that either every B; = Ay,
t €I, every Bj = Ay, j € J, or there exist By, Bj,i € I, j € J, such that A; = C
and C — A, are non-intersecting local moves (and the same is true for 47 — D
and D — A,). This completes the proof. O
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Proof of Generalized Sperner’s Lemma 8.1 (sketch).

Define an orientation of the (d — 1)-dimensional simplices on the boundary to
agree with orientation of V' = R?. Formally, we say that a simplex on the boundary
is positive (negative) if it is colored with d colors € {0,1,...,d} and coloring the
remaining vertex of a unique d-dimensional simplex in I' with the remaining color
would make this simplex positive (negative). Denote by 4+ (0I') and S_(0I') the
number of positive and negative simplices on the boundary. A simplex (of any
dimension) with repeated colors we call neutral.

Let us prove by induction that in conditions of the theorem we have:

const(O') = (d + 1) (B+(0T) — B ().

First, let us prove the base of induction. Indeed, for a single positive (negative)
d-dimensional simplex all (d+ 1) simplices on the boundary are positive (negative).
If the d-dimensional simplex is neutral, then the symmetry argument implies that
const = 0 in this case.

For the step of induction, we can delete any d-dimensional simplex from I'. Now
observe that const(0T) is additive with respect to such division since the intersection
of the boundaries is taken with opposite signs, and thus cancel each other (cf. proof
of Theorem 4.1). We omit the easy details. O

Proof of Theorem 8.2.

Consider all 0-deficient (d—1)-dimensional simplices in T, i.e. (d—1)-dimensional
faces with d distinct colors. Each such face is either on the boundary or is a
boundary of one black and one white d-dimensional simplex. Denote by A the
number of such faces. Denote by 64 (d—) the number of of such faces on the
boundary, so that the adjacent simplex is black (white). By counting A separately,
as a boundary of black or white squares, we obtain

A=2p;+(d+Dag+6-=2p_ +(d+1)a_ + ;.
Subtracting the sides in the last equality, we conclude
20+ (d+1a=6r —6_.

This proves the result. O
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Added in Print:

In the past year few advances has been made. First, Scott Sheflield resolved most
of the open problem on ribbon tilings in “Ribbon tilings and multidimensional height
functions”, arXiv preprint math.CO/0107095. Among other things, he proved local
connectivity conjecture (see section 6.4) and found linear time algorithm for testing
tileability.

Second, Cris Moore, Ivan Rapaport and Eric Remila defined a height function
and proved a local connectivity property for the set of colored square tiles similar
to that in section 8.2. Their paper “Tiling groups for Wang tiles” will appear in
Proc. SODA’2002.

Finally, the author resolved affirmatively the question whether computing (un-
bounded) group E(T) is decidable (“Computational complexity of tile invariants’,
preprint, 2001.)



