
TILE INVARIANTS: NEW HORIZONSIgor PakDepartment of Mathemati
sMITCambridge, MA 02139 USAE-mail: pak�math.mit.eduDe
ember 20, 2000Abstra
t. Let T be a �nite set of tiles. The group of invariants G(T), introdu
edby the author [P℄, is a group of linear relations between the number of 
opies of tilesin tilings of the same region. We survey known results about G , the height fun
tionapproa
h, the lo
al move property, various appli
ations and spe
ial 
ases.Introdu
tionThe problem of tileability of a region is very old, and in many instan
es 
om-putationally hard, even for small sets of tiles (see e.g. [MR,Ro℄). The subje
t ofthis paper is di�erent, although not unrelated. We study a group of invariantsG = G (T), asso
iated with a set of tiles T. This notion was introdu
ed in [P℄, andfurther studied in [MuP,MoP℄. The elements of G 
orrespond to linear relations forthe number of 
opies of tiles used in di�erent tiling of every �xed region �. Turnsout, this group has various ni
e properties, and in 
ertain spe
ial 
ases 
an be fully
omputed.In this paper we survey mu
h of what is known about G , the basi
 algebrai
properties, some 
omplexity results, as well as some appli
ations and spe
ial 
ases.We des
ribe some examples when 
oloring arguments do not suÆ
e, while a di�erentte
hnique 
an be applied. A number of results never appeared before; their proofswill be sket
hed. We also in
lude 
onje
tures and open problems for further study.Rather than de�ne the group of invariants here, let us dis
uss a small but veryinteresting example of domino tilings, whi
h was one of our motivations. Denoteby �1, �2 the verti
al and horisontal domino tiles, and let T = f�1; �2g. Let � be a
onne
ted region on a square grid. The problem of tileability of � by T 
orrespondsto �nding a perfe
t mat
hing in a dual graph, so it 
an be solved in polynomialtime [LP℄.Now, let A be a tiling of � by dominoes. Denote by �1(A), �2(A) the numberof times tiles �1, �2 appear in A. Clearly, �1(A) + �2(A) = j�j=2, whi
h followsKey words and phrases. Polyomino tilings, tile invariants, Conway group, unde
idability,height fun
tion. Typeset by AMS-TEX1



2 IGOR PAKfrom the area 
onsideration. Also, one 
an show that �1(A) = 
onst(�) mod 2,where the 
onst depends only on the region �, and not on the tiling. This followsfrom a simple 
oloring argument [P℄. We 
all the linear relations as above the tileinvariants. In general, tile invariants are the linear relations of the type(�) 
1 �1(A) + 
2 �2(A) + : : : � 
onst(�) mod m;where the 
onst(�) depends only on the region �, and not on the tiling A of �;
i 2 Z, and m =1 is allowed. The group G (T) 
an be de�ned as the group of su
hinvariants, with addition as a group operation (the pre
ise de�nition will be givenin se
tion 1). In the 
ase of dominoes, the group of invariants is G (T) = Z� Z2,generated by the two invariants des
ribed above.Our goal is to determine the group of invariants, and 
ompute it in some spe
ial
ases. For example, as in the 
ase of dominoes, tile invariants 
an often be derivedfrom 
ertain 
olorings of the squares. In se
tion 1 we follow [P℄ and introdu
e thegroup of valuations E � G , 
losely related to the extended 
oloring arguments. Aswe mentioned above, in general not all tile invariants 
an be obtained by the ex-tended 
oloring arguments. This di�eren
e 
an be unders
ored by the 
omplexityresults. We show that in general 
ase 
omputing G is NP-hard, and even unde
id-able when 
onsidered on the whole plane. At the same time, E 
an be determinedin polynomial time (see se
tion 3.)Now, if the group G (T) is 
omputed, one 
an use it to obtain 
riteria for tileabil-ity of regions � tileable by T with a proper subset T0 of tiles. Indeed, in this 
asethe number of times �i the tiles �i 2 T0 
an o

ur in the tiling of � must satisfy anumber of linear relations. Existen
e of integral solution of these relations gives atileability 
riteria. This approa
h was pioneered in [CL℄ and later su

essfully usedin [P℄ to obtain tileability results whi
h 
annot be proved by 
oloring arguments(see se
tion 9.)The diÆ
ulty with the group of invariants is proving that a suspe
ted relationis indeed a tile invariant. At the moment we see only two ways of proving su
h aresult. The �rst has to do with the lo
al move property. Re
all that one 
an obtainany domino tiling A1 of a simply 
onne
ted region � to any other domino tilingA2 of � by a sequen
e of 2� 2 moves (see e.g. [LP,T℄.) Now, in general, it suÆ
esto 
he
k that a given relation is preserved by su
h moves. In fa
t, one 
an easily
ompute the whole group of invariants in this 
ase (see se
tion 4.)
Figure 0.1. Lo
al 2� 2 move.Unfortunately, very few sets of tiles have a �nite number of lo
al moves. Forexample, even for dominoes in three dimensions there exist in�nitely many prin
i-pally di�erent simply 
onne
ted regions whi
h have exa
tly two domino tilings. Inthe other dire
tion, even when we believe that there exist a �nite number of lo
al



TILE INVARIANTS: NEW HORIZONS 3moves, even when we 
onje
ture we know them all, the problem of proving this
laim may be very hard.The se
ond and the most su

essful at the moment approa
h is based on the no-tion of height fun
tion, and was inspired by the Conway group [CL℄ and Thurston'sarti
le [T℄. Roughly, Thurston de�ned a fun
tion from edges in the grid into aline, whi
h maps tileable regions into loops. This approa
h is useful for provinglo
al move property and �nding new tile invariants [T,CL℄. In the 
ase of dominotilings, Thurston's height fun
tions proves the 
onne
tivity of tilings by the 2� 2moves. It also gives a remarkable linear time algorithm for testing tileability ofsimply 
onne
ted regions [Ch,F℄. In se
tions 4, 5 we present general 
onditions forthe te
hnique to su

eed.While our exposition is somewhat brief due to the spa
e limitations, we in
lude alarge number of examples and referen
es when the te
hniques in the survey were su
-
essfully applied to various tiling problems. Among others, we present a �nal resultof 
omputation of the ribbon tile invariants [MoP℄, started earlier in [CL,MuP,P1℄(see se
tion 6). We also go at length to des
ribe the Generalized Sperner's Lemmawhi
h 
an also be de�ned as a tile invariant for a spe
ial set of tiles (se
tion 8.1).We 
on
lude with the heuristi
 method for study of general set of tiles.Many results are only stated in the main body of the paper. We sket
h theproofs of new results in se
tion 10.A
knowledgements.We would like to thank David Ingerman, Ezra Miller, Cris Moore, Roman Mu
h-nik, Jim Propp and Ri
hard Stanley for stimulating 
onversations and en
ourage-ment. Without them this work would never be written. We are also grateful to MikeSipser, Dan Spielman and Santosh Vempala for help with 
omplexity questions.1. Basi
 definitionsThe most general tiling problem 
an be formulated as follows. Let � be a �niteor in�nite set, and let B be a 
olle
tion of �nite subsets, whi
h we 
all regions. Let`�' be an equivalen
e relation on B. We will assume that `�' preserves size (thenumber of elements in the region). Finally, let T be a �nite subset of B (the set oftiles). Denote by eT the set of regions � 2 B su
h that � � � 0 2 T. We assume that� � � 0, for all �; � 0 2 T.A typi
al example is a square grid � = Z2 with a set of simply 
onne
ted regionsB and translation equivalen
e `�'. Note that we view tiles here as subsets of squares,for example dominoes 
orrespond to pairs of adja
ent squares in the grid.The problem of tileability by the set of tiles T is a de
ision whether a given set� 2 B 
an be presented as a disjoint union of regions in eT: � = t �i, where �i 2 eTfor all i. We denote su
h tilings by A and write A ` �. This problem is hard evenin some very simple spe
ial 
ases, and will not be studied in this paper. Instead,we will study an abelian group G (T;B) whi
h 
an be de�ned as follows.Let T = f�1; : : : ; �kg be the set of tiles, where k = jTj. For every tiling A of aregion � 2 B denote by �i(A) the number of tiles � 2 A su
h that � � �i. Now letG (T;B) = Zk=Z
��1(A)� �1(A0); : : : ; �k(A) � �k(A0)�; 8� 2 B; 8A;A0 ` ��;



4 IGOR PAKwhere on the right hand side we have a subgroup of k-ve
tors with A, A0 any twotilings by T of the same region � 2 B. This is a group of invariants, the mainsubje
t of this paper. The elements of G (T;B) are 
alled tile invariants.In general, G (T;B) may depend heavily on the set of regions (all regions vs.simply 
onne
ted regions) as well as a set of tiles (adding one tile may destroymost of the tile invariants). Note also that if B1 � B2, then G (T;B1) � G (T;B2).Similarly, if T1 � T2, thenG (T2 ;B) � G (T1 ;B)�ZjT2j�jT1j:De�ne a 
oloring groupO(T) = Z�=Zhx1+ � � �+ xr = 0; 8� = fx1; : : : ; xrg 2 eTi:One 
an think of elements of O as of fun
tions f : � ! Z, su
h that f(�) =Px2� f(x), and f(�) = 0 for all � 2 eT. The fun
tion f is 
alled a 
oloring map.Before re
ently, 
oloring maps were the main tool to prove untileability [G℄. Indeed,if f(�) 6= 0, this immediately implies that � is not tileable by T. In this 
ase wesay that a 
oloring argument f reje
ts tileability of �. Let us add that any mapf : � ! G, where G is abelian, 
an obtain from the above fun
tions. In otherwords, if any 
oloring arguments f : �! G reje
ts tileability of �, for some abeliangroup G, it also reje
ts tileability for some f : �! Zm.Now, de�ne an extended 
oloring groupO (T) = Z�=Zhx1+ � � �+ xr = y1 + � � �+ yri;where � = fx1; : : : ; xrg, � 0 = fy1; : : : ; rrg, and � � � 0 2 eT. Clearly, O(T) � O (T).One 
an think of the elements of O (T) as of fun
tions f : � ! Z, whi
h are
onstant on equivalent tiles in eT. We 
all su
h fun
tions an extended 
oloringmaps.There is a natural map � : O (T)! ZT whi
h maps the fun
tions to their valueson tiles in T. We have O(T) = ��1(0). By de�nition, the value f(�) of a fun
tionin O (T) is independent on the tiling by T, so � extends to the quotient group G (T).Denote by E(T) the image of � in G (T). We 
all E(T) the group of valuations ofthe set of tiles T. From above,E(T) ' O (T)=O(T):By de�nition, the subgroup E(T) � G (T) 
onsists of all tile invariants whi
h followfrom the extended 
oloring maps.Computing the 
oloring group and the group of valuations is of interest, so asto see whi
h tileability 
riteria and whi
h group invariants are \easy to obtain".Unless stated otherwise, for the rest of the paper we will assume that � � Z2,where Z2 denotes the square grid with elements - 1� 1 squares. Denote by B, Bs
,BN the set of all regions, of all simply 
onne
ted regions, and the set of regionsin N �N square. The equivalen
e relation 
onsists of parallel translations of the



TILE INVARIANTS: NEW HORIZONS 5regions (no rotation or re
e
tion is allowed). Let the set of tiles T 
onsist of somek tiles, ea
h of size � R. By abuse of notation, we use � 2 T to denote � 2 eT.The main questions of this paper 
an be stated as follows:Group of Invariants Problem (GI) :Given T � Z2, 
ompute G (T;B) (or G (T;Bs
 ), G (T;BN )).Tileability Problem (T) :Given T � Z2, � 2 B (or Bs
, BN), de
ide whether � is tileable by T.Group of Valuations Problem (GV) :Given T � Z2, 
ompute E(T).Coloring Group Problem (CG) :Given T � Z2, 
ompute O(T).The last two problems are very mu
h related, but we de
ided to separate themfor 
onvenien
e.We say that a tile invariant is �nite (in�nite) if the order of the element in G is�nite (in�nite). Using de�nition (�) in the introdu
tion, the invariant is in�nite ifm =1. We will 
ome ba
k to tile invariants in the next se
tion.Remark 1.1 Mu
h of this survey 
an be understood with 
onventional de�ni-tions of the tilings on a square grid. The point of this somewhat overgeneralizedse
tion was to introdu
e the general 
on
epts and notation we use throughout thepaper, as well as to prepare the reader to possible extensions and generalizations.While mu
h of the results in the paper 
an be generalized by verbatim, we de
idedto keep the presentation simple for the sake of 
larity. At the same time we hopethat after reading this se
tion the reader is fully equipped to generalize the resultsto any appropriate level.Remark 1.2 One should keep in mind that the tile invariants were impli
itlyintrodu
ed in [CL℄ in order to obtain new tileability 
riteria. Although we downplaythe 
onne
tion in this paper, the results that are obtained in this dire
tion 
an bejudges as the most unexpe
ted. See se
tion 9 for for details.2. Algebrai
 aspe
tsFix a set of tiles T = f�1; : : : ; �kg � Z2. Consider G = G (T;B). Sin
e G isabelian, it 
an be presented asG ' Zr� (Z2)m2 � (Z3)m3 � � � � � (Zp
)mp
 � : : : ;where r � k is 
alled the free rank of G , denotes rk(G), and Zrk � G is 
alled thefree subgroup of G . Similarly, denote by M =Pq=p
 mq the torsion rank of G , andT = (Z2)m2�(Z3)m3� : : : � G is 
alled the torsion subgroup of G . By 
onstru
tion,the torsion subgroup is always �nite.Proposition 2.1 For N suÆ
iently large, we have G (T;BN ) = G (T;B).



6 IGOR PAKSket
h of proof. Consider a sequen
e of subgroups G N = G (T;BN ). Re
all thatG N � G N+1 . By Hilbert Basis Theorem, this sequen
e stabilizes. �Now let us turn to signed tilings and the 
oloring group. Denote by �(�) 2 R�the 
hara
teristi
 fun
tion of a region �. One 
an think of a tiling of � by T as ofde
omposition �(�) = �(�) + �(� 0) + : : : , where �; � 0; � � � 2 T. The signed tilingis similar de
omposition, where ea
h tile is used with a positive or negative sign.Note that the notion of the 
oloring argument extends to signed tilings as well.Theorem 2.2 [P℄ A region � has a signed tiling by T if and only if there is no
oloring argument whi
h would reje
t tileability.Sket
h of proof. Note that signed tilings by T form a group S(T), with additionas an operation. By de�nition, we have O(T) = ZT=S(T), whi
h is a reformulationof the result. �Similarly to the 
oloring arguments, 
onsider the extended 
oloring argumentsfor signed tilings. De�ne EÆ (T) = E(T [ �T ), where �T 
ontains the negativetiles �� , with ��� = ��� . We 
laim thatEÆ (T) ' E(T):Indeed, let f : �! Z be any extended 
oloring map. Sin
e ��� +�� = 0, we havef(��) = �f(�) and thus EÆ (T) � E(T). On the other hand, E(T) � EÆ (T) sin
eevery extended 
oloring map by de�nition 
orresponds to an extended 
oloring mapfor signed tiles T [ �T, and therefore de�nes a proper valuation on T [ �T.An interesting 
lass of tile invariants are the abelian invariants, whi
h are de�nedas tile invariants whi
h remain invariants for signed tilings. De�ne group of abelianinvariants A (T) = G (T [ �T). From above, we 
on
lude that E(T) � A (T). Infa
t, this is an identity:Theorem 2.3 A (T) = E(T). �The real meaning of Theorem 2.3 
an be seen in the following observation. Iffor some reason we have an abelian invariant, we 
an 
on
lude that there existsa 
oloring map whi
h de�nes it. In pra
ti
e, �nding su
h 
oloring map 
an be
ompli
ated. We leave the proof to the reader.3. Complexity aspe
tsIt is well known that the tileability problem is NP-
omplete when � is �nite [GJ℄.It is also unde
idable when � is the whole plane [Be,Ri℄. We shall prove that thesimilar situation holds for GI Problem. But �rst we need to state it as a de
isionproblem.GI-rank Problem: Given T, r, de
ide whether rk G (T;B) � r.Bounded GI-rank Problem: Given T, r, N , de
ide whether rk G (T;BN ) � r.Theorem 3.1 The GI-rank Problem is unde
idable. Similarly, the BoundedGI-rank Problem is NP-hard.



TILE INVARIANTS: NEW HORIZONS 7The proof is given below in se
tion 10. Roughly, Theorem 3.1 implies that
omputationally GI is intra
tible. A simple 
he
k shows that Theorem 3.1 extendsto simply 
onne
ted regions as well (i.e. 
omputing the rank of G (T;Bs
) is alsounde
idable). It seems likely that the proof 
an be modi�ed to show that 
omputingany of the exponents mp in the torsion group is also unde
idable.Now, let us �x the set of tiles T. Re
all that rk(G ) � jTj. Proposition 2.1implies that the negative answer to the Bounded GI-rank Problem 
an be obtainedby an exhaustive sear
h for some �nite N = N(T). In other words, a sequen
e ofBounded GI-rank Problems is in 
o-NP (as N grows). The 
erti�
ate for rk(G ) < ris a 
olle
tion of l > n � r bounded regions �i, 1 � i � l, and two 
olle
tions oftilings Ai; A0i ` �i, su
h thatrkZ
��1(Ai)� �1(A0i); : : : ; �k(Ai)� �k(A0i)�; i = 1 : : : l� > n� r:In a way this makes it unlikely that there is a good generi
 way to establish thetile invariants for general sets of tiles. For example, if height fun
tions exist fora given set of tiles, this puts the Bounded GI-rank Problem into NP. However, itis believed that an NP-hard problem 
annot be in NP \ 
o-NP [GJ℄. We will notattempt to formalize and extend this observation.For the signed tilings, one 
an de�ne the Signed Tileability Problem (ST) byanalogy. Observe that Theorem 2.2 
an be used now to establish the 
erti�
atesfor rk(O) � r, mp(O) � m. Using the logi
 as above one would 
on
lude that STand CG must have eÆ
ient solutions. This is true indeed.Bounded CG-rank Problem: Given T, r, N , de
ide whether rkO(T;BN ) � r.Bounded GV-rank Problem: Given T, r, N , de
ide whether rk E(T;BN ) � r.Theorem 3.2 Bounded CG-rank Problem and Bounded GV-rank Problem arein P.The proof is based on a simple redu
tion to a linear algebra problem, and isgiven in se
tion 10. We believe that 
urrently known algorithms for solving linearequations over the integers (see [BK,LLL,S
℄) 
an be used to determine the fullgroups O(T;BN ), E(T;BN ). Further, we 
onje
ture that there exist an eÆ
ientalgorithm for 
omputing O(T;B), E(T;B). We hope to return to this problem inthe future. 4. Height fun
tionsThere seem to be no general agreement as to what exa
tly is the method ofheight fun
tions, espe
ially when dimension in
reases. Here we present our personalapproa
h with no attempt to justify it.Suppose T is a �ne set of tiles of the plane Z2, or any other plane graph Lwith straight edges for that matter (for example L 
an be triangular of hexagonallatti
e). Let V be a di�erent plane, whi
h will also be �xed. Suppose the edges ofL are oriented, and there is a fun
tion ' : L ! V whi
h maps oriented edges intove
tors in V . Also, let '(x; y) = �'(y; x) for all edges (x; y) 2 L oriented from y



8 IGOR PAKto x. Now, every path x1 ! x2 ! x3 ! : : : 
an be mapped to a path in V (up totranslation): v1 ! v2 ! v3 ! : : : , where vi+1 � vi = '(xi; xi+1). We think aboutthe image of the path on a graph as a polygon in V with straight edges.The fun
tion ' is 
alled a height fun
tion if the following 
ondition is satis�ed:(?) For every simply 
onne
ted region � tileable by a set of tiles T, the image'(��) is a 
losed loop.Here the boundary �� is a 
losed path with any �xed starting point and oriented
ounter
lo
kwise. We will always assume that there is a �nite number of equivalen
e
lasses of values '(x; y) for all (x; y) 2 L. The 
ondition (?) may seem diÆ
ult to
he
k, so the following result helps to simplify it.Theorem 4.1 It suÆ
es to 
he
k (?) only for the tiles � 2 T.The theorem follows easily by indu
tion from the following lemma of independentinterest.Lemma 4.2 Let � � R2 be a simply 
onne
ted region and is tiled by simply
onne
ted regions �1; : : : ; �k. Then there exist i su
h that � � �i is also simply
onne
ted.Lemma 4.2 seems to be well known in geometri
 group theory, although we wereunable to obtain any referen
e to that. In this 
ontext it was sket
hed in the pioneerpaper [CL℄. A simple proof 
an be found in [MP℄ (see also [Pr℄).Let us remark that in 3 and more dimensions Lemma 4.2 as stated is in
orre
t1.On the other hand, proof of Theorem 4.1 requires a result somewhat weaker thatthat in the lemma. For example, one 
an 
hange the statement to \there existi1; : : : ; il su
h that regions �i1 [ : : : [ �il and � � ��i1 [ : : : [ �il� are simply
onne
ted2". We do not believe that even this weaker 
ondition holds. It would beinteresting to �nd an expli
it 
ounterexample to that.Now, on
e the height fun
tion is given, it 
an be used to prove 
ertain tileinvariants for the set of tiles T, not unlike the extended 
oloring arguments. Indeed,
onsider any extended 
oloring argument f : V ! G (G is abelian), where now werequire the value f('(�)) to be invariant of the lo
ation of the � on the plane. By
onstru
tion, f('(�)) is always the sum of the f('(�i)) and is independent of thetiling. Therefore the values 
i = f('(�i)), � 2 T de�ne a tile invariant for T.Formally, denote by E' (T) the group of valuations of extended 
oloring argu-ments on V for the set of tiles '(�i). Then(��) E' (T) � G (T;Bs
):This means that in 
ertain 
ases when there exists a height fun
tion, one 
anobtain proofs of 
ertain tile invariants by �nding an appropriate extended 
oloring1A 
ounterexample is a family of six blo
ks whi
h form a three dimensional 
ross shape �gure,and is hard to disassemble. In this 
ase no blo
k 
an be removed without the remaining union of�ve blo
ks having a hole inside. Versions of this puzzle 
an be often found in toy stores.2A
tually, we need a slightly stronger 
ondition on the interse
tion of the two simply 
onne
tedparts.



TILE INVARIANTS: NEW HORIZONS 9argument in V . In other words, one 
an sometimes 
ompute the whole group ofinvariants G (T;Bs
).We should note here that 
ondition (?) does not ne
essarily imply that '(A),A ` � is a tiling of � with tiles '(�i)3. Rather, we obtain a signed tiling of '(�).Still, the 
on
lusion (��) remains valid in view of results in se
tion 3.Let us emphasize on
e again, that the relationshipheight fun
tions  ! tile invariantsseem to go smoothly only on a plane. In prin
iple, of 
ourse, neither � nor V haveto be planar. There are several interesting example of the height fun
tions whenV is a line and dimension of � varies. We will 
ome ba
k to su
h examples in thenext se
tion. Let us note also that we don't seem to have any nontrivial exampleof two-dimensional height fun
tions when � is not planar, and nothing at all whenV is three and more - dimensional.5. Lo
al moves5.1 One-dimensional height fun
tions.Let T be a �nite set of tiles, B be any set of �nite regions. We say that Tsatis�es lo
al move property with respe
t to B if there exists a �nite set of regions�1; : : : ;�` 2 B, and two 
olle
tions of tilings Ai; A0i ` �i, for all 1 � i � ` (
f.se
tion 3), su
h that(�) For every � 2 B and two tilings A;A0 ` �, there exists a sequen
e of tilingsA = B0 ! B1 ! : : : ! Bt = A0; where the arrow X ! Y is between two tilingswhi
h di�er in a region �0 � �i, with the tilings X;Y restri
ted to �0 � �, beingthe tilings Ai and A0i.Theorem 5.1 If T satis�es lo
al move property with respe
t to B, then theGI-rank Problem is in P.The main problem with the lo
al move property is s
ar
ity of the sets of tileswhi
h have it and diÆ
ulty of proving it in this 
ase. Most known approa
hes aremore or less ad ho
, with a small ex
eption of the height fun
tion approa
h. Again,there seem to be no 
onsensus of how this should work in general. We des
ribe herea version of it, following [T,Ch,ST℄.Let � � Rd be a d-dimensional stru
ture (set of latti
e 
ubes, simpli
es, et
.)For every � � � denote by b� the set of points x 2 Rd inside �. Suppose ' : �! Ris a one dimensional height fun
tion, su
h that ' : � ! R 
an be de�ned at allpoints x 2 b� (by using pie
ewise linearity, or otherwise). This de�nes a fun
tion'A : b�! R for every tiling A ` �. We say that '(A) � '(A0), where A;A0 ` �, iffor all points x 2 � we have 'A(x) � 'A0(x). Finally, denote by `�' a partial linearorder on tilings A;A0 ` �:A � A0 if and only if '(A) � '(A0):3The tiles '(�i) � V may also not be uniquely de�ned. The extended 
oloring argument fde�ned above must be 
onstant on all su
h tiles though.



10 IGOR PAKNote that a priori there 
ould be in
omparable tilings.Now, suppose the \suspe
ted" set of lo
al moves(
) f(Ai ! A0i); Ai; A0i ` �i; 1 � i � `gsatis�ed the following properties:(�) Either Ai � A0i or Ai � A0i for all 1 � i � `.(��) If x 2 b�� ��, is a lo
al maximum of 'A, A ` �, then there exists a lo
almove A! A0 su
h that A0 � A.(� � �) For all x 2 �� there exists a unique tile �x, b� 3 x, su
h that if x is alo
al maximum of 'A, A ` �, then A 3 � .Theorem 5.2 Let B = Bs
 and d = 2. If (
) and a one-dimensional heightfun
tion ' satis�es (�) � (� � �) for all � 2 B, then T satis�es the lo
al moveproperty with respe
t to B, with (
) as a set of lo
al moves. Further, the maximumnumber M of lo
al moves to be made satis�es M � 
 j�j2, where 
 = 
(T) does notdepend on �. Finally, the Tileability Problem is in P in this 
ase.To avoid problems related to generalizations of Lemma 4.2, the above result
overs only the 
ase d = 2. For d � 3 we need an additional geometri
 
ondition to
ompensate for absen
e of the Lemma. Formally, 
onsider the following property:(|) For every lo
al maxima x 2 ��, � 2 B we always have ���x = �0t�00t : : : ,where �0;�00; : : : 2 B.It is easy to see that Bs
 satis�es (|) for d = 2, so the following result is ageneralization of Theorem 5.2.Theorem 5.20 If in 
ondition of Theorem 5.2 the property (|) is also satis�ed,then 
on
lusion of Theorem 5.2 holds for all d � 2.Note that the 
on
lusion of Theorem 5.2 implies, by Theorem 5.1, that the GIProblem is also in P in this 
ase. As we shall see, the examples in
lude dominotilings, zonotopal tilings, et
. It would be interesting to �nd analogs of (�) fortwo-dimensional height fun
tion. This 
ould positively resolve the 
onne
tivity
onje
ture for ribbon tilings.Conje
ture 5.3 If T satis�es the lo
al move property with respe
t to Bs
, thenTileability Problem for regions � 2 Bs
 is in P.While we have only few known examples of the lo
al moves property, the 
onje
-ture seem to hold. Theorem 5.2 seem to support the 
onje
ture. Note that if � 2 Bis untileable, then (�) holds by default. Heuristi
ly, the 
onje
ture suggests that forany set of lo
al moves one should be able to de�ne a \generalized one-dimensionalheight fun
tion", and apply the analog of the last part of Theorem 5.2.5.2 Tiling Polytope.Let us 
on
lude this se
tion with a polytopal interpretation of the lo
al moves.De�ne rational tilings (
f. [SU℄) to be de
ompositions �(�) = ��(�)+�0 �(� 0)+: : : ,where �; � 0; � � � 2 T, �; �0; � � � 2 Q+ .



TILE INVARIANTS: NEW HORIZONS 11Theorem 5.4 Rational Tileability Problem is in P.Proof. Let `�' be a lexi
ographi
 order on �. For any � 2 T, denote by �x theunique tile � � , su
h that x � y for all y 2 �x. In other words, let �x be the tileobtained by translation of � su
h that x is the smallest element in �x.Let k = jTj. For any region � 2 B, 
onsider a polytope P� � Rkj�j =R
ax;� ; x 2 �; � 2 T�, de�ned by the following linear equations and inequalities:8<: ax;� � 0; 8x 2 �; � 2 T;Xx;� : �x3y ax;� = 1; 8 y 2 �:Now, every rational point (a) in the polytope P� 
orresponds to a rational tilingwith ��x = ax;� . Sin
e the system is rational, the rational tileability is equivalentto P
 being empty or not. The latter 
an be determined in polynomial time (seee.g. [S
℄). �Proposition 5.5 Let P� be the polytope de�ned in the proof of Theorem 5.4.Then the integer points in P� 
orrespond to the (usual) tilings of � with the set oftiles T. �One 
an think of the points in P� as of nonnegative real tilings of �. All theverti
es are the rational tilings. Unfortunately, not all of them are integer (theusual) tilings. Denote by bP� � P� a 
onvex hull of the integer points. We 
all bP�the tiling polytope. By de�nition, bP� is a 0� 1 polytope.Let A;A0 ` �. We say that a lo
al move A! A0 is primitive if for no B ` � we
an have two noninterse
ting lo
al moves A! B and B ! A0.Theorem 5.6 The primitive moves A! A0, where A;A0 ` �, are in one-to-one
orresponden
e with edges in the tiling polytope bP�.We should mention here that for large � the set of edges of the tiling polytope ismu
h larger than the set of lo
al moves des
ribed in the beginning. Indeed, whilethe lo
al moves 
an be (and usually are) primitive moves, the minimal set of lo
almoves is a very small subset of primitive moves whi
h 
an be 
ompositions of anumber of (interse
ting) lo
al moves.It is tempting to study the simplex method or other optimization problems ontiling polytopes. The diÆ
ulty is that the minimum number of linear relations andinequalities whi
h de�ne bP� is probably exponential in j�j (it's superpolynomialunless P=NP).5.3 Zonotopal tilings.It was noted on many o

asions that one 
an think of tilings by \lozenges" (ana-logues of dominoes in the triangular latti
e) as of proje
tion of the 
ubi
 surfa
e, atleast for 
ertain ni
e simply 
onne
ted regions. In fa
t, Thurston's height fun
tion
oin
ides with the height of the surfa
e in these 
ases (see [T,ST℄). Let us brie
ymention here that one 
an 
onsider zonotopal tilings whi
h extend this observation.



12 IGOR PAKLet M be a �nite set of ve
tors in V = Rd and suppose hMi = V . Consider apolytope PM de�ned as a Minkowski sum of elements inM (
onsidered as intervals).Su
h polytopes are 
alled zonotopes. Call basis blo
ks zonotopes PB su
h thatB � M , hBi = B = d. Polyhedral subdivision of Pm into basis blo
ks are 
alledzonotopal tilings. They have a number of interesting properties, in parti
ular thebasis blo
ks in every zonotopal tiling are in one to one 
orresponden
e with basesof a matroid M [BLSWZ,St,Z℄. In fa
t, mu
h of the information about PM andzonotopal tilings 
an be obtained from from the (oriented) matroid stru
ture of M(see referen
es above).
Figure 5.1. Two zonotopal tiling of a 
entrally symmetri
 10-gon.Among the most interesting properties of zonotopal tilings is (non)existen
eof a one-dimensional height fun
tions. The latter 
orrespond to the so-
alled 1-extensions of M (into Rd+1). One 
an show that all zonotopal tilings that arisefrom every su
h extension are 
onne
ted by \lo
al moves" (in zonotopes generatedby d+1 ve
tors). While 1-extensions ofM may generate all tilings, all 1-extensions
an make a graph of zonotopal tilings 
onne
ted (there is a related notion of a 
o-herent subdivision [GKZ,Z℄). Still, there exist zonotopal tilings dis
onne
ted fromthe others. We refer to the above mentioned [BLSWZ,GKZ,St,Z℄ and the referen
estherein. 6. Ribbon tiles6.1 Basi
 de�nitions.Let � = Z2 be the square grid. Let x = (i; j) 2 � be the square in Z2 with iin
reasing downward and j in
reasing to the right. As before, let `�' be de�ned bytranslations.Fix an integer n � 2. A region � 2 Bs
 is 
alled a ribbon tile if every diagonali � j = 
onst 
ontains at most one square of � . Denote by Tn the set of ribbontiles with n squares. It is easy to see that jTnj = 2n�1, with tiles � en
oded by� = (�1; : : : ; �n�1), �i 2 f0; 1g as follows. Start in the lower left 
orner of � andmove northeast; ea
h upward move en
ode with 1, ea
h right move with 0. Denoteby �� the tile as above, and by ��(A) the number of times tile �� o

urs in a tiling A.De�ne 2-moves to be the lo
al moves whi
h involve exa
tly two ribbon tiles. Fordes
ription of all su
h moves see [P℄. As observed by Adin [Ad℄, the total numberof su
h moves is �jTnj2 �. This formula is somewhat misleading sin
e not all pairs ofribbon tiles 
an form a 2-move, while some pairs 
an form it in several ways.
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Figure 6.1. Ribbon trominoes.
Figure 6.2. Example of 2-move for ribbon tiles.The main obje
t of this se
tion is the su

essful 
omputation of G (Tn ), and thelo
al move property with respe
t to 2-moves. Note that there is an obvious areainvariant whi
h states that the total number of tiles � is j�j=n.6.2 Dominoes.This is a 
lassi
al example studied for de
ades (see e.g. [G,Ka,LP,TF℄). Thurston[T℄. de�ned an important one-dimensional height fun
tion ' whi
h be
ame a modelfor our generalization in se
tion 5. Color the squares with two 
olors (bla
k andwhite) in a 
he
kerboard fashion. Orient all edges upward and to the right. The map' is de�ned on edges in Z2, and is +1 (�1) if the edge is moving 
ounter
lo
kwise(
lo
kwise) around a bla
k square.One 
an show that the above height fun
tion with the set of 2-moves satis�es(�)� (���). From here we obtain the lo
al move property for 2-moves with respe
tto Bs
 as an immediate 
on
lusion of Theorem 5.2. An elementary example showsthat this does not hold for non simply 
onne
ted regions. We should mention herethat the result 
an be generalized to any planar regular graph with a bipartite dualgraph [Ch℄. Also, a 
areful look at the tileability algorithm reveals that it has 
ostO(j�j), faster than other (general) mat
hing algorithms [LP,S
℄. This result 
an beextended to non simply 
onne
ted regions as well [F℄.As mentioned in the introdu
tion, the group of invariants G (T2 ) ' E(T2 ) 'Z�Z2 in this 
ase.6.3 Ribbon Trominoes.The set of ribbon trominoes is the 
elebrated example, studied Conway and



14 IGOR PAKLagarias [CL℄4. They de�ned a two-dimensional height fun
tion ' whi
h maps edgesof the square latti
e into a Cayley graph of a spe
ially 
hosen group embedded inR2 . The latter 
onsists of hexagons and triangles. The sum of the winding numbersaround 
enters of hexagons gives a nonabelian tile invariant:�01 � �10 = 
onst(�):One 
an 
on
lude from here that the group of invariants G (T3 ) ' Z2. On the otherhand, dire
t 
omputation shows that E(T3 ) ' Z� Z3 [CL,P℄, so the in�nite tileinvariant above 
annot be proved by means of 
oloring arguments.The lo
al move property for 2-moves with respe
t to Bs
 remains open (seebelow). A spe
ial 
ase was 
onsidered in [We℄ for the stare
ase shaped regionsintrodu
ed in [CL℄ (see also [P℄).Before we 
on
lude, let us mention here that the approa
h was later modi�ed byMu
hnik and the author [MuP℄ to prove that G (T4 ) ' Z2�Z2. At the same time,E(T4 ) ' Z�Z4 [P℄.6.4 The general 
ase.It was re
ently shown in [MoP℄ that for all n � 2 :G (Tn ;Bs
) ' (Zm; if n = 2m+ 1;Zm�1�Z2; if n = 2m:This proved the 
onje
ture of the author [P℄, previously known only for n � 4. Themain result of [P℄ is a similar result for a smaller set of regions G (Tn ;Br
), whereBr
) is the set of row 
onvex regions. The author in [P℄ also found an expli
it basisfor the group: X�: �i=0; �n�i=1 �� � X�: �i=1; �n�i=0 �� = 
onst(�); 1 � i < n=2;and X�: �n=2=0 �� = 
onst(�) mod 2; n = 2m:On the other hand, it was shown in [P℄ that E(Tn ) ' Z�Zn, and all tile invariantsin the basis do not follow from the extended 
oloring arguments.The te
hnique used in [MoP℄ is notable sin
e it used a new 
onstru
tion of thetwo-dimensional height fun
tion ', whi
h mapped the edges of the square latti
einto f!k; 0 � k � n � 1g � C , where ! = exp(2�i=n). Then the authors take asigned area in C as a the generalized 
oloring argument. Remarkably, this singlereal-valued invariant 
ontains all tile invariants presented above.Denote by By and Bsy the set of regions with Young diagram and skew Youngdiagram shape (see e.g. [M,JK℄). It was shown in [P℄ that Tn has lo
al moveproperty (for 2-moves) with respe
t to By. The result, already more general than4They a
tually 
onsidered one additional dis
onne
ted tile whi
h we ignore. This set of tilesappeared after translation of the trominoes in hexagonal latti
e into the square latti
e [CL℄.
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Figure 6.4. Ribbon tile � = �0011, ve
tors !k, height fun
tion '(�).[We℄, was later extended by the author to in
lude Bsy (unpublished). Following [P℄,we 
onje
ture the lo
al move property with respe
t to all simply 
onne
ted regions.The 
omputation of G (Tn ;Bs
) and the height fun
tion arguments [MoP℄ seem tosupport the 
onje
ture. 7. Small sets of tiles7.1 T -tetrominoes.It was shown in [Wa℄ that four rotations of T -tetromino 
an tile am�n re
tangleif and only if 4 divides both m and n. It is easy to see that the result 
annot beproved by the 
oloring arguments. Nevertheless, no height fun
tion argument isknown.
Figure 7.1. Four T -tetrominoes.

Figure 7.2. Lo
al moves: 2-move and 4-move.The set of tiles is of interest sin
e it also seem to have a lo
al move property.Observe that besides the 2-moves there is also a 4-move involving a re
e
tion ina 4 � 4 square. We 
onje
ture that these lo
al move suÆ
e. It seems that the
ombinatorial te
hnique in [Wa℄ 
an be extended to prove the lo
al move propertywith respe
t to re
tangular regions.



16 IGOR PAK7.2 Bars and Re
tangular shapes.Let T be a set of two \bars", i.e. of m� 1 and 1�n re
tangles. Claire and Ri
kKenyon found a remarkable appli
ation of the height fun
tions in this 
ase [KK℄.They introdu
ed a tree-valued height fun
tion, and proved properties (�)�(���) inthis 
ase. From here they dedu
ed the lo
al move 
onne
tivity (the only lo
al moverequired is A1 ! A2, where A1; A2 ` m�n re
tangle), obtain the general bound onthe distan
e (it's O(j�j3=2) in that 
ase) and present a linear algorithm for testingtileability. The authors show that their analysis 
an be modi�ed to re
tangularregions m� n and n�m. In parti
ular, the authors present a quadrati
 algorithmfor tileability and prove the lo
al move property for 2� 3 and 3� 2 re
tangles.While the authors do not 
ompute the group of invariants, it 
an be easilydetermined from either lo
al move property or 
oloring arguments. Let us note thatthe polynomial algorithms for tileability exist only for simply 
onne
ted regions, asin general 
ase the problem is NP-
omplete [Ro℄ (see also [BJLS℄).7.3 L-trominoes.Let T be the set of four rotations of L-trominoes. We showed in [P℄ thatG (T;B) = E(T) = Z�Z23. The proof involves some expli
it 
oloring arguments.
Figure 7.3. Four L-trominoes.The set T has no lo
al move property, as shown in [P℄. There, we 
onstru
tedlarge regions with exa
tly two tilings. Also, for general regions the tileability isNP-
omplete [MR℄. It would be interesting to see if the same is true for simply
onne
ted regions. Let us mention here an old result that a n� n square with onesquare deleted 
an be tiled with T unless n is divisible by three [CJ℄.7.4 Skew and square tetromino.This example wa introdu
ed by Propp, who found a very ni
e appli
ation ofthe height fun
tion approa
h [Pr℄. The group of invariants G 
an be 
omputed
ompletely in this 
ase, by using the 
oloring arguments and a nonabelian tileinvariant presented in [Pr℄, whi
h implies that rk(G ) = 2. There are two interestingfeatures in this 
ase. First, the authors makes a distin
tion between \odd" and\even" 2 � 2 squares. In prin
iple, this 
an be done in other spe
ial 
ases, bytaking a smaller group of translations. Still, this is by far the most interesting su
hexample, as the in�nite tile invariant be
omes a �nite tile invariant when odd andeven squares are identi�ed.For the se
ond feature, Propp in [Pr℄ de�nes a tile invariant as a signed area,refraining from the \winding number" approa
h in [CL℄. This was the approa
h
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Figure 7.4. Skew and square tetromino.
ontinued in [MoP℄. We hope the reader will enjoy this well written arti
le and
ompletes the 
omputation of the full group of invariants as an exer
ise.7.5 Dominoes again.Let � be a simply 
onne
ted region, and let k be a �xed integer. Consider alldomino tilings of � with exa
tly k verti
al domino. Re
all that k 
an vary fordi�erent domino tilings, although its parity remains �xed. It was noted by Gupta[Gu℄ that sometimes one 
an make a 
onne
ted graph G(�; k) on these dominotilings by introdu
ing 2 � 3 moves (see Figure 7.5). He showed that G(�; k) is
onne
ted when � is a re
tangle, the Azte
 diamond, et
., but not in general 
ase.We refer to [Gu℄ for the details.

Figure 7.5. 2� 3 moves.In general, suppose T is a �nite set of tiles and � is a tileable region. One 
anask whether lo
al 
onne
tivity exists for tilings A ` � with given set of numbers�i(A), de�ned as in the introdu
tion. The work of Gupta suggests that 
ertain ni
esets of tiles and 
ertain regions might satisfy this remarkable property.7.6 More examples.Consider the following two sets of tiles T1, T2. The �rst 
ontains two rotationsof T -tetromino and skew tetromino whi
h �t into 2-row strip (see Figure 7.6). These
ond 
ontains two rotations of T -pentamino, S-pentamino and skew tetromino,whi
h �t into 3-row strip (see Figure 7.7). As before, we allow only translations ofthe tiles.We are interested whether either or both sets have nonabelian tile invariants,lo
al move property, height fun
tions, et
. It is an exer
ise to establish these prop-erties for regions whi
h �t in 2-row and 3-row strip tiled by T1 and T2 respe
tively.Also, repla
ing skew tetrominoes with a square tetromino gives an interesting mod-i�
ation of T2. We 
hallenge the reader to resolve these problems.7.7 Other latti
es.
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Figure 7.6. 2-row skew and T -tetrominoes.

Figure 7.7. S and T - pentaminoes and skew tetrominoes.It was realized rather early that tiling problems are of interest on other latti
esas well [G℄. The original question in [CL℄ 
omes from a hexagonal latti
e, and therunning example in [T℄ is the set of \lozenges", analogues of dominoes on a trian-gular latti
e. A number of results for small sets of tiles on a triangular latti
e wasdis
overed re
ently by R�emila [R�e℄. The author's approa
h is somewhat di�erentfrom this arti
le's main theme, and we strongly suggest it as a 
omplimentary read-ing. Finally, a ni
e lo
al 
onne
tivity result for squares-and-o
tagons was obtainedby Gupta in [Gu℄. 8. Tilings in many dimensionsThere is little known about tilings in many dimensions, although there seem to beno 
lear reason for that. As mentioned before, we do not know of any nonabelian tileinvariant even for three-dimensional tiles. Without attempt to review the subje
t,let us present few examples that seem relevant.8.1 Generalized Sperner's Lemma.The Sperner's Lemma is the following 
lassi
al result. Let � be a triangularlatti
e, � be a n-triangle with deleted three 
orner triangles. Color the verti
es ofthe triangle with 
olors f0; 1; 2g, so that the sides are 
olored with 0, 1, 2 (
lo
kwise).Then there exists a (0; 1; 2) 
olored triangle. In fa
t, the number of (0; 1; 2) trianglesminus the number of (0; 2; 1) triangles (reading 
olors 
lo
kwise) is always 1.While the Sperner's Lemma is often asso
iated with Brouwer's �xed point the-orem (see e.g. [Sh℄), its generalizations are easier to obtained in the 
ontext of theStokes Theorem. We present here the Generalized Sperner's Lemma, whi
h impliesan abelian tile invariant for a 
ertain set of tiles. While the generalization below isprobably well known (and follows easily from Stokes Theorem) the interpretationof it in the language of tile invariants seems new and will be presented here alongwith a short proof of the lemma.Let us state the Generalized Sperner's Lemma �rst in two, and then in all di-mensions. Let � be any region on a triangular latti
e 
olored with f0; 1; 2g. Denote
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Figure 8.1. Sperner's Lemma.by �+(�) and ��(�) the number of triangles with all three 
olors (0; 1; 2), going
lo
kwise and 
ounter
lo
kwise respe
tively. Then �+ � �� = 
onst(��), where
 = 
onst(��) depends only on the 
oloring of the boundary. Note that we do notrequire � to be simply 
onne
ted. The boundary �� may be dis
onne
ted, but the
oloring must be �xed on verti
es of ea
h 
onne
ted 
omponent.In general 
ase, let � be any region in V = Rd with a �xed simpli
ial subdivision.Fix an orientation in Rd by taking a basis (e1; : : : ; ed) in V . Consider any 
oloringof verti
es of � with d+1 
olors f0; 1; : : : ; dg. We say that � is (d+1)-
olored in this
ase. We say that a simplex is positive (negative) if it is (d+ 1)-
olored with basis(�!01;�!02; : : : ;�!0d) having a positive (negative) volume, de�ned as a determinant ofthe 
orresponding linear transformation. Denote by �+(�) and ��(�) the numberof positive and negative simpli
es in �, respe
tively. Then �+ � �� = 
onst(��),where the 
onstant depends only on the 
oloring of ��, and not on the interior of �.Let us state this result as follows.Theorem 8.1 (Generalized Sperner's Lemma) Let � be a triangulatedregion in Rd with a �xed (d + 1)-
oloring of the boundary ��. Let A be a (d + 1)-
oloring of the interior verti
es. Then�+(A)� ��(A) = 
onst(��);where 
onst depends only on the 
oloring of the boundary, and not on 
oloring A.Now, the lemma 
an be redu
ed to an in�nite tile invariant for a spe
ial set oftiles. First, take the tiles to 
orrespond to (d+1)-
olorings by somewhat 
hangingthe boundaries around the verti
es in a 
onsistent way whi
h depends on the 
olor(
f. proof of Theorem 3.1). For example, a small simplex 
an be added to, or sub-tra
ted from the sides of a large simplex so that only simpli
es with the same \
olor"
an �t together (see Figure 8.2). Denote by T this new set of tiles, 
orrespondingto all possible (d+1)-
olorings of verti
es of d-dimensional simpli
es. In Figure 8.2we exhibit one su
h two-dimensional tile 
orresponding to (1; 2; 3)-
oloring.Now noti
e that the \
oloring" of the boundary uniquely de�nes the shape ofthe boundary. Thus the \
olorings" of the interior verti
es of � are in one-to-one 
orresponden
e with tilings of � with T. Consider the tiles whi
h 
orrespondto (d + 1)-
olorings with distin
t 
olors, with positive and negative orientation.Theorem 8.1 implies that the di�eren
e between the number of 
ertain \positive"
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2

0 1Figure 8.2. Modi�
ation of a 3-
olored triangle.and \negative" tiles is an �xed integer whi
h depends on the boundary ��. Wesuggest the reader think through this simple, almost 
lassi
al 
onstru
tion.Let us note that from the proof (see se
tion 10) it follows through verbatimthat the in�nite invariant de�ned in the lemma holds for signed tilings by T aswell. Thus the tile invariant is abelian, and by Theorem 2.3 
an be obtained by anextended 
oloring argument. Interestingly, this 
oloring argument is not obvious,and depends heavily on the way the set T is 
onstru
ted.Remark 8.2 The Sperner's Lemma has a number of variations, generalizationsand appli
ations. Let us �rst mention a similar in the spirit work [SS℄ whereSperner's Lemma is used to obtain relations for the volume(s) of simpli
es in tilings.The �rst d-dimensional version of the lemma 
an be found in [BC℄. The 
ubi
alversion, perhaps more a

eptable for traditional tiling 
on
epts, 
an be found in[Wo℄. We refer to [Sh℄ for various appli
ation to �xed point results.8.2 Parity 
he
k.We will adopt the same notion of as in the previous subse
tion. Consider anytriangular latti
e � � Rd , su
h that the dual graph is bipartite. In other words,we assume that the simpli
es are 
olored with bla
k and white. An example is aregular partition of the 
ubi
 latti
e with ea
h 
ube partitioned into d! simpli
es
orresponding to permutations of basis ve
tors. The sign of the permutation thendetermines the 
olor of the simplex.Now 
onsider 
olorings of verti
es with m 
olors, m � d. We say that a simplexis r-de�
ient if it has exa
tly (d + 1 � r) distin
t 
olors of the verti
es. Let � beany region in � with a �xed 
oloring of the boundary, and let A be any 
oloringof the interior verti
es. Denote by �+(A) (��(A)) the number of bla
k (white)1-de�
ient simpli
es. Similarly, denote by �+(A) (�+(A)) the number of bla
k(white) 0-de�
ient simpli
es. Finally, let � = �+ � ��, � = �+ � ��.Theorem 8.3 We have 2�(A) + (d+ 1)�(A) = 
onst, where 
onst = 
onst(�)depends only on the 
oloring of the boundary �� and not on A.The proposition 
an be restated as an in�nite abelian invariant of a 
ertain set oftiles. We leave the details to the reader. As a bonus, the theorem implies that for



TILE INVARIANTS: NEW HORIZONS 21odd d the total number of 1-de�
ient tiles has a �xed parity even when bla
k andwhite tiles are indistinguishable. Even this is a nontrivial �nite abelian invariant.Let us 
on
lude this part by presenting a spe
ial 
ase when two independent tileinvariants appear from su
h 
onstru
tion. This result is due to Moore and Newman,and it appeared in [MN℄. We follow [Mo℄ in our presentation.Consider any triangular latti
e � � R2 with a bipartite dual graph. Fix abla
k/white 
oloring of triangles. Let � be a region in � with a �xed 
oloring ofthe boundary with 
olors f1; 2; 3; 4g = I . Denote by �+(i; j; k) and ��(i; j; k) thenumber of bla
k and white triangles 
olored with i; j; k 2 I . Let�� = ��(1; 1; 2) + ��(1; 2; 2) + ��(3; 4; 4) + ��(3; 3; 4);�� = ��(1; 1; 3) + ��(1; 3; 3) + ��(2; 4; 4) + ��(2; 2; 4);
� = ��(1; 1; 4) + ��(1; 4; 4) + ��(2; 3; 3) + ��(2; 2; 3);� = �+ � �� ; � = �+ � �� ; 
 = 
+ � 
� :Theorem 8.4 ([MN℄) We have �(A)� �(A) = 
onst1, �(A)� 
(A) = 
onst2,where 
onst1; 
onst2 depend only on the 
oloring of the boundary �� and not on A.We 
hallenge the reader to obtain a proper generalization of the theorem tohigher dimensions [Mo℄.8.3 3-dimensional dominoes.While dominoes on a square grid satisfy the lo
al move property with respe
tto simply 
onne
ted regions, this is no longer true for 3-dimensional dominoes.Heuristi
ly, in three dimensions there is enough spa
e to make large simply 
on-ne
ted \lo
al moves". Formally, for any n there exist a simply 
onne
ted region �with exa
tly two domino tilings A1; A2 ` �, so that the move A1 ! A2 involves atleast n dominoes.Indeed, 
onsider a 
y
le of size 4n with a (n� 1)� (n � 1) square shaped holeinside. Think of the 
y
le lying in a (x; y) plane. Color this square with bla
kand white 
olors in the usual 
he
kerboard fashion. Fill this hole with dominoespointing up or down (in the dire
tion z), depending on whether the square is bla
kor white. Now noti
e that there are exa
tly two domino tilings of this region �, asthe positions of the verti
al dominoes are �xed by the 
onstru
tion, and the onlyfreedom we have is given by two possible tilings of the 
y
le. The move will involve2n dominoes then, whi
h proves the 
laim.The 
onstru
tion naturally extends to tilings in any d � 3 dimensions. Thismakes it rather unlikely that there exists a one-dimensional height fun
tion asdes
ribed in se
tion 5.1. On the other hand, the tileability by dominoes is in P forany d (see [LP℄).Let us note that there are other generalizations of the 2-dimensional dominoes.For example, in three dimensions, one 
an 
onsider 2� 2� 1 blo
ks. The similar
onstru
tion to the one above shows that there is no lo
al move property with re-spe
t to the simply 
onne
ted regions. It would be interesting to see if the tileabilityis also in P in this 
ase (
f. [MR℄).



22 IGOR PAK8.4 Generalized ribbon tiles.During the sear
h of the nonabelian tiling arguments in many dimensions, onemay ask as to whether some generalization ribbon tiles have any. Consider theobvious generalization, 
orresponding to 
onne
ted d-dimensional tiles with at mostone 
ube in every plane L
 : x1 + : : : + xd = 
. Denote by Tdn the set of su
h tilesin d dimensions with n 
ubes. Note that jTdnj = dn�1. The problem of �ndingthe tile invariant group G (Tdn ;Bs
) remains open in general 
ase. Preliminary
omputations (for d = 3, n = 3; 4) suggest that rk G (T3n ;Bs
) = 1, i.e that thereis no in�nite nonabelian invariant in this 
ase (area is 
learly an in�nite abelianinvariant). We 
onje
ture that rk G (Tdn ;Bs
) = 1 for all d � 3. It is 
on
eivablehowever, that the rank may in
rease if the set of regions is more restri
tive. Itwould be interesting to �nd a nontrivial example of that.9. Final RemarksLet us begin by saying that in our opinion, papers [T℄, [CL℄ had a profounde�e
t on the study of tilings, by introdu
ing new te
hniques and methods into the�eld. The notion of tile invariants and the group of invariants [P℄ were inspiredby [CL℄ and f -ve
tors in simple polytopes [Z℄. Tile invariants have yet to be
omewidely a

epted. It is our goal here is to 
onvin
e the reader that 
omputing G (T)for various sets of tiles T is an important problem, whi
h might lead to a betterunderstanding of tilings.To summarize this paper, me propose a new approa
h to the study of any �xedset of tiles T. Fist, one 
an 
ompute the 
oloring group O(T), an extended 
oloringgroup O (T) and the group of valuations E(T) (
f. Theorem 3.2). Then one shouldattempt to determine G (T;Bs
 ) by 
omputing GN = G (T;Bs
 \ BN) for N largeenough. If at some point G N = E(T), this implies that there are no nonabelianinvariants (
f. Proposition 2.3), so the set T is not so interesting.Suppose, on the other hand, that the 
al
ulations suggest existen
e of somenonabelian invariants in G (T). Then, one should 
he
k whether T satis�es lo
almove property. If yes, attempt to �nd a one-dimensional height fun
tion whi
hproves that (
f. Theorem 5.2). Then 
ompute G (T) from lo
al moves. If T doesnot satisfy the lo
al move property, one should attempt to �nd nontrivial heightfun
tions ', and 
ompute groups E' (T) 6= E(T). Sin
e E' � G (T;Bs
 ), one mightbe able to 
ompute the whole group of invariants that way (
f. se
tion 6.3,4).While Theorem 3.1 seem to suggest that the above pres
ription works only forspe
ial sets of tiles, we 
onsider a su

ess a proof of any nonabelian tile invariantor any lo
al move property. The theory is still in the early stages of development,so even partial results are of interest.Few words about the tileability appli
ations. After all, tileability of the stare
aseshaped regions by the ribbon L-trominoes was the original motivation in [CL℄. Ingeneral, suppose we are given two sets of tiles T � T0, and a fully 
omputed tilinggroup G (T0 ;B). Now let � 2 B be a region tileable by T0. This determines all the
onstants 
onst(�) for all tile invariants (�). Now restri
tion of the tile invariantsfor T0 to T gives a number of integer linear equations whi
h may or may not haveinteger solutions. In the latter 
ase the region is untileable by T (see [CL,P℄).



TILE INVARIANTS: NEW HORIZONS 23From the point of view of tileability 
riteria, this seem like a weak approa
h.Indeed, in general, we need at least as many invariants as the number of tiles jTj,and these tile invariants are hard to �nd and to prove. On the other hand, theintegrality of solutions helps. In [P℄ we found several (un)tileability results in thisdire
tion. As a bonus, an easily 
omputable 
oloring group O(T) 
an determinewhether a 
ertain tileability argument follows from the 
oloring argument. Or, as itwas done in [CL℄, one 
an prove untileability of a � and then �nd a signed tilings of� by T [ �T. By Theorem 2.2 one 
annot prove untileability of � by the 
oloringarguments then.There is a number of open problems that remain unresolved. Beside those men-tioned earlier (Conje
ture 5.3, questions about various small sets of tiles, et
.), letus stress again that we have yet to �nd an eÆ
ient algorithm for 
omputing E(T)on the whole plane. It would be interesting to �nd other approa
hes to 
omputingthe group of invariants, besides the height fun
tions, or �nd a reasoning why there
annot be any. It would be also very ex
iting to prove a lo
al move property forsome natural large set of tiles.Let us 
on
lude by saying that the lo
al move property and one-dimensionalheight fun
tions have important 
onsequen
es in Statisti
al Physi
s and in study ofMarkov 
hains. Roughly, random appli
ation of lo
al moves gives an easy way tosample random tilings; existen
e of the height fun
tion representation assists onein proving the rapid mixing. We refer to [BH,MN,PW,LRS,RY℄ for referen
es anddetails. 10. Proof of ResultsProof of Theorem 3.2 (sket
h).We need to show that givenN , T = f�1; : : : ; �kg, j�ij � R, one 
an solve BoundedCG-rank and Bounded GV-rank Problems in time polynomial in N , k, and R.Without loss of generality we will assume that N � R.Denote by S the N � N square. Consider �rst a 
oloring group O(T;BN ). Itis de�ned as ZS quotient by the relations 
orresponding to translations of the tiles�i 2 T whi
h lie in S. The rank of O is equal to the dimension of the 
orrespondingreal ve
tor spa
e (with the same integer linear equations).There are at most N2 translations of ea
h tile, there are k tiles. In total, we needto 
al
ulate the rank of the system of at most N2k equations with N2 variables.This 
an 
learly be done in polynomial time.For the extended 
oloring group O (T;BN ), we obtain a somewhat di�erent setof equations. Fix one translation � 0i � S of ea
h tile �i 2 T. Now, ea
h translation� 00i gives an equation 
orresponding having to sum of the fun
tion on squares in � 00iequal to the sum of the fun
tion on squares in � 0i . Again, we need to 
al
ulate therank of the system of at most N2k equations with N2 variables.Now, for the rank of the group of of valuations we haverk E(T;BN ) = rkO (T;BN )� rkO(T;BN ):This 
ompletes the proof. �



24 IGOR PAKProof of Theorem 4.1 (sket
h).Use indu
tion on the number of tiles in � to prove (?). The base is tautologi
al.For the step of indu
tion, 
onsider � from Lemma 4.2 su
h that �0 = ��� is simply
onne
ted. Fix a 
ounter
lo
kwise orientation on �� , ��, and ��0. Let x 2 �� bethe starting point of the path P along the boundary. The paths P 0, R along theboundaries of �0, � are mapped into loops by indu
tive assumption. Observe thatthe interse
tion P 0[R will appear twi
e, on
e in ea
h dire
tion. On the other hand,P = (P 0�P 0\R)t (R�P 0\R). Adding the values of the height fun
tion ' alongP as above, we obtain that P is also mapped into a loop. This 
ompletes the stepof indu
tion. �
Γ

τ

Figure 10.5. Simply 
onne
ted regions �, � and �0 � � .Proof of Theorem 5.1 (sket
h).We need to determine the group of invariants G (T;B) in time polynomial ink = jTj, `, and M = maxi j�ij.Indeed, tile invariants are pre
isely the maps f : T ! Z whi
h are invariantalong the moves. In other words, we haveG (T) = ZT=Z
��1(Ai)� �1(A0i); : : : ; �k(Ai)� �k(A0i)�; 1 � i � `�:Now, 
al
ulating all �j(Ai) is polynomial in k, M . Pro
eed as in the proof ofTheorem 3.2. Indeed, it remains now to determine rank of the system of ` linearequations (over R). This 
an be done in polynomial time [S
℄. �Proof of Theorem 5.20 (sket
h).Denote by A = A(�) the poset of all tilings A ` �, with `�' as an order relation.We 
laim that A has a minimum element A0. Indeed, start with any tiling A ` �and 
al
ulate 'A. We 
laim that there exists a sequen
e of lo
al moves from Ato A0. First, �nd any lo
al maximum x 2 b�. If x =2 ��, then apply a lo
al moveA! A0, and pro
eed by indu
tion. If x 2 ��, then both A, A0 
ontain �x. Delete� from �. Observe that we obtain either one region with smaller area or severalsmaller regions. Again pro
eed by indu
tion. This proves the lo
al 
onne
tivityproperty with respe
t to B.The se
ond part follows from the following observation. Denote by AI the largestelement in A. Then M � 2�, where � is the number of lo
al moves from A0 toAI . Fix a value 0 of any point z 2 ��. Let '0 = 'A0 , 'I = 'AI . Let h be the



TILE INVARIANTS: NEW HORIZONS 25maximum value of ' on edges of �. Then for the maximum value HI of 'I we haveHI � hj��j � 
hj�j, where 0 � 
 � d2d. Similarly, for the smallest value H0 of '0we have H � �
hj�j.Now, for every A ` � de�ne (A) = Z 'A(x) d�;where the integration is taken over b� and d� is the usual eu
lidean measure on Rd .We have  (AI)�  (A0) � �(b�)(HI �H0) � 
0j�j2;where 
0 is a 
onstant whi
h depends only on T. Denote by Æ the smallest 
hangeof  under the lo
al move:Æ = m̀ini=1 �� (Ai)�  (A0i)�� > 0:We 
on
lude that � � (
0=Æ) j�j2 � 
00 j�j2, whi
h proves the 
laim.For the last part, 
onsider the following algorithm. Compute ' on ��. Fromabove, the lo
al maxima of '0 = 'A0 are on the boundary. Find a maximum valueof x 2 ��. This is 
learly a lo
al maximum of '0. Now delete �x from � andpro
eed a

ordingly. Eventually we either determine A0 
ompletely, or at somepoint we have to delete �x from � in an impossible situation. Sin
e A0 is unique,this implies untileability of � in that 
ase. Note that the 
ost of the algorithm isO(j�j2`k). This 
ompletes the proof of the theorem. �Proof of Theorem 5.6.First, observe that tilings A ` � 
orrespond to verti
es of P�. Indeed, supposeotherwise. By abuse of notation we 
an write this as A = �1B1 + �2B2 + : : : ,where �1; �2; � � � 2 R+ . But that means that zeroes of (ax;� ) on the left hand side
orrespond to zeroes on the right hand side, i.e. B1; B2; � � � = A. This proves the
laim.Similarly, 
onsider two tilings A1; A2 ` �. LetA� = �A1 + (1� �)A2 = �1B1 + �2B2 + : : : ;where 0 < � < 1. The point A� lies on the interval [A1; A2℄. By the observationabove, only tiles that are in A1, A2 
an appear in Bi. Therefore all tiles that liein A1 \ A2 must also appear in ea
h of the Bi. On the other hand, a tile �x 2 A1must appear in Bi with the total weight �. Having or not having �x splits the setof tilings Bi into two subsets. Sin
e every element y 2 � must belong to some tile,the total set of tiles splits between tiles that 
ontain and don't 
ontain �x. Denotethese sets of indi
es by I and J . The above implies that either every Bi = A1,i 2 I , every Bj = A2, j 2 J , or there exist Bi, Bj , i 2 I , j 2 J , su
h that A1 ! Cand C ! A2 are non-interse
ting lo
al moves (and the same is true for A1 ! Dand D ! A2). This 
ompletes the proof. �



26 IGOR PAKProof of Generalized Sperner's Lemma 8.1 (sket
h).De�ne an orientation of the (d � 1)-dimensional simpli
es on the boundary toagree with orientation of V = Rd . Formally, we say that a simplex on the boundaryis positive (negative) if it is 
olored with d 
olors 2 f0; 1; : : : ; dg and 
oloring theremaining vertex of a unique d-dimensional simplex in � with the remaining 
olorwould make this simplex positive (negative). Denote by �+(��) and ��(��) thenumber of positive and negative simpli
es on the boundary. A simplex (of anydimension) with repeated 
olors we 
all neutral.Let us prove by indu
tion that in 
onditions of the theorem we have:
onst(��) = (d+ 1)��+(��)� ��(��)�:First, let us prove the base of indu
tion. Indeed, for a single positive (negative)d-dimensional simplex all (d+1) simpli
es on the boundary are positive (negative).If the d-dimensional simplex is neutral, then the symmetry argument implies that
onst = 0 in this 
ase.For the step of indu
tion, we 
an delete any d-dimensional simplex from �. Nowobserve that 
onst(��) is additive with respe
t to su
h division sin
e the interse
tionof the boundaries is taken with opposite signs, and thus 
an
el ea
h other (
f. proofof Theorem 4.1). We omit the easy details. �Proof of Theorem 8.2.Consider all 0-de�
ient (d�1)-dimensional simpli
es in �, i.e. (d�1)-dimensionalfa
es with d distin
t 
olors. Ea
h su
h fa
e is either on the boundary or is aboundary of one bla
k and one white d-dimensional simplex. Denote by � thenumber of su
h fa
es. Denote by Æ+ (Æ�) the number of of su
h fa
es on theboundary, so that the adja
ent simplex is bla
k (white). By 
ounting � separately,as a boundary of bla
k or white squares, we obtain� = 2�+ + (d+ 1)�+ + Æ� = 2�� + (d+ 1)�� + Æ+:Subtra
ting the sides in the last equality, we 
on
lude2�+ (d+ 1)� = Æ+ � Æ�:This proves the result. � Referen
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