
FAST DOMINO TILEABILITY

IGOR PAK?, ADAM SHEFFER†, AND MARTIN TASSY?

Abstract. Domino tileability is a classical problem in Discrete Geometry, famously solved

by Thurston for simply connected regions in nearly linear time in the area. In this paper, we

improve upon Thurston’s height function approach to a nearly linear time in the perimeter.

1. Introduction

Given a region R and a set of tiles T , decide whether R is tileable with copies of the tiles in T .
This is a classical tileability problem, occupying a central stage in Discrete and Computational
Geometry. For general sets of tiles, this is a foundational problem in Computability [Ber, Boas]
and Computational Complexity [GJ, Lev, V1]. For domino tiles, the problem is a special case of
the Perfect Matching problem. It can be solved in polynomial time; even the counting problem
can be solved at the cost of matrix multiplication (see e.g. [LP, K2]).

In 1990, Thurston pioneered a new approach to the subject based on the study of height
functions, which can be viewed as integer maps on the regions [Thu]. Thurston outlined a
domino tileability algorithm which later has been carefully analyzed (see §5.4) and significantly
extended to many other tileability problems (see §5.3).

Theorem 1.1 (Thurston, 1990). Let R be a simply connected region in the plane Z2, and
let n = |R| be the area of R. There exists an algorithm that decides tileability of R in time
O(n log n).

This result is worth comparing to the classical Hopcroft–Karp algorithm which has O(n3/2)
time for testing whether a bipartite graph with n vertices and bounded degree has a perfect
matching. This general bound has been significantly improved in recent years (see §5.1).

Note that for polynomial time problems the cost of the algorithm depends heavily on how
the input is presented. In case of graphs, the input is a list of vertices and edges, of size Θ(n).
On the other hand, the region R is traditionally presented as a list of squares, thus of size
Θ(n log n).

The main idea behind this work is that plane regions R can be presented by the set of
boundary squares. The input then has size Θ(p log p), where p = |∂R| is the perimeter of R.
More economically, for simply connected R the input can be presented as a sequence of directed
boundary edges Right, Up, Left and Down, starting at the origin. Of course, in this case
the boundary set of squares can be computed in time Θ(p log p). Either way, one can ask if in
this presentation one can improve upon Thurston’s algorithm. Here is our main result:

Theorem 1.2. Let R be a simply connected region in the plane Z2, and let p = |∂R| be the
perimeter of R. There exists an algorithm that decides tileability of R in time O(p logp).
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The result gives the first improvement over Thurston’s algorithm in 25 years, and is nearly
optimal in this presentation. Clearly, the perimeter p = Ω(

√
n) can be significantly smaller

than n, so Theorem 1.2 improves upon Thurston’s for all regions with p = o(n).

Let us note that Thurston’s algorithm not only decides domino tileability, but also constructs
a domino tiling when the region is tileable. Specifically, Thurston shows that for every tileable
region R there is a unique maximum tiling T◦, corresponding to the maximum height function
of the region R. He then inductively computes T◦ in time O(n log n). Clearly, it would be
unhelpful to match this result, since listing all dominoes requires Ω(n log n) time. However, we
can do this in the following oracle model.

A tiling T of a region R is said to be site-computable with a query cost t if after preprocessing,
for every square x ∈ R, we can compute the adjacent square y of a domino in T in time t. See §5.2
for the reasoning behind this model.

Theorem 1.3. Let R be a simply connected region in the plane Z2, and let p = |∂R| be the
perimeter of R. If R is tileable with dominoes, the maximum tiling T◦ is site-computable with
a preprocessing time O(p log p), and a query time O(log2 p).

The rest of the paper is structured as follows. In the next lengthy Section 2 we present a
criterion for domino tileability in terms of the height function on the boundary. The algorithm is
presented in the following Section 3. We then show that similar results also hold for a triangular
lattice (Section 4). We conclude with final remarks and open problems in Section 5.

2. Tileability theorems

In this section we present necessary and sufficient conditions for the domino tileability of simply
connected regions in Z2. In the following section, we use these conditions to construct an
algorithm for checking the tileability of a simply connected region. For the rest of this section
we assume that Z2 is endowed with a chessboard coloring, such that the square with corners
(0, 0) and (1, 1) is white.

Let R be a simply connected region of Z2 such that the origin is on the boundary of R and
TR is a tiling of R. A classic result (for example, see Fournier [Fou]) states that there exists a
height function h : R→ Z that corresponds to TR, and is defined as follows:

• h(0, 0) = 0, and
• for an edge (x, y) in TR, such that when crossing from x to y there is a white square to

our left, we have h(x)− h(y) = 1.

We denote by ∂R the points of Z2 that are on the boundary of R. To obtain a height function
h : ∂R→ Z, we start from (0, 0) and travel along the boundary. We begin by setting h(0, 0) = 0
and then place a height value to each point that we visit, according to the second condition
of the definition. That is, when we cross an edge from point x to point y, if there is a white
square to our left we set h(y) = h(x) − 1, and otherwise h(y) = h(x) + 1. If R is not tileable,
the final edge in our trip might not satisfy the condition. When this happens we say that ∂R
has no valid height function.

The following well known lemma characterizes the functions h : R → Z that are height
functions of some tiling of R.

Lemma 2.1 (see [Fou]). Let R be a simply connected region of Z2 with the origin on its
boundary, and let HR be the set of height functions that correspond to tilings of R. Then a
function h : R→ Z is in HR if and only if the following conditions hold.

(i) For every x, y ∈ R such that x = (a1, b1), y = (a2, b2), and a1 − a2 = b1 − b2 = 0
mod 2, we have h(x)− h(y) = 0 mod 4.
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(ii) For every edge (x, y) ∈ ∂R such that when crossing from x to y there is a white square
to our left, we have h(x)− h(y) = 1.

(iii) For every edge (x, y) ∈ R, we have |h(x)− h(y)| ≤ 3.

One can also consider a tiling of the entire plane Z2. Lemma 2.1 remains valid for such
tilings, with Condition (ii) becoming redundant. In this case, the set of height functions HZ2

that are zero at a given point x = (a, b) has a maximum element α(x, ·) (i.e., for every p ∈ Z2,
no height function h ∈ HZ2 satisfies h(p) > α(x, p)) that is defined as follows. For a point
y ∈ Z2, we write y = x+ (i, j) and set δ(i, j) = i− j mod 2. If a− b = 0 mod 2, then

α(x, y) =

{
2‖y − x‖∞ + δ(i, j), if i ≥ j,
2‖y − x‖∞ − δ(i, j), if i < j.

If a− b = 1 mod 2, then

α(x, y) =

{
2‖y − x‖∞ − δ(i, j), if i ≥ j,
2‖y − x‖∞ + δ(i, j), if i < j.

It is easy to see that α(x, ·) satisfies conditions (i) and (iii) of Lemma 2.1, and is thus a height
function that corresponds to a tiling of Z2. Examples of maximal tilings that correspond to
α(x, ·) are depicted in Figure 1 (left and center).

Figure 1. Left and center: Maximal tilings that are centered at x and corre-
spond to the height function α(x, ·). Right: Geodesic paths between x and y.

We say that a sequence of points (x1, . . . , xn) is a geodesic path if

• For every i < n, we have ‖xi+1 − x1‖∞ = ‖xi − x1‖∞+1.
• For every i < n, the points xi and xi+1 are corners of a common 1× 1 square in Z2.

The right part of Figure 1 depicts several geodesic paths between the same pair of points.
One key observation in our proofs is that α(x, ·) is strictly increasing on any geodesic path

(x1, . . . , xn). By the conditions of Lemma 2.1, for any 1 ≤ i < n and height function h that is
defined on xi and xi+1, there are exactly two possible values for h(xi+1)− h(xi). One of these
two values is negative, and the other is α(x1, xi+1)−α(x1, xi). That is, for any height function
h we have h(xi+1)− h(xi) ≤ α(x1, xi+1)− α(x1, xi).

Another useful observation is that for every geodesic path (x1, . . . , xn) and 1 < i < n, we have
that (x1, . . . , xi) and (xi, . . . , xn) are also geodesic paths. By combining this with the previous
observation, we notice that α(x, ·) is additive on geodesic paths. That is, if (x1, . . . , xn) is a
geodesic path and 1 < i < n, then α(x1, xi) + α(xi, xn) = α(x1, xn).

For a simply connected region R and two points x, y ∈ R, we write x ∼R y if there exists a
geodesic path between x and y that is fully in R. The following lemma gives a necessary and
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sufficient condition for the tileability of a simply connected region R. This condition depends
only on the height differences between pairs of points on the boundary ∂R.

Lemma 2.2. Let R be a simply connected region of Z2 that contains the origin and let h :
∂R→ Z be a valid height function of ∂R. The region R is tileable if and only if for every pair
x, y ∈ ∂R that satisfies x ∼R y, we have

h(y)− h(x) ≤ α(x, y).

Proof. We first prove that the condition is necessary. Assume that R is tileable and extend the
domain of h to all of R according to a specific tiling of R. Let (x1, ..., xn) be a geodesic path
between two points x, y ∈ ∂R (that is, x1 = x and xn = y). Recall that for every 1 ≤ i < n we
have h(xi+1)− h(xi) ≤ α(x, xi+1)− α(x, xi), which implies

h(y)− h(x) =

n−1∑
i=1

(
h(xi+1)− h(xi)

)
≤

n−1∑
i=1

(
α(x, xi+1)− α(x, xi)

)
= α(x, y)− α(x, x).

Since α(x, x) = 0, we get that h(y)− h(x) ≤ α(x, y) which completes this part of the proof.
We next prove that the condition of the lemma is sufficient. For that, we show that the

function

(1) hmax(y) = min
x∈∂R , x∼Ry

[
h(x) + α(x, y)

]
satisfies the three conditions of Lemma 2.1 (with respect to R). For Condition (ii), it suffices
to show that for every y ∈ ∂R we have hmax(y) = h(y) (since h satisfies this condition by
definition). Consider such a point y ∈ ∂R, then h(y) + α(y, y) = h(y) and the assumptions of
the theorem implies that for all x ∈ ∂R such that x ∼R y the inequality h(x) + α(x, y) ≥ h(y)
holds. Hence hmax(y) = h(y) on ∂R, and Condition (ii) is satisfied by hmax.

For every x ∈ ∂R, the function h + α(x, ·) satisfies Condition (i) since both h and α(x, ·)
are height functions. Since hmax(y) = h(y) for every y ∈ ∂R, the function hmax satisfies
Condition i(i) on ∂R. This “forces” the various functions α(x, ·) to be identical mod 4 on ∂R,
and thus all over R. That is, for any y ∈ ∂R the expression h(x) + α(x, y) mod 4 does not
depend on the choice of x ∈ ∂R. This in turn implies that hmax satisfies Condition (i).

It remains to prove that hmax satisfies Condition (iii); that is, to show that for every pair
of adjacent points x, y ∈ R, we have |hmax(x) − hmax(y)| ≤ 3. If both x and y are in ∂R, this
is immediate from Condition (ii). Thus, without loss of generality, we assume that x is in the
interior of R. Let z ∈ ∂R satisfy hmax(x) = h(z)+α(z, x) and let P = (x1, . . . , xn) be a geodesic
path from z to x that is contained in R. Let xi be the last vertex in P that is on ∂R, and
notice that P ′ = (xi, . . . , xn) is a geodesic path from xi to x. Since hmax(x) has the maximum
increase rate that any height function may have, we obtain that hmax(x) = h(xi) + α(xi, x).
Since P ′ does not contain edges of ∂R, there must also exist a geodesic path from xi to y.
Since x and y are neighbors, this implies hmax(y) ≤ h(xi) + α(xi, y) ≤ h(xi) + α(xi, x) + 3 and
hmax(y) − hmax(x) ≤ 3. A symmetric argument yields hmax(x) − hmax(y) ≤ 3, and completes
the proof of Condition (iii). �

For points x, y ∈ ∂R, we denote by G(x, y) the set of points in Z2 that are in at least one
geodesic path between x and y. Notice that G(x, y) is a rectangle with edges of slopes ±1,
possibly with two opposite corners truncated; for example, see the right part of Figure 1. Let
S be a set that contains ∂R and any number of points from the interior of R. We write x ≈S y
if x, y ∈ S and G(x, y) \ {x, y} is disjoint from S. The following theorem is a refinement of
Lemma 2.2, which reduces the number of point pairs that determine whether a region is tileable.

Theorem 2.3. Let R be a simply connected region of Z2 that contains the origin, let h : ∂R→ Z
be a valid height function, and let S ⊂ R be a subset that contains ∂R. The region R is tileable
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Figure 2. If y is adjacent to the interior point x, then a geodesic path from
x′ to x implies a geodesic path of a similar length from x′ to y.

if and only if there exists a function g : S → Z such that g = h on ∂R and for every pair
x, y ∈ S that satisfies x ≈S y, we have

(2) − α(y, x) ≤ g(y)− g(x) ≤ α(x, y).

Proof. We first prove that the condition is necessary. Assume that R has a tiling T and let
g : R→ Z be corresponding height function. By definition, g = h on ∂R and g satisfies (2) for
every x, y ∈ ∂R with x ∼R y. For every pair x, y ∈ ∂S for which x ≈S y there exists a geodesic
path (x1, . . . , xn) in R with x = x1 and y = xn. As in the proof of Lemma 2.2, we have

g(y)− g(x) =

n−1∑
i=1

(
g(xi+1)− g(xi)

)
≤

n−1∑
i=1

(
α(x, xi+1)− α(x, xi)

)
= α(x, y).

A symmetric argument implies g(x)− g(y) ≤ α(y, x), which completes the proof of this part.
To prove that the condition of the theorem is sufficient, we show that it implies the condition

of Lemma 2.2. That is, if a function g satisfies (2) for every pair x, y ∈ ∂S with x ≈S y, then
the same condition is also satisfied for every pair x, y ∈ ∂R with x ∼R y.

Consider a pair x, y ∈ S such that x ∼R y. We prove that (2) holds for x, y by induction
on ‖x− y‖∞. Since ∂R ⊂ S, this would complete the proof of the theorem. For the induction
basis, consider the case where ‖x− y‖∞ = 1. In this case we have x ≈S y, so (2) is satisfied for
x, y by the definition of g.

For the induction step, consider the case where ‖x−y‖∞ = k > 1. In this case, either x ≈S y
and (2) is satisfied by the definition of g, or there exists a geodesic path P = (x1, . . . , xn) between
x and y that is in R and intersects S \{x, y}. In the latter case, let xi be a vertex of P that is in
S \ {x, y}. Then (x1, . . . , xi) is a geodesic path between x and xi and (xi, . . . , xn) is a geodesic
path between xi and xn. By the induction hypothesis, we have

α(xi, x) ≤ g(xi)− g(x) ≤ α(x, xi),

α(y, xi) ≤ g(y)− g(xi) ≤ α(xi, y).

By combining these two inequalities we get g(y) − g(x) ≤ α(x, xi) + α(xi, y). Since P is
obtained by combining a geodesic path from x to xi together with a geodesic path from xi to y,
we have α(x, xi) +α(xi, y) = α(x, y), which in turn implies g(y)− g(x) ≤ α(x, y). A symmetric
argument implies g(x) − g(y) ≤ α(y, x), which completes the induction step and the proof of
the theorem. �

3. Algorithm for tileability

3.1. Outline. In this section we prove theorems 1.2 and 1.3. First, we present an algorithm for
checking whether a simply connected region R is tileable. The algorithm is based on partitioning
R into interior-disjoint squares of various sizes. These squares have their vertices in Z2, but
are “rotated by 45◦” in the sense that the slopes of their edges are 1 and -1. To cover R
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with such squares, along the boundary of R we use right-angled triangles with two edges of
length 1, instead of squares; for example, see Figure 3. We consider the set S that consists of
∂R together with the vertices of the rotated squares. By Theorem 2.3, to check whether R is
tileable it suffices to compare between pairs x, y ∈ S that satisfy x ≈S y. We will prove that
each point of S participates in at most eight such pairs, which would in turn imply that total
number of pairs that satisfy x ≈S y is at most linear in the perimeter of R.

Figure 3. A subdivision of the area that is bounded by the solid edges into
rotated squares and right-angled triangles with two edges of length 1.

3.2. Partitioning the region. We begin with the following technical result.

Theorem 3.1. Let R be a simply connected region with |∂R| = p. Then there exists a subdivi-
sion S of R into O(p) interior-disjoint rotated squares and right-angled triangles with two edges
of length 1. Such a subdivision can be found in O(p log p) time.

Proof. We prove the theorem by presenting an algorithm that receives a simply connected region
R with perimeter p and constructs a subdivision S of R in time O(p log p). The subdivision S
consists of O(p) rotated squares and right-angled triangles with two edges of length 1. All of
the squares in this proof are rotated by 45◦.

We begin the algorithm by initializing several variables. Set Qin = Qout = ∅ where Qin

(respectively, Qout) is a set in which we place squares that are fully on the inside of R (resp.,
fully on the outside of R). Let n be the smallest power of 2 that is larger or equal to 2p, consider

an
√

2n×
√

2n square that fully contains R, and let S0 be a set that contains only this square.
We repeat the following process for t = log2 n iterations:

• At the beginning of iteration i we consider the set Si−1, which contains interior-disjoint
squares of size

√
2n/2i−1 ×

√
2n/2i−1 that were obtained in the preceding iteration. We

partition each of these squares into four interior-disjoint squares of size
√

2n/2i ×
√

2n/2i.
Denote the set of these 4|Si−1| squares as Ti. For each square of Ti, we record the four squares
of Qin ∪Qout ∪ Ti that share a boundary with it (some of these might not be squares but the
area outside of the square of S0). This can be done in constant time by using the information
that was stored in the previous iteration for the squares of Ti−1.
• We travel across ∂R. Every time that we enter a square s ∈ Ti, we mark the point from

which we entered s, mark what side of this boundary point of s is the interior of R, and insert
s into Si.
• For every square s ∈ Ti \ Si, we check whether s is in the interior or in the exterior of R (see

below for the full details of this process). If s is in the interior, we add s to Qin. Otherwise,
we add it to Qout.

After log2 n iterations, we have a set Qin of interior-disjoint squares that are fully contained

in R and a set Slog2 n of
√

2 ×
√

2 squares whose interior is intersected by ∂R. We split every
square s ∈ Slog2 n into four right-angled triangles and insert into S the triangles that are in
the interior of R (out of the four triangles, betweein one and three are in the interior). After
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also inserting Qin into S, the set S is a subdivision of R into interior-disjoint squares and
right-angled triangles.

We now explain how, at the end of the i-th iteration, we go over each square s ∈ Ti \ Si and
check whether s is in the interior or in the exterior of R. We go over the squares of Ti \ Si in
an arbitrary order. When considering a square s ∈ Ti \ Si, we already know which squares of
Qin ∪Qout ∪ Ti share a boundary with s. Notice that there exists a unique square in each side,
and that these four squares may be of different sizes.

• If one of the four surrounding squares is in Qin, we add s to Qin.
• Otherwise, if one of the four surrounding squares is in Qout, we add s to Qout.
• Otherwise, if one of the four neighboring squares s′ is in Si, we travel along the boundary of
s′ until we get to an intersection with the border of R (we marked these intersection points
when inserting s′ to Si). For each such intersection point we previously marked which side is
the interior of R, and we can use this information to determine whether s is on the outside
or on the inside of R (and then place s accordingly in Qin or in Qout).

• We remain with the case where the four neighboring squares are currently in Ti \ (Si ∪Qin ∪
Qout). In this case, we arbitrarily choose one of these four neighbours s′ and add s to the
“waiting list” of s′ (see below for the purpose of this list).

If several squares of Ti \ Si form a connected component, then either all of these squares are
in the interior of R or all of these square are in the exterior of R. Thus, each time that we
decide whether a square s ∈ Ti \ Si goes into Qin or into Qout, we inspect the waiting list of s
and place the squares that are in it in the same Q (we then have to check the waiting lists of
each of these squares, and so on).

The running time of the algorithm. Notice that 2p ≤ n < 4p, so for any asymptotic bound
that we derive with respect to n, we may replace n with p. To show that the running time of
the algorithm is O(p log p), we require following lemma.

Lemma 3.2. The number |Si| of interior-disjoint squares of size
√

2n/2i ×
√

2n/2i at step i
whose interior is intersected by ∂R is bounded above by 9 · 2i−1.

Proof. Partition the square of S0 into 4i interior-disjoint squares of size
√

2n/2i×
√

2n/2i, and
denote the set of these squares as S′i. Notice that Si ⊂ S′i. Specifically, Si consists of the squares
of S′i that are intersected by ∂R. We traverse ∂R starting from an arbitrary point v1. During
this process we will mark fewer than 9 · 2i−1 squares, so that the marked squares fully contain
the boundary of R. This would immediately imply |Si| < 9 · 2i−1.

We first mark a square of S′i that contains v1 (there are at most four such squares), and the
eight squares that surround it (i.e., share a vertex with it). We then continue to travel across
the boundary of R until we get to a point v2 that is not contained in any marked square. We
mark a square of S′i that contains v2 and the eight squares surrounding it (some of these squares
are already marked, and remain so). We then continue to travel until we reach a point v3 that
is not in any marked square. We continue in the same manner until we return to v1.

Notice that each time that we get to a point vi that is in no marked square, we mark fewer
than nine unmarked squares. After marking these squares, we travel at least 2n/2i steps along
∂R before we reach vi+1. Since ∂R is of length p ≤ n, the total number of marked squares is
smaller than 9 · 2i−1 �

The algorithm consists of t = log2 n iterations. Let us show that each iteration has a running
time of O(n), which would complete the proof of the theorem. Consider the running time of
the i-th iteration. By lemma 3.2, we start this iteration with a set Si−1 of O(2i) squares, and
partition it into a set Ti of O(2i) squares. For each new square we also record the four squares of
Qin ∪Qout ∪Ti that are its direct neighbors. Since handling each square of Ti requires constant
time, this step takes O(2i) = O(n) time.
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We then travel the boundary of R, and every time that we cross to a different square of Ti
we perform a constant number of operations (marking the entry point and possibly inserting
the square into Si). By considering the origin to be the bottom left corner of the square of
S0, we can easily decide when we enter a new square of Ti. This occurs exactly when the x or
y coordinate of our current position becomes 0 mod (n/2i). Thus, the entire traversal of the
boundary of R takes O(n) time.

The last part of the i-th iteration involves going over each square s ∈ Ti \ Si and checking
whether s is fully in the interior or in the exterior of R. This check is based on the the four
squares that surround s. The only case that takes more than a constant time occurs when none
of these squares is in Qin and Qout, while at least one is in Si. In this case we travel along
the boundary of such a neighboring square. The perimeter of such a square is 4n/2i, so each
instance of this case takes O(n/2i) times. By lemma 3.2, |Si| = O(2i) and we consider each
square of Si at most four times (at most once for each of its four direct neighbors). Thus, the
combined time of all of these checks is O(n).

The only issue that we did not consider so far is the time required to handle the waiting
lists. Since each square of Ti is in at most one such list, and since |Ti| = O(2i), the total time
for handling the waiting lists is O(2i) = O(n). Finally, It is easy to see that the last step of the
algorithm, of cutting the squares of St into triangles, requires O(n) time. This completes the
proof.

Bounding |S|. By Lemma 3.2, in the i-th iteration the algorithm adds fewer than |Si| < 9·2i−1
squares to Qin. Summing this quantity over the log2(n) iterations of the algorithm yields
|S| = O(n) = O(p), as asserted. Some of these squares may be split into two triangles, but this
does not affect the asymptotic size of S. �

Proof of Theorem 1.2. We begin by running the algorithm of Theorem 3.1, to obtain a subset
S ⊂ R of O(p) interior-disjoint squares and triangles that cover R. We build a graph G = (V,E),
where V consists of the points of ∂R and the vertices of the squares and triangles of S. An
edge (x, y) ∈ V 2 is in E if and only if x ≈S y. Notice that |V | = O(p).

Bounded degrees. We now prove that every vertex of G is of degree at most eight. That is,
that any point x ∈ S satisfies x ≈S y for at most eight points y ∈ S \ {x}.

x
x

x

y1

y2

(a) (b)

Figure 4. (a) When x ∈ ∂R, it is blocked by triangles. (b) The point x is the
corner of three squares and one pair of triangles of S.
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We first consider the case where x ∈ ∂R, which forces x to be adjacent to triangles of S
(and to at most one square); for example, see Figure 4(a). We say that x forms a valid pair
with y ∈ V if x ≈S y. In the current case, x forms a valid pair with vertices that are are in
a common triangle with it. Moreover, x forms a valid pair with a point y ∈ V that does not
share a triangle with it if and only if the straight-line segment between x and y is fully in the
interior of R, does not contain any other points of V , and has a slope ±1. Thus, in this case x
participates in at most seven valid pairs.

Next, consider the case where x /∈ ∂R and is at the corner of four squares and/or pairs of
triangles of S; for example, see Figure 4(b). As before, x creates a valid pair with each vertex of
V that shares a triangle with x. The maximum degree of eight is obtained when x is surrounded
by four pairs of triangles. If x is a vertex of a square s ∈ S, denote the two edges of s that are
adjacent to x as e1 and e2. Notice that x creates a valid pair with the point of V that is closest
to it along e1 and with the point of V that is closest to it along v2. For example, in the case of
the square to the right of x in Figure 4(b), these vertices are y1 and y2.

Beyond the valid pairs that are described in the previous paragraph, x cannot create a valid
pair with any other point of V . For example, in Figure 4(b) x cannot form a valid pair with
any additional vertex z that is to its right, since there must be a geodesic path between x and z
that contains either y1 or y2.

y1 y2

y3

x

x′

z1

z2

z3

z4

Figure 5. The case where x is on the boundary of a square s ∈ S without
being a vertex of s.

Finally, it is possible that x /∈ ∂R and x is on the boundary of a square s ∈ S without being
a vertex of s; for example, see Figure 5. In the figure, x does not form a valid pair with z2,
z3, and z4, due to geodesic paths that contain z1. While x ≈S y2, we have x 6≈S y1 due to a
geodesic path that contains y2. Similarly, x 6≈S y3 due to x′. By the way in which we perform
our subdivision of R into squares, it is impossible to have a subdivision where x but without
x′ (that is, the square below x cannot exist without the square to the right of x. The latter
square may be further subdivided). Similarly, x′ forms a valid pair with y3 but not with y2, y1,
and the vertices to the right of y3.

The examples in the previous paragraph illustrate a general principle: When x is on the
boundary of a square s ∈ S without being a vertex of s, out of the points y ∈ V for which the
segment xy intersects the interior of s, at most one point creates a valid pair with x. Specifically,
such a point y creates a valid pair with x if and only if the segment xy has slope 1 or -1, does
not contain any other point of S, and is fully in R. Thus, in this case x is of degree at most six
(and this degree is obtained when x is adjacent to two pairs of right-angled triangles).

Computing E. By the above degree restriction, we have |E| = O(p). To build E, we go over
each vertex of x ∈ V and look for the other points of V that form a valid pair with x. By
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considering the above cases, we notice that if x forms a valid pair with y ∈ V , then either x
and y are on a common triangle of S or the segment xy has slope of 1 or -1 and no other points
of V on it. To handle the former case, we simply go over every triangle in S and add its three
edges to E.

For every line ` of slope 1 that contains points of V , we keep an array of the points of V
that are on `, sorted by their x-coordinate. There are O(p) lines with a total of O(p) points
on them. Thus, the arrays can be built in O(p log p) time. We then go over every array and
add an edge between every two adjacent points on it, with the following exception. If we get
to a point x ∈ ∂R on `, we check whether ` leaves R in x and if so do not add the edge that
intersects the outside of R. We repeat the same process for lines with slope -1, which completes
the construction of E. Notice that this construction takes O(p log p) time.

By Theorem 2.3, R is tileable if and only if there exists a height function g : S → Z that
satisfies (2) for every x, y ∈ S with (x, y) ∈ E. We now describe an algorithm for finding such
a function g (or stating that such a function does not exist) in O(p log p) time. Specifically,
out of the set of functions that satisfy the above condition we find the maximum function hmax

defined in (1).

Computing g. We begin the algorithm by initializing several variables. Let h : ∂R → Z be
a valid height function. The beginning of Section 2 explains how to find such a function in
O(p) time (if such a function does not exist, we stop the algorithm and announce that R is not
tileable). Let A be an array with a cell for every point x ∈ S, such that eventually we would
have A[x] = g(x) (that is, A would describe g). We initially place “N” in each cell of A, to
state that g is currently undefined for the point that corresponds to the cell. Then, for every
x ∈ ∂R we set A[x] = h(x).

Let H be a heap with an element for every point of S (a standard binary heap would suffice).
For each x ∈ S with A[x] = N, the key H[x] of x is the maximum integer value for g(x) that
does not violate (2) with points that already have a value in A. At first, we insert every point
of S to H with key H[x] = ∞. Every time that we update a cell A[x] (including during the
above initialization of the points of ∂R in A), we remove x from H and update the keys of each
y ∈ S that is adjacent to x in G (that is, for which x ≈S y); specifically, for every such y we set
H[y] = min{H[y], A[x] + α(x, y)}. Notice that setting a value in a cell of A leads to updating
at most eight elements of H.

The main part of the algorithm consists of repeating the following process until the heap H
is empty and no cell of A contains the undefined value N. Let x be the point with the smallest
key k in H. We set A[x] = k, remove x from H, and update the keys of points that are adjacent
to x in G as described above. We then go over the vertices that are adjacent to x in G and
already have values in A. For each such vertex y, we check whether x and y satisfy (2). If not,
then we stop the algorithm and announce that R is not tileable.

If the above process ended since the heap H is empty and no cell of A contains the undefined
value N, then we obtain a function g that satisfies (2). In this case, we announce that R is
tileable.

Correctness. To prove that the algorithm is correct, it suffices to prove that the function g
that the algorithm computes is indeed the maximum height function hmax from (1) (although
defined only on the points of S). By Theorem 2.3, R is tileable if and only if such a function
exists.

We first claim that for each y ∈ S \ ∂R, there exists a point x ∈ S such that x ≈S y and
g(y)−g(x) = α(x, y). Indeed, if no such x exists then the algorithm would have assigned a larger
value to g(y) after removing y from H. Since α(x, y) > 0 when x 6= y, we obtain that g has no
local minimum (with respect to the edges of G) outside of ∂R. Specifically, a straightforward
induction on the (edge) distance of x from ∂R shows that for every y in the interior of R there
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is a path (x1, . . . , xn) in G such that y = x1, xn ∈ ∂R, and g(xi+1) − g(xi) = α(xi+1, xi) for
every 1 ≤ i < n.

We show that g = hmax on S by induction on the number of values that the algorithm
already set in A. For the induction basis, the claim follows by definition for every point of ∂R.
For the induction step, assume that in the i-th iteration of the algorithm the point y ∈ S \ ∂R
is chosen, since it has a minimum key in H. By the induction hypothesis, this key is

H[y] = min
(
A[x] + α(x, y)

)
= min

(
hmax(x) + α(x, y)

)
,

where the minima are over all x s.t. (x, y) ∈ E and A[x] 6= N.
From above, there exists a path (x1, . . . , xn) in G such that y = x1, xn ∈ ∂R, and g(xi+1)−

g(xi) = α(xi+1, xi) for every 1 ≤ i < n. That is, H[y] = h(xn) + α(xn, y). By inspecting the
definition of hmax in (1), we notice that to have hmax(y) = h(xn) +α(xn, y) it remains to prove
that there is no point z ∈ ∂R such that h(xn)+α(xn, y) > h(z)+α(z, y). A priori, this can only
happen if the value h(z) + α(z, y) was not yet discovered by the algorithm since some geodesic
path between y and z contains a point z′ ∈ S that is still in the heap H.

To see why the problematic scenario is impossible, notice that in the i-th iteration the key
of every point x that is still in H is at least h(xn) +α(xn, y); otherwise we would have removed
x from H before removing y. While some of these keys may be decreased in following steps of
the algorithm, no key will be decreased to a value that is smaller than h(xn) + α(xn, y) + 1.
Thus, when removing z′ from H, we have H[z′] ≥ h(xn) + α(xn, y). This in turn implies
h(z) + α(z, y) ≥ H(z′) + α(z′, y) > h(xn) + α(xn, y). That is, the problematic scenario cannot
occur, and the correctness proof is complete.

Running time of the algorithm. As already mentioned, obtaining S requires O(p log p)
time, building G requires O(p log p) time, and h is computed in O(p) time. Computing g (that
is, computing A) requires O(p) steps. Every step involves a constant number of operations.
Most of these operations require a constant time, except for removing the minimum element
from the heap and updating the keys of at most eight other elements. Each such operation
takes O(log n) time, so computing g requires O(p log p) time. �

Proof of Theorem 1.3. We begin by describing the preprocessing step. In this step, we first
run the algorithm of Theorem 1.2, to obtain a subset S ⊂ R of vertices of O(p) interior-disjoint
squares and triangles that cover R. We also obtain the values of the maximum height function
for the points of S. As stated in Theorem 1.2, this can be done in O(p log p) time. We then
preprocess the subdivision of R for point location queries (see e.g. [EGS]). Specifically, after
a preprocessing time of O(p), for any point x ∈ R we can find the square or triangle that
contains x in O(log p) time.

We now move to describe the query step, where we are given a query point x ∈ R. First,
we consider the case where x is not on the boundary of any square in the subdivision of R. By
using the point location algorithm, we find the square that contains x in O(log p) time. We then
partition this square into four subsquares of equal size, and add the vertices of these subsquares
into S. There are at most five new vertices, and we compute the height value of each in O(log p)
time, as in the proof of Theorem 1.2 (using the O(p) arrays that we built in that proof). Out
of the four subsquares, we find the one that contains x (again, assuming that x is not on the
boundary of any of them) and subdivide it into four squares as before. We repeat this process
until x is surrounded by eight vertices of S, as in Figure 6. We then have the height values of
x and of the eight vertices that surround it. By the conditions of Lemma 2.1 this implies the
behavior of the maximum tiling of R around x.

If at some point during the above process x is on the boundary of a square, we continue
the subdivision process with two other points — the one immediately above x and the one
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x

Q

Figure 6. The edges of the square Q are solid, while the edges that are added
in the subdivision steps of the query are dashed.

immediately below x. Notice that such a split from x into two other points can occur at most
once, and that at the end of the process we still obtain the height values of x and the eight
vertices that surround it.

In summary, the query algorithm stops after O(log p) steps, each taking O(log p) time. Thus,
handling a query requires O(log2 p) time. �

Remark 3.3. We believe that with slight modifications the running time of the query can be
improved to O(log p), but chose not to pursue this direction at this point.

4. Lozenge tilings

The results of this paper can be extended to other lattices, and specifically to lozenge tilings in
the triangular grid, which are dual to perfect matchings in a hexagonal grid. In this section we
present a brief outline for how to extend our result to the case of lozenge tilings. Once again
we follow Thurston, who defined the corresponding height function in the original paper [Thu]
(see also [Cha, R1]).

Figure 7. Coloring the triangular grid with three colors.

Let T be the triangular grid with a fixed coloring of the vertices in black, red, and blue, such
that every edge is adjacent to two vertices of different colors (see Figure 7). Let v1 be a vector of
length 1 in the positive direction of the x-axis, let v2 be v1 rotated counterclockwise by 120◦, and
let v3 be v1 rotated clockwise by 120◦. Every point of T can be written as av1+bv2+cv3 (where
a, b, c are non-negative integers) in infinitely many ways. For example, the origin can be written
as (a, a, a) for every non-negative a. However, after adding the condition min{a, b, c} = 0, for
every point p of T there is a unique way of writing p as av1 + bv2 + cv3. Using these unique
values of a, b, c, we say that the coordinates of p are (a, b, c).
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Let R be a simply connected region in T. Similarly to the characterization of height functions
for domino tilings in Lemma 2.1, a function h : R→ Z is the height function of a lozenge tiling
if and only if:

(i) For every two vertices x, y ∈ R, we have h(x)− h(y) = 0 mod 3 if and only if x and y
have the same color.

(ii) For every edge (x, y) ∈ ∂R with respective colors (black,red), (red,blue), or (blue,black),
we have h(x)− h(y) = 1.

(iii) For every edge (x, y) ∈ R, we have |h(x)− h(y)| ≤ 2.

Also as in the case of domino tilings, for any x ∈ R there exists a maximal height function
of the plane α(x, ·) with α(x, x) = 0. Specifically, α(x, y) is defined as the sum of the three
coordinates of y when considering x as the origin. In the triangular grid, we say that a sequence
of points (x1, . . . , xn) is a geodesic path if

• For every i < n, we have ‖xi+1 − x1‖1 = ‖xi − x1‖1+1.
• For every i < n, the points xi and xi+1 are corners of a common 1× 1 triangle in T.

Unlike the case of Z2, in the triangular grid geodesic paths do not necessarily minimize
the number of edges. Moreover, when travelling along a geodesic path, we only move in the
directions v1, v2, v3 (since moving in one of the other three directions will result in a step of
distance 2). Specifically, every geodesic path uses at most two of these three directions. As
before, for x, y ∈ T we denote by G(x, y) the union of the geodesic paths between x and y. It
is not difficult to verify that G(x, y) is always a parallelogram (possibly of width zero). Let S
be a set that contains ∂R and any number of points from the interior of R. We write x ≈S y
when x, y ∈ S and G(x, y)\{x, y} is disjoint from S. The following theorem is the lozenge tiling
analogue of Theorem 2.3.

Theorem 4.1. Let R be a simply connected region in T that contains the origin and let S ⊂ R
be a set that contains ∂R. Then R is tileable if and only if there exists g : S → Z such that
g = h on ∂R and for every pair x, y ∈ ∂S with x ≈S y we have

(3) − α(y, x) ≤ g(y)− g(x) ≤ α(x, y).

The proof of Theorem 4.1 follows verbatim the proof of Theorem 2.3. We omit the details.
Similarly, we can use a variant of Theorem 3.1 to find a subdivision of R into O(p) interior-
disjoint triangles of various sizes. The main difference is that here we use equilateral triangles
with side length 2i instead of squares. Indeed, every such triangle can be subdivided into four
interior-disjoint triangles of side length 2i−1. We set S to consist of ∂R together with the
vertices of the triangles of the subdivision. For any x ∈ S, it is not difficult to show that at
most six points y ∈ S for which x ≈S y (the actual bound seems to be smaller than six, but
this does not matter for our purpose). Finally, by revising the algorithm of Theorem 1.2, we
obtain the following theorem.

Theorem 4.2. Let R be a simply connected region in the triangular grid of the plane, and let
p = |∂R| be the perimeter of R. Then there exists an algorithm that decides tileability of R in
time O(p logp).

5. Final remarks and open problems

5.1. For general bipartite planar graphs, recent developments improve the Hopcroft–Karp
bound [HK] to nearly linear time. First, the existence of a perfect matching is equivalent to the
circulation problem, where all white vertices have supply 1 and all black vertices have demand 1.
It is known that the circulation problem in planar graphs can be solved within the same time
bound as the shortest path problem with negative weights on a related planar graph [MN]. The
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latter can be solved in time O(n log2 n/ log log n), see [MW]. This almost matches Thurston’s
original O(n log n) bound in Theorem 1.1.

5.2. Our oracle model for the perfect matching is similar to other models of sparse graph pre-
sentations, which are popular in the study of graph properties of massive graphs (see e.g. [Gol1]).
The idea is to give a sublinear size presentation of a perfect matching, amenable to running
further sublinear time algorithms; see e.g. [RS] for a primer on the subject.

5.3. Thurston originally defined and studied height functions for the domino tilings as in this
paper and for the lozenge tilings in a triangular lattice. Since then, many generalizations and
variations have been discovered. These include other rectangles in the plane [KK, Korn, R2],
other tiles in the triangular lattice [R1], rhombus tilings in higher dimension [LMN], perfect
matchings of more general graphs in the plane and other surfaces [Cha, Ito, STCR], and even
infinite domino tilings [BFR]. We refer to [Pak] for a (somewhat dated) survey of various
tileability applications of height functions and tiling groups.

On the complexity side, there are a number of NP-completeness results for the decision and
counting problems for general regions with small tiles, see e.g. [BNRR, MR], and more recently
for simply connected regions [PY1]. In case of domino tilings, there are also #P-completeness
results for 3-dimensional regions [PY2, V2].

The notion of height functions for domino and lozenge tilings has also made a remarkable
impact in Probability and MCMC studies (see e.g. [LRS, K2]).

5.4. The complexity of Thurston’s algorithm has been investigated to a remarkable degree
in the Computational Geometry literature. These include generalizations to regions with
holes [Thi], parallel computing [Fou], and more general graphs [Cha].

The idea behind our tileability criterion, stated in Lemma 2.2, was first given in the third
author’s thesis [Tas], in the context of tromino tilings. The criterion is especially surprising
given the fundamentally non-local property of the domino tileability, as elucidated by the aug-
mentablity problem (see [Korn, §11.3]).

5.5. We believe that our approach can be further extended to a variety of tiling problems
which admit height functions, such as tilings with bars (see [BNRR, KK, Tas]). In a different
direction, the heart of the proof is the idea of scaling represented by the squares which are used
heavily in Section 3. It would be nice to see this idea can be further developed. Finally, if the
boundary ∂R is given by some kind of periodic conditions (cf. [K1]), one can perhaps further
speed up the domino tileability testing. Unfortunately, at the moment, we do not know how to
formalize this problem.

Acknowledgements. We are very grateful to Scott Garrabrant and Yahav Nussbaum for in-
teresting discussions and helpful remarks. The first author was partially supported by the NSF.
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