

DISCRETE MATHEMATICS

Discrete Mathematics 178 (1998) 277-281

Note

A generalization of Sylvester's identity

Igor Paka,*, Alexander Postnikovb

^a Department of Mathematics, Harvard University, Cambridge, MA 02138, USA ^b Department of Mathematics, Massachusetts Institute of Technology, Cambridge, MA 02139, USA

Received 19 May 1995

Abstract

We consider a new generalization of Euler's and Sylvester's identities for partitions. Our proof is based on an explicit bijection.

1. Main results

A partition λ of n is a sequence $(\lambda_1, \lambda_2, \dots, \lambda_l)$ of positive integers such that $\lambda_1 \ge \lambda_2 \ge \dots \ge \lambda_l > 0$ and $\sum \lambda_i = n$. The numbers λ_i are called parts of λ . Denote by $l(\lambda)$ the number l of parts in λ .

One of the well-known facts in the theory of partitions is Euler's identity.

Theorem (Euler, 1748). The number of partitions of n with odd parts is equal to the number of partitions of n with distinct parts.

There exist several generalizations of Euler's identity (e.g. see [2, 5]). One of them is Sylvester's identity.

By $\mathcal{A}(n, k)$ denote the set of partitions of n into odd parts (repetitions allowed) with exactly k different parts. By $\mathcal{B}(n, k)$ denote the set of partitions $\lambda = (\lambda_1 > \lambda_2 > \cdots > \lambda_l)$ of n such that the sequence $(\lambda_1 - l, \lambda_2 - l + 1, \dots, \lambda_l - 1)$ has exactly k different elements. Let $A(n, k) = \# \mathcal{A}(n, k)$ and $B(n, k) = \# \mathcal{B}(n, k)$.

Theorem (Sylvester, 1882). A(n, k) = B(n, k).

^{*}Corresponding author.

Example. Let n = 13, k = 3. Then $\mathcal{A}(13,3) = \{(9,3,1), (7,5,1), (7,3,1^3), (5,3^2,1^2), (5,3,1^5)\}$ and $\mathcal{B}(13,3) = \{(9,3,1), (8,4,1), (7,4,2), (7,5,1), (6,4,2,1)\}$. Hence A(13,3) = B(13,3) = 5.

We present a generalization of these identities.

By $\mathcal{A}(n, m, c)$ denote the set of all partitions of n with parts $\equiv c \mod m$; $A(n, m, c) = \# \mathcal{A}(n, m, c)$.

We say that λ is a partition of type $(h_1, h_2, ...)$, if λ has exactly $h_1 \ge 1$ parts of maximal length, $h_2 \ge 1$ second by length parts, etc. Let $1 \le c < m$. By $\mathcal{B}(n, m, c)$ denote the set of all partitions of n of type (c, m - c, c, m - c, ...); $B(n, m, c) = \#\mathcal{B}(n, m, c)$.

Theorem 1. A(n, m, c) = B(n, m, c).

By $\mathcal{A}(n, m, c, k)$ denote the set of partitions $\lambda \in \mathcal{A}(n, m, c)$ with exactly k different parts.

A chain in a partition $\lambda = (\lambda_1 \geqslant \lambda_2 \geqslant \cdots)$ is a subsequence $\lambda_p, \lambda_{p+1}, \dots, \lambda_p$ such that $\lambda_i - \lambda_{i+1} \leqslant 1$ for $p \leqslant i < q$. Let $\mathcal{B}(n, m, c, k)$ denote the set of all partitions $\lambda \in \mathcal{B}(n, m, c)$ such that λ has exactly k maximal chains.

Let $A(n, m, c, k) = \# \mathcal{A}(n, m, c, k)$ and $B(n, m, c, k) = \# \mathcal{B}(n, m, c, k)$.

Theorem 2. A(n, m, c, k) = B(n, m, c, k).

It is clear that for m = 2, c = 1, Theorem 1 is Euler's identity and Theorem 2 is Sylvester's identity. In Section 2 we present a bijective proof of Theorems 1 and 2. Our bijection generalizes the original Sylvester's bijection but the construction is quite different. We also generalize the following Fine's identity.

Theorem (Fine, 1954). The number of partitions of n into distinct parts with largest part s is equal to the number of partitions of n into odd parts such that 2s + 1 is equal to the largest part plus two times the number of parts.

We call the number $d(\lambda, m, c) = \#\{i: \lambda_i \ge mi + c\}$ (m, c)-depth of a partition $\lambda = (\lambda_1, \lambda_2, ..., \lambda_l)$, where $1 \le c < m$.

Theorem 3. The number of partitions $\lambda \in \mathcal{B}(n, m, c, k)$ with the largest part $\lambda_1 = s$ such that the number of parts $l(\lambda) = mr + m$ or $l(\lambda) = mr + c$ is equal to the number of partitions $\mu \in \mathcal{A}(n, m, c, k)$ such that $\mu_1 + ml(\mu) = ms + c$ and $d(\lambda, m, c) = r$.

Obviously, for m = 2, c = 1 Theorem 3 generalizes Fine's identity.

Remark. Sylvester's identity and bijection were first published in [9]. Fine's identity was found in [2]. Andrews was probably the first who realized that Fine's identity

may be concluded from Sylvester's bijection (see [1]). There exists another Fine's theorem related to this subject (see [6, 1, 3]). In contrast with the first one it does not follow from Sylvester's bijection. It would be interesting to find its generalization in a spirit of the combinatorial proof given in [4].

2. Construction of bijection and proof of theorems

Proof of Theorems 1-3 is based on properties of the bijection $\psi: \mathcal{A}(n, m, c) \to \mathcal{B}(n, m, c)$ which we will construct later.

Recall several standard definitions from the theory of partitions (see [2, 8]).

With a partition $\lambda = (\lambda_1 \geqslant \lambda_2 \geqslant \cdots \geqslant \lambda_l > 0)$ we associate its *Young diagram* which is the set of pairs $(i, j) \in \mathbb{Z}^2$ such that $1 \leqslant i \leqslant l$, $1 \leqslant j \leqslant \lambda_i$. Pairs (i, j) are arranged on the plane \mathbb{R}^2 with i increasing downward and j increasing from left to right. The diagram will be presented in form of a set of 1×1 -boxes centered at (i, j).

A partition $\lambda' = (\lambda'_1 \ge \lambda'_2 \ge \cdots \ge \lambda'_s > 0)$ is called *conjugate* to a partition $\lambda = (\lambda_1 \ge \lambda_2 \ge \cdots \ge \lambda_l > 0)$ if their Young diagrams are symmetric to each other with respect to the principal diagonal. Note that $\lambda'_1 = l(\lambda)$ is the number of parts of λ and $(\lambda')' = \lambda$.

The sum of partitions λ and μ is a partition $\lambda + \mu$ such that $(\lambda + \mu)_i = \lambda_i + \mu_i$. The union of partitions λ and μ is a partition $\lambda \cup \mu$ such that its parts are the union of parts of λ and μ arranged in nonincreasing order. It is easy to see that $(\lambda \cup \mu)' = \lambda' + \mu'$. Let $m \cdot \lambda = \lambda + \lambda + \cdots + \lambda$ (m times) and $\lambda/m = \mu$ if $\lambda = m \cdot \mu$.

The Generalized Frobenius Representation (α, β) of $\lambda \in \mathcal{A}(n, m, c)$ is defined as follows. Let $d = d(\lambda, m, c)$ be (m, c)-depth of λ . Let $\alpha_i = \lambda_i - mi + m - c$, $1 \le i \le d$ be the number of boxes in the *i*th row of λ to the right of the point (i, mi - m + c). Let $\beta_j = \lambda'_j - \lfloor (j-a)/m \rfloor$, $1 \le j \le mc + d$ be the number of boxes in the *j*th column of λ below the point $(\lfloor (j-a)/m \rfloor, j)$, (here $\lfloor x \rfloor$ denotes the maximal integer such that $\lfloor x \rfloor \le x$).

Then $\alpha = (\alpha_1 > \alpha_2 > \cdots > \alpha_d > 0)$, $\alpha_i \equiv 0 \mod m$; and $\beta = (\beta_1 \geqslant \beta_2 \geqslant \cdots)$. Define a map ψ by $\psi(\lambda) := \beta + \gamma$, where $\gamma = (m \cdot (\alpha/m)')'$.

Prove that ψ is a bijection between $\mathcal{A}(n,m,c)$ and $\mathcal{B}(n,m,c)$. It is clear that β is a partition of type (c,m,m,\ldots) and γ is of type (m,m,m,\ldots) . Hence, $\beta+\gamma$ is of type $(c,m-c,c,m-c,\ldots)$, i.e. $\psi(\lambda)\in\mathcal{B}(n,m,c)$. Conversely, for each $\mu\in\mathcal{B}(n,m,c)$ there is a unique decomposition $\mu=\delta+\nu$, where δ is a partition of type (c,m,m,\ldots) and ν of type (m,m,m,\ldots) . Indeed, δ' consists of all parts of μ' congruent with $c \mod m$ and $c \mod m$ and $c \mod m$ and $c \mod m$ are in a bijection between $c \mod m$ and $c \mod m$. Then $c \mod m$ are proved Theorem 1.

Example. Let $\lambda = (10, 7^2, 4^3, 1) \in \mathcal{A}(37, 3, 1)$. Then $\alpha = (9, 3)$; $\beta = (7, 5^3, 1^3)$; $\gamma = (3 \cdot (\alpha/3)')' = (3 \cdot (3, 1)')' = (3 \cdot (2, 1^2))' = (6, 3^2)' = (3^3, 1^3)$; $\psi(\lambda) = \beta + \gamma = (10, 8^2, 6, 2^2, 1) \in \mathcal{B}(37, 3, 1)$ (See Fig. 1).

Fig. 1.

Note that $\lambda \in \mathcal{A}(37,3,1,4)$, because λ has exactly four different parts 11, 7, 4, 1; and $\psi(\lambda) \in \mathcal{B}(37,3,1,4)$, because $\psi(\lambda)$ has exactly four maximal chains (10), (8,8), (6), (2,2,1). Note also that $d(\lambda,3,1) = 2$.

In order to prove Theorems 2 and 3 we shall verify the corresponding properties of the bijection ψ .

Lemma 1. If $\lambda \in \mathcal{A}(n, m, c, k)$ then $\psi(\lambda) \in \mathcal{B}(n, m, c, k)$.

Proof. Let $d = d(\lambda, m, c)$. Note that the number of parts $l(\psi(\lambda))$ of $\psi(\lambda)$ is equal to $\max(l(\beta), l(\gamma)) = md + m$ if $l(\beta) < l(\gamma)$ and $l(\psi(\lambda)) = md + c$ if $l(\beta) > l(\gamma)$. Let

$$Q = \{1 \le q \le l(\psi(\lambda)): \psi(\lambda)_q - \psi(\lambda)_{q+1} > 1\};$$

$$Q_1 = \{1 \le q \le l(\beta): \beta_q - \beta_{q+1} > 1\};$$

$$Q_2 = \{1 \leqslant q \leqslant l(\gamma): \gamma_q - \gamma_{q+1} > 1\}.$$

Clearly, if $q \in Q_1$ (or $q \in Q_2$) then $q \equiv c$ (or $q \equiv 0$) mod m. Hence, $Q_1 \cup Q_2 = Q$, $Q_1 \cap Q_2 = \emptyset$, and $\#Q = \#Q_1 + \#Q_2$.

Then #Q = k - 1, i.e. $\psi(\lambda)$ has exactly k maximal chains. Therefore, $\psi(\lambda) \in \mathcal{B}(n, m, c, k)$.

Theorem 2 immediately follows from Lemma 1.

Lemma 2. If $\lambda \in \mathcal{A}(n, m, c, k)$ and $\mu = \psi(\lambda) \in \mathcal{B}(n, m, c, k)$ then $\lambda_1 + ml(\lambda) = m\mu_1 + c$.

Proof. Clearly $\mu_1 = \psi(\lambda)_1 = \beta_1 + \gamma_1 = l(\lambda) + \alpha_1/m = l(\lambda) + (\lambda_1 - c)/m$. Hence, $\lambda_1 + ml(\lambda) = m\mu_1 + c$.

This lemma completes the proof of Theorem 3. \square

3. Conclusion

Proposition 1. If m = 2 and c = 1 then the bijection $\psi : \mathcal{A}(n, 2, 1) \to \mathcal{B}(n, 2, 1)$ coincides with Sylvester's bijection.

Fig. 2.

We do not present here the original Sylvester's construction (see [9]). There exists a simple inductive proof of this proposition.

Example. Let $\lambda = (7, 5, 3^2)$. Then $\alpha = (6, 2)$; $\beta = (4, 3^2)$; $\gamma = (3^2, 2)$; and $\psi(\lambda) = (7, 6, 4, 1)$. The idea of Sylvester's bijection is clear from Fig. 2.

Note also that for m = 1 and c = 0 the Generalized Frobenius Representation is exactly Frobenius Representation (see [8]) and (1,0)-depth is the size of *Durfee's Square* (see [2]).

Acknowledgements

We are grateful to Andrei Zelevinsky for helpful remarks and to George Andrews for interest in this paper and help with the references.

References

- [1] G.E. Andrews, On basic hypergeometric series, mock theta functions and partitions 1, Quart. J. Math. Oxford Ser. 17 (1966) 132-143.
- [2] G.E. Andrews, The Theory of Partitions, Encyclopedia of Mathematics and its Applications, Vol. 2 (Addison-Wesley, Reading, MA, 1976).
- [3] G.E. Andrews, On a partition theorem of N. J. Fine, J. Nat. Acad. Math. 1 (1983) 105-107.
- [4] G.E. Andrews, Use and extension of Frobenius representation of partitions, in: D.M. Jackson and S.A. Vanston, eds., Enumeration and Design (Academic Press, New York, 1984) 51-65.
- [5] D.I.A. Cohen, PIE-sums: a combinatorial tool for partition theory, J. Combin. Theory, Ser. A 31 (1981), 223-236.
- [6] N.J. Fine, Some new results on partitions, Proc. Nat. Acad. Sci. USA 34 (1948), 616-618.
- [7] N.J. Fine, Some basic hypergeometric series and applications, Unpublished monograph.
- [8] I.G. Macdonald, Symmetric Functions and Hall Polynomials (Claredon Press, Oxford, 1979).
- [9] J.J. Sylvester, A constructive theory of partitions, arranged in three acts, an interact and an exodin, Amer. J. Math. 5 (1882) 251-330; 6 (1884) 334-336.