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Abstract

We consider a new generalization of Euler’s and Sylvester’s identities for partitions. Our
proof is based on an explicit bijection.

1. Main results

A partition A of n is a sequence (4;,4,,...,4;) of positive integers such that
M= Ay = - 2 Ay >0and Y A; = n The numbers 4; are called parts of 1. Denote by
I{A) the number ! of parts in 1.

One of the well-known facts in the theory of partitions is Euler’s identity.

Theorem (Euler, 1748). The number of partitions of n with odd parts is equal to the
number of partitions of n with distinct parts.

There exist several generalizations of Euler’s identity (e.g. see [2, 5]). One of them is
Sylvester’s identity.

By .« (n, k) denote the set of partitions of n into odd parts (repetitions allowed) with
exactly k different parts. By %#(n, k) denote the set of partitions 4 = (4, > i, > -
> /;) of n such that the sequence (4; — LA, — I + 1,..., 4, — 1) has exactly k different
elements. Let A(n, k) = # o/(n, k) and B(n, k) = # B(n, k).

Theorem (Sylvester, 1882). A(n, k) = B(n, k).
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Example. Let n =13, k = 3. Then #(13,3) = {(9,3,1), (7,5,1), (7,3,1%), (5,3%12),
(5,3,1%)} and #(13,3) = {(9,3,1), 8.4,1), (7,4,2), (7,5,1), (6,4, 2, 1)}. Hence A(13,3) =
B(13,3)=5.

We present a generalization of these identities.

By & (n, m, c) denote the set of all partitions of n with parts = cmod m; A(n,m,c) =
# ./ (n,m, ).

We say that A is a partition of type (hy,h,,...), if A has exactly h; > 1 parts of
maximal length, h, > 1 second by length parts, etc. Let 1 <c <m. By #(n,m,c)
denote the set of all partitions of n of type (¢c,m —c,c,m —c,...); B(n,m,c) =
#B(n,m,c).

Theorem 1. A(n,m,c) = B(n,m,c).

By /(n,m,c, k) denote the set of partitions A € &/ (n,m,c) with exactly k different
parts.

A chainin a partition 4 = (4, > 4, > ---)is a subsequence 4,,4,+, ..., 4, such that
Ai— A1 <1 for p<i<gq. Let #(n,mck) denote the set of all partitions
A€ #(n,m,c) such that A has exactly k maximal chains.

Let A(n,m,c, k) = # =/ (n,m,c, k) and B(n,m,c, k) = # B(n,m,c, k).

Theorem 2. A(n,m,c,k) = B(n,m,c,k).

It is clear that for m = 2, ¢ = 1, Theorem 1 is Euler’s identity and Theorem 2 is
Sylvester’s identity. In Section 2 we present a bijective proof of Theorems 1 and 2. Our
bijection generalizes the original Sylvester’s bijection but the construction is quite
different. We also generalize the following Fine’s identity.

Theorem (Fine, 1954). The number of partitions of n into distinct parts with largest part
s is equal to the number of partitions of n into odd parts such that 2s + 1 is equal to the
largest part plus two times the number of parts.

We call the number d{4,m,c) = # {i: A; = mi + ¢} (m,c)-depth of a partition A =
(Ars A2y, 4y), where 1 < c < m.

Theorem 3. The number of partitions A € #(n,m, c, k) with the largest part A, = s such
that the number of parts 1(A) = mr + m or I(A) =mr + ¢ is equal to the number of
partitions u € o/ (n,m, c,k) such that puy, + mli(u) = ms + ¢ and d(A,m,c) =r.

Obviously, for m = 2, ¢ = 1 Theorem 3 generalizes Fine’s identity.

Remark. Sylvester’s identity and bijection were first published in [9]. Fine’s identity
was found in [2]. Andrews was probably the first who realized that Fine’s identity
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may be concluded from Sylvester’s bijection (see [1]). There exists another Fine’s
theorem related to this subject (see [6, 1, 3]). In contrast with the first one it does not
follow from Sylvester’s bijection. It would be interesting to find its generalization in
a spirit of the combinatorial proof given in [4].

2. Construction of bijection and proof of theorems

Proof of Theorems 1-3 is based on properties of the bijection Y :.2/(n,m,c) >
2(n,m,c) which we will construct later.

Recall several standard definitions from the theory of partitions (see [2, 8]).

With a partition 4 = (4; = 4, = --- = A, > 0) we associate its Young diagram which
is the set of pairs (i, j) € Z* such that 1 <i </, 1 <j < A;. Pairs (i, j) are arranged on
the plane R? with i increasing downward and j increasing from left to right. The
diagram will be presented in form of a set of 1 x 1-boxes centered at (i, j).

A partition 2’ = (4] 2 13, = - 2 A; > 0) is called conjugate to a partition A =
(A1 = 4, = -+ = A4, > 0) if their Young diagrams are symmetric to each other with
respect to the principal diagonal. Note that 47 = [ (4) is the number of parts of A and
Ay =4

The sum of partitions 1 and p is a partition 4 + g such that (A + u); = 4; + ;. The
union of partitions A and p is a partition AU u such that its parts are the union of parts
of A and u arranged in nonincreasing order. It is easy to see that (Aupu) = 4" + p'. Let
mi=Ai+i+ - +A(mtimes)and i/m=pif L=m-p

The Generalized Frobenius Representation (o, f) of A€ o/ (n,m,c) is defined as
follows. Let d = d(4,m,c) be (m,c)-depth of A. Leta; =4, —mi+m—c, 1 <i<dbe
the number of boxes in the ith row of A to the right of the point (i, mi — m + ¢). Let
B;=4;—|(j—a)/m]), 1 <j< mc+ d be the number of boxes in the jth column of
A below the point (| (j — a)/m |, j), (here | x | denotes the maximal integer such that
[x ] <x)

Thena=(x; >0, > - >0>0), 0, =0modm;and f=(B, = .= --).

Define a map ¢ by y(4):= B + y, where y = (m"(a/m)’)’.

Prove that ¥ is a bijection between .o/ (n,m,c) and #(n,m,c). It is clear that § is
a partition of type (¢,m,m,...) and y is of type (m,m,m, ...). Hence, § + y is of type
(c;m —c,e,m —c,...), Le. Y(d) € B(n,m,c). Conversely, for each u e #(n,m,c) there is
a unique decomposition u = é + v, where ¢ is a partition of type (¢,m,m, ...) and v of
type (m,m,m,...). Indeed, &' consists of all parts of u’ congruent with ¢ modm
and v’ consists of all parts of y' congruent with 0 mod m. Then y = (§'UVv) =9 + v
Therefore, 1 is a bijection between o/ (n,m,c) and #(n,m,c) and we have proved
Theorem 1.

Example. Let /. =(10,72,4% 1)e #/(37,3,1). Then a=(9,3; B=(7,513);
v=03(@3)) =331 =03-(21%) =(63%) =3%1%); ¥ =p+y=(10,8?%
6,2%,1) € #(37,3,1) (See Fig. 1).
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Note that 4 € #/(37,3, 1,4), because A has exactly four different parts 11,7,4, 1; and
V(4) e $(37,3,1,4), because Y (4) has exactly four maximal chains (10), (8,8), (6),
(2,2,1). Note also that d(4,3,1) = 2.

In order to prove Theorems 2 and 3 we shall verify the corresponding properties of
the bijection .

Lemma 1. If A € &/ (n,m,c, k) then (1) € B(n,m,c, k).
Proof. Let d = d(A,m,c). Note that the number of parts I(¥(4)) of ¥(4) is equal to
max(I(f), (7)) = md + m if I(B) < I(y) and I(Y(4)) = md + c if I(B) > l(y). Let
Q={1<g<IW@): YA — ¥(Ag+1 > 1}
0, = {1 g <Il(B): Ba— Bar1> 1};

Q> ={1<g<l(y) 74— vg+1> 1}

Clearly, if g€ Q, (or ge Q,) then g =c¢ {or ¢ = 0)modm. Hence, Q; vQ, =0,
0;nQ;=0,and #Q = #Q1 + #0>.

Then #Q =k — 1, ie. (1) has exactly k maximal chains. Therefore, y(4) €
B(n,m,c, k).

VAN

Theorem 2 immediately follows from Lemma 1.
Lemma 2. If A e o/ (n,m,c, k) and p = yi(d) € Z(n,m,c, k) then Ay + ml(4) = myu, + c.
Proof. Clearly p; = ¢(1); = 1 +y1 = l(4) + ay/m =1(4) + (4, — ¢)/m. Hence, 4, +
ml(d) = myy + c.

This lemma completes the proof of Theorem 3. [
3. Conclusion

Proposition 1. Ifm = 2 and ¢ = 1 then the bijection y : s (n,2,1) — #(n, 2, 1) coincides
with Sylvester’s bijection.
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We do not present here the original Sylvester’s construction (see [9]). There exists
a simple inductive proof of this proposition.

Example. Let 1 =(7,5,3%). Then o =(6,2); f=(4,3%); y=(3%2); and ¢())=
(7,6,4,1). The idea of Sylvester’s bijection is clear from Fig. 2.

Note also that for m = 1 and ¢ = 0 the Generalized Frobenius Representation is
exactly Frobenius Representation (see [8]) and (1,0)-depth is the size of Durfee’s
Square (see [2]).
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