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Abstract. We present an algebraic approach to the classical problem of constructing a sim-

plicial convex polytope given its planar triangulation and lengths of its edges. We introduce
polynomial invariants of a polytope and show that they satisfy polynomial relations in terms

of squares of edge lengths. We obtain sharp upper and lower bounds on the degree of these

polynomial relations. In a special case of regular bipyramid we obtain explicit formulae for

some of these relations. We conclude with a proof of Robbins Conjecture [R2] on the degree

of generalized Heron polynomials.

1. Introduction

Rigidity of convex polytopes is a classical subject initiated almost two hundred years ago
with The Cauchy Rigidity Theorem. The work on rigidity and metric geometry of 3-dimensional
convex polytopes was later continued by A.D. Aleksandrov and his school, and by now has
become a subject on its own right, with a number of techniques and applications (see e.g. [C4,
CW, GSS]). In an important development [S1, S2, S3, S4], Sabitov introduced polynomial
relations for the volumes and “small diagonals” of nonconvex polyhedra1. In this paper we
introduce an algebraic approach to problems of rigidity by establishing the existence of such
relations for convex polytopes in great generality. One can view these polynomial relations
as a quantitative version of the classical rigidity theorems. We conclude with a number of
examples and special cases. The proofs involve ideas from algebraic geometry and some delicate
calculations.

Fix a planar triangulation G and a function ` on its edges: `(ei) = `i. The Cauchy Rigidity
Theorem says that every continuous deformation of P which preserves the edge lengths is in
fact a rigid (Euclidean) motion. Cauchy further extended his result to show that P is in fact the
only polytope, up to translations and rotations in R3, with the same lengths and combinatorics
of edges (see Section 2.5 for a precise statement). In a different direction, existence of polytopes
with a given and edge length is a difficult problem only partly resolved by the celebrated
Aleksandrov’s Existence Theorem (see Section 2.6). We are interested in the following problem:

• Construct a polytope P from its graph G and edge lengths `1, . . . , `m,

where by construct we mean compute its metric invariants, such as lengths of the diagonals,
i.e. compute the coordinates of vertices v1, . . . , vn of (any rigid motion of) P . This classical
problem has been the source of inspiration for decades, and remains largely open. In recent
years it reappeared in a computer science context [E] and in mathematical literature [S3, S4].
Our algebraic approach to the problem gives a theoretical solution and at the same time limits
the possibility of an effective “practical” solution.

The main objects studied in this paper are realization spaces of polytopes (see Section 2.3)
and polynomial invariants (see Section 6). Broadly speaking, realization spaces are moduli

?Department of Mathematics, MIT, Cambridge, MA, 02139. Email: maksym@mit.edu, pak@math.mit.edu.
1Throughout the paper we always use the word polytope for convex bodies and the word polyhedron for non-

convex bodies.
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spaces of embeddings of vertices of a graph G into R3, which correspond to polytopes com-
binatorially equivalent to a given simplicial polytope P with graph G. Similarly, polynomial
invariants are, roughly, polynomials in coordinates of the polytope vertices, invariant under
Euclidean transformations. We use the geometry of realization spaces to prove general results
on polynomial invariants. The following theorem is the main result of the paper.

Denote by fi the squared length of the edge ei written as a polynomial in the coordinates.

Theorem 1.1. Let G be a plane triangulation with m edges, and let I = IG(·) be a polynomial
invariant of convex polytopes with graph G. Then I satisfies the following nontrivial polynomial
relation:

(◦) CN I
N + CN−1 I

N−1 + . . . + C1 I + C0 = 0,

where coefficients Cr ∈ C[f1, . . . , fm] depend only on the graph G and the invariant I. Moreover,
for the degree N of polynomial relation (◦) we have: N ≤ 2m.

The upper bound in the theorem will be further strengthened in Section 6, where it is stated
in terms of realizations of polytopes, and will be coupled with the lower bound.

The theorem is an extension of Sabitov’s work [S1, S2, S3, S4], where he showed that one
can construct a polytope P by finding explicit polynomial relations for the length dij of the
diagonal joining vertices vi and vj , for certain pairs (i, j). We have in this case:

Corollary 1.2. Let G be a plane triangulation with m edges, and let P be a convex polytope
with graph G. Then for every a pair (i, j) of vertices in G, the length of the diagonal dij is a
root of a nonzero polynomial

(∗) cN xN + cN−1 xN−1 + . . . + c1 x + c0 ,

where coefficients cr ∈ C[`1, . . . , `m] depend only on the graph G and the pair (i, j). Moreover,
the degree N is at most 4m.

Let us emphasize here that fi are polynomials in the coordinates, while the edge lengths `i

and diagonal lengths dij are real numbers. This distinction will be important here and in the
future.

Observe that once we have all dij , we can immediately construct the polytope P . Indeed,
without loss of generality, we can assume that vertices v1, v2 and v3 form a triangular face with
given coordinates. Now use the diagonal lengths d1i, d2i and d3i to compute the coordinates
of vi. See Section 10 for further remarks on the history and references.

To see the connection between Corollary 1.2 and the Cauchy Rigidity Theorem simply observe
that nonzero equations (∗) imply that the diagonal lengths take a discrete set of values. Since
a simplicial polytope P can be constructed given its diagonal lengths, this implies that there
can be at most a finite number of realizations of P . Thus, the polytope cannot be continuously
deformed with its edge lengths being preserved.

Now, the rigidity argument fails for edge lengths {`i} when all polynomials cr are zero. This
is related to existence of nonrigid polyhedra, called flexors. Such polytopes must have edge
lengths so that all polynomial coefficients cr vanish for (usually) several polynomial invariants,
corresponding to a certain subset of the diagonals. In fact, Sabitov shows that relations (∗) are
nonzero on “small diagonals” of convex polytopes.

Interestingly, Sabitov’s approach is motivated by the Bellows Conjecture for flexors. Ex-
istence of flexors was a long standing open problem until their celebrated discovery by Con-
nelly [C1, C3] (see also [D, S5]). The Bellows Conjecture states that the volume of flexors
remains invariant under continuous transformation. Sabitov showed [S3, S4] that the volume of
flexors satisfies the polynomial relation (◦), with the polynomial CN (`1, . . . , `m) = ±1. This im-
plies Bellows Conjecture by the reasoning as above. Similarly, for convex polytopes Theorem 1.1
gives the following result.
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Corollary 1.3. Let G be a plane triangulation with m edges, and let P be a convex polytope
with graph G. Then the volume vol(P ) is a root of a nonzero polynomial

(∗∗) cN xN + cN−1 xN−1 + . . . + c1 x + c0 ,

where coefficients cr ∈ C[`1, . . . , `m] depend only on the graph G. Moreover, the degree N is at
most 2m.

We introduce polynomial invariants of P in Section 6 and prove for them polynomial rela-
tions (◦) and the degree condition. The proof naturally splits into two parts. First, we look
into the proof of the Cauchy Rigidity Theorem and extract an algebraic ingredient needed in
the algebraic part. We then prove a key algebraic lemma (Generic Freeness Lemma 4.1) and
deduce the results from there.

Our interest in the degrees of polynomial relations is rooted in our belief that the problem
of constructing polytopes is computationally intractable. We elaborate further on this problem
in Section 10.

Our second reason to study the degrees of polynomial relations lies in the following unex-
pected application. Let S(a1, . . . , an) denote the area of a n-gon inscribed in a circle with the
side lengths a1, . . . , an. Note that S(·) is a symmetric function of n variables [R2]. Define the
sequence {∆i} as follows:

(♣) ∆k :=
2k + 1

2

(
2k

k

)
− 22k−1 =

k−1∑

i=0

(k − i)

(
2k + 1

i

)
,

which has a combinatorial interpretation as the total number of (both convex and nonconvex)
(2k + 1)-gons inscribed in a circle. The initial terms of the sequence are: ∆1 = 1, ∆2 = 7,
∆3 = 38, ∆4 = 187, ∆5 = 874, etc.

Theorem 1.4. (Robbins Conjecture) For every n there exists a nonzero polynomial

(s) cν xν + cν−1 xν−1 + . . . + c1 x + c0 ,

with a root S
2(a1, . . . , an) and coefficients ci ∈ C[a2

1, . . . , a
2
n]. Moreover, the smallest possible

degree ν = ν(n) of such polynomial is equal to ∆k if n = 2k + 1, and 2∆k if n = 2k + 2.

One can view (s) as generalizations of the Heron formula for the area of a triangle (see Sec-
tion 2.8 below). In this language, Robbins computed generalized Heron polynomials for n =
4, 5, 6, conjectured Theorem 1.4, and made additional conjectures based on these observa-
tions [R1, R2].

From the above combinatorial interpretation of ∆k Robbins derived the lower bound as in the
theorem (ibid.), but the upper bound remained elusive. The effort to obtain explicit formulas
for generalized Heron polynomials has recently received much attention [L], when Robbins and
Roskies partially resolved2 the case n = 7.

Until now no connection between the Robbins Conjecture and the rigidity of polytopes has
been established. In Section 7.6 we compute polynomial relations (◦) for the ‘main diagonal’
of a regular bipyramid. Then, in Section 8 we use these results to prove Robbins Conjecture.
Finally, in Section 10 we outline additional applications and directions for future research.

On exposition. The nature of this paper is rather unusual as we use elements of Rigidity
Theory, Algebraic Geometry, and classical Geometric Combinatorics. Rather than make the
paper a patchwork between the fields, we made a decision to include some background material
and several known results. We hope this helps to illustrate and illuminate our approach, and
allows the reader unfamiliar with the subject to follow the presentation. The paper is now
nearly self-contained, with possible exception of basic results in Algebraic Geometry. The
history, connections to known results, and pointers to references are postponed till Section 10.

2This work continues after Robbins’ death and these calculations were recently reported in [MRR].
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2. Definitions and basic results

2.1. Graph of a polytope. Throughout the paper we consider only simplicial polytopes,
unless explicitly stated otherwise. As in the introduction, let P be a convex simplicial polytope
in R3. Vertices of P are denoted by v1, . . . , vn, edges by e1, . . . , em, and edge lengths by
`1, . . . , `m. Let V = {v1, . . . , vn} and E = {e1, . . . , em}. Since every face is a triangle, Euler’s
formula gives m = 3n− 6.

Denote by G the graph (1-skeleton) of P . The cyclic order on edges adjacent to the same
vertex gives it a structure of a plane graph [Bo]. In our case, graph G is, in fact, 3-connected
and has a unique (up to isomorphism) embedding into a sphere. By a slight abuse of notation,
we use vi and ej to refer to vertices and edges of G as well.

We say that G is a triangulation if each face of G (including the outside face) is a triangle.
Clearly, a graph of a simplicial polytope is a triangulation.

A pair L = (G, L) is called length diagram of P , where L : E → R+ given by L(ej) = (`j)
2 is

a length function on edges of G. As we mentioned earlier, The Cauchy Rigidity Theorem says
that two convex polytopes with the same length diagram are congruent.

Let W ⊂ R〈E〉 be any subspace of length functions L as above. The pair W = (G,W ) is
called length family, and corresponds to a family of polytopes containing P . The dimension d =
dim(W ) is called degree of freedom of the length family W.

Many natural “polytopes” are in fact families of polytopes as opposed to length diagrams of
individual polytopes. For example, regular tetrahedron and regular octahedron correspond to a
complete graph K4 and a complete tripartite graph K2,2,2 with all edges of the same length.
The dimension of the subspace W is one in this case.

2.2. Examples of families of polytopes. Here is a natural way to obtain the length family
as above. Let E = td

i=1Ei be a partition of E into disjoint sets of edges, and let W be a
vector space of all length functions such that edges from the same set Ei have the same length:
L(ej) = L(er) for all ej and er in the same Ei. Clearly, the number d of subsets Ei is equal to
the degree of freedom of a corresponding length family W.

For example, an equilateral bipyramid corresponds to a length family F = (Gn,W ), where Gn

is a graph on (n + 2) vertices V = {v1, . . . , vn, u1, u2} with edges E = E0 t E1, where E0 =
{(u1, v1), . . . , (u1, vn), (u2, v1), . . . , (u2, vn)} and E1 = {(v1, v2), . . . , (vn−1, vn), (vn, v1)}. The
degree of freedom d(W) is equal to 2.

Observe that equal lengths of edges in E0 imply that points v1, . . . , vn lie of the intersection
of two spheres (of the same radius). Thus they lie on the same plane H. Now equal lengths
of edges in E1 imply that v1, . . . , vn ∈ H form a regular n-gon, and thus the polytope P is a
union of two regular pyramids.

A different example is a regular bipyramid which corresponds to a length family F = (G,W ),
where Gn is a graph defined above with edges E = E0 tn

i=1 Ei. Here E0 is as above, Ei =
{(vi, vi+1)}, for 1 ≤ i < n, and En = {(v1, vn)}. In this case points v1, . . . , vn again lie on the
same plane H, and the corresponding polytope P is a union of a n-pyramid and its reflection
with respect to H. In this case the degree of freedom d(W) is equal to n + 1.

2.3. Realization space. Define a realization of a graph G to be a map ϕ : V → R3, and let
M◦(G) be the set of all realization of G. We say that a realization is convex if the points
ϕ(v1), . . . , ϕ(vn) ∈ R3 are in a strictly convex position. In other words, we cannot have

ϕ(vi) =
∑

j 6=i

αjϕ(vj), where αi are positive numbers such that α1 + . . . + αn = 1.

In addition, we require that the edges of the convex polytope spanned by vi coincide with the
edges of G. Define a natural action of the group of Euclidian motions G = SO(3, R) n R3 on
all realizations of G:

[gϕ](vi) := g · ϕ(vi) , where g ∈ G and vi ∈ V.
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Without loss of generality, we shall assume that vertices v1, v2 and v3 form a triangle in G. We
say that a realization ϕ is planted if ϕ(v1) = (0, 0, 0), ϕ(v2) = (a, 0, 0), and ϕ(v3) = (b, c, 0) for
some a, b, c ∈ R. Observe that for every realization ϕ of G there is a unique g ∈ G such that gϕ
is planted. Unless stated otherwise, from this point on we consider only planted realizations.

Define realization space of the graph G to be the set M(G) of convex planted realizations of G.
Similarly, define realization space of the length diagram L = (G, L) to be the set M(G, L) ⊂
M(G) of realizations of G which preserve the distances |ϕ(vi) − ϕ(vj)|2 = L(vi, vj). Finally,
realization space of the length family W = (G,W ) is defined to be the set M(G,W ) ⊂ M(G)
of realizations of G such that the edge length function satisfies L ∈ W , where the lengths
function L : E → R is defined by L(vi, vj) := |ϕ(vi)− ϕ(vj)|2.

Note that the condition that vertices form a convex polytope is an open condition on the
coordinates and, therefore, the realization space M(G) is an open subset of Rm. The original
motivation behind this paper was the study of realization spaces M(G,W ) of general families
of polytopes. We will return to this problem in Section 10.

2.4. Complex realizations. One can modify the notion of a realization of the graph G to
the field C: a complex realization is a map ϕ : V → C3 and the corresponding ‘squared length
function’ is a map L : E → C. Formally, define WC = W ⊗R C to be a complexification of W .
Now let MC(G,W ) be the set of complex realizations ϕ with L ∈WC.

While the notion of convexity does not translate directly, we still have definitions of ‘planted
polytopes’, of realization space of ‘polytope families’, etc. As we will see in the next section,
there are certain advantages of working with an algebraically closed field.

Let us also mention here that our ‘complex realizations’ of G can contain ‘degenerate con-
figurations’ such as those where two or more vertices are mapped into the same point. As we
mention in Remark 5.2, it is often useful to avoid such realizations.

2.5. Cauchy and Aleksandrov rigidity theorems. Let G be a 3-connected plane graph.
The Steinitz Theorem says that there always exists a convex polytope P with graph G. In other
words, the realization space M(G) is nonempty.

Suppose G = (V,E) is a graph of a (planted) simplicial polytope P , and let L : E → R+

be the corresponding length function. The Cauchy Rigidity Theorem basically says that the
realization space M(G, L) of the length diagram L = (G, L) consists of isolated points3. Cauchy
further showed that the realization space M(G, L) of the length diagram L = (G, L) contains
only one point corresponding to P . Aleksandrov Rigidity Theorem shows that polytope P is
uniquely determined by the metric space of the boundary ∂P ; in other words the “diagonals”
defining triangulation of the unfolding, are also uniquely determined.

2.6. Aleksandrov existence theorem. Consider the boundary S = ∂P as a metric space. Of
course, S is determined by the edge lengths `i and the way graph G is embedded into a sphere.
Clearly, the metric space S is locally convex, i.e. the sum of the angles in the triangles adjacent
to every vertex is at most 2π. This property can be turned into a definition: metric space S
is an Aleksandrov space if S is locally convex and homeomorphic to a sphere (see [BGP]). A
classical Aleksandrov’s Existence Theorem4 says that for every Aleksandrov space S, there exists
a convex polytope Q whose boundary ∂Q is isometric to S. Unfortunately, the proof uses the
Inverse Function Theorem and cannot be used to construct polytope P .

3Recall that by definition the realization space M(G, L) contains only convex realizations.
4Until recently this work was somewhat overlooked in the West. Even now there is still no published exposition

of the proof in English. The interested reader should consult [A2] or its German translation.
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2.7. The volume of a polytope. Let us show that the volume vol(P ) of a convex simplicial
polytope P is a polynomial in the coordinates of the vertices v1, . . . , vn ∈ R3. Indeed, fix an
orientation of the boundary S = ∂P of the polytope P , i.e. an orientation of all triangles
(vi, vj , vk) ∈ S. We claim that

(♦) vol(P ) =
1

6

∑

(vi,vj ,vk)∈S

det
(
vi, vj , vk

)
.

Indeed, let S = S+ ∪ S−, where S+ is the union of triangles which have det
(
vi, vj , vk

)
≥ 0, and

let S− be a union of triangles which have det(vi, vj , vk) < 0. Let P+ (P− resp.) be a convex hull
of the origin 0 and S+ (S− resp.). Now observe that vol(P ) = vol(P+)− vol(P−), and P+ (P−)
is a union of simplices (0, vi, vj , vk) whose volume is 1

6

∣∣det
(
vi, vj , vk)

∣∣. Since each determinant
is a polynomial in coordinates of vi, so is the volume of P .

The argument above extends to all (nonconvex) simplicial polyhedra and easily generalizes
to higher dimension.

2.8. The volume of a simplex. Let v1, . . . , vn ∈ Rn−1 be vertices of a (n − 1)-dimensional
simplex P . As before, denote by fij the square of the lengths of the diagonal (vi, vj), 1 ≤ i <
j ≤ n. The volume of P can be computed by the Cayley-Menger determinant :

(♥) vol2(P ) =
(−1)n

2n−1(n− 1)!2
det




0 1 1 1 . . . 1
1 0 f12 f13 . . . f1n

1 f12 0 f23 . . . f2n

1 f13 f23 0 . . . f3n

...
...

...
...

. . .
...

1 f1n f2n f3n . . . 0




.

Thus, the volume of a simplex is a root of a quadratic equation in the squared edge lengths fij ,
in any dimension. We refer to [GK, § 3.6.1] for the references (see also [Be, CSW]).

One can think of (♥) as a generalization of the Heron formula for the area of a triangle S
with side length a, b and c:

(M) area2(S) = ρ(ρ− a)(ρ− b)(ρ− c) =
1

16

(
2a2b2 + 2a2c2 + 2b2c2 − a4 − b4 − c4

)
,

where ρ = 1
2 (a + b + c) is half the perimeter of S.

2.9. The area of an inscribed quadrilateral. Recall the classical Brahmagupta formula for
the area of a convex quadrilateral T with side lengths a, b, c, d, and which is inscribed into a
circle:

(�) area2(T ) = (ρ− a)(ρ− b)(ρ− c)(ρ− d),

where ρ = 1
2 (a + b + c + d) is half the perimeter of T (see e.g. [Had, § 255]). As we show in

Section 8, formulas by Heron and Brahmagupta give polynomial relations (s) as in Theorem 1.4.

3. Characteristic map

Let P be a planted convex simplicial polytope in R3 with the graph G = (V,E). As in
the introduction, denote by E = {e1, . . . , em} the set of edges of P , and let `r denote the
lengths of er, 1 ≤ r ≤ m. Formally, the squared length of edge er = (vi, vj) between vertices
vi = (xi, yi, zi) and vj = (xj , yj , zj) is given by a quadratic polynomial

fr = (xi − xj)
2 + (yi − yj)

2 + (zi − zj)
2

.
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Recall that the number of ‘free coordinates’ in a planted simplicial polytope is equal to 3n−6
as six coordinates are set to be zero. Since m = 3n − 6 in every triangulation, we can define
the following characteristic map of the graph G:

F = FG : R
m → R

m defined as F = (f1, . . . , fm)

Proposition 3.1. The characteristic map F is regular on M(G).

The proof will follow one of the standard proofs of the Cauchy Rigidity Theorem. We include
it here for completeness and so that we can use the notation and technique in the future.

We start with the following two simple lemmas.

Lemma 3.2. Let e1 = (w, v1), . . . , ek = (w, vk) be the edge vectors of a simplicial convex
polytope P in R3, given the same cyclic order, and assume that vertex w = 0 is in the origin.
Suppose α1e1 + . . . + αkek = 0 is a nontrivial linear combination. Then there are at least four
sign changes (in the cyclic order) in a sequence α1, . . . , αk.

Proof. By convexity, all vi lie on the same side of some hyperplane H going through 0. Thus,
if all αi ≥ 0, (there are no sign changes), the linear combination u = α1e1 + . . . + αkek also lies
on the same side of H, which is impossible.

Suppose now there are only two sign changes. Without loss of generality we can assume that
α1, . . . , αm ≥ 0, and αm+1, . . . , αk ≤ 0. Again, by convexity there exists a hyperplane H which
goes through the origin and separates e1, . . . , em from em+1, . . . , ek (see Figure 1). But then all
vectors e1, . . . , em, −em+1, . . . ,−ek lies again on the same side of H, and thus so is the linear
combination u = α1e1 + . . . + αkek. Since u = 0, this is impossible. �

PSfrag replacements

v1

v2

v3

v4

v5

w

Figure 1. Hyperplane separating edges (w, v1), (w, v2) and (w, v3), (w, v4),
(w, v5) of a polytope P .

Lemma 3.3. Let G = (V,E) be a plane triangulation, and suppose vertices (v1, v2, v3) form
a triangle. Assume that the edges of G are labeled by {+,−, 0} so that each vertex except
for v1, v2, v3, either has all edges labeled 0, or has at least four sign changes in the cyclic order.
Then all edges are labeled 0. Here a sign change is a pair of consecutive edges (in the cyclic
order) adjacent to the same vertex and labeled with different + or − signs.

Proof. We refer to edges and vertices of the base triangle (v1, v2, v3) as base edges and base
vertices. We say that edges labeled + or − are marked, and those with 0 are unmarked. We
call a vertex v clean if all edges adjacent to v are unmarked.

We first consider a case when there are exactly four sign changes at each nonbase vertex.
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Let n denote the number of nonbase vertices in G. Use induction to show that the number
of nonbase edges in G is m = 3n. Thus, the total number of edges is 3n + 3, and the number
of faces in the plane triangulation G is r = 2(3n + 3)/3 = 2n + 2.

Let us compute the total number of sign changes. At each nonbase vertex we have at least
four sign changes, hence in total we must have at least 4n sign changes. On the other hand,
there are at most two sign changes in each triangular face. Moreover at each face adjacent to
the base at most two edges are marked, so we can have only one sign change there. Finally,
in the base face we have no sign changes. Hence the total number of sign changes is at most
2(r − 4) + 3 = 4n− 1, a contradiction.

Now consider a graph G with clean vertices. Given such a graph, we delete all the clean
vertices along with their adjacent faces and edges to obtain a graph G′. The case when G′ is
a triangulation is considered above. Hence assume that G′ is not simplicial. Let d denote the
number of triangles needed to triangulate all non-triangular faces of G′. If n is a number of
vertices of G′, then the number of its faces is F = 2n − 4 − d. Since we deleted at least one
vertex with adjacent faces and G′ is not simplicial, d is at least 2. Assume first that the base
face of G is present in G′. We have at most two sign changes in all faces except the base face,
where there are none. Therefore, there are at most

2(F − 1) = 2(2n− 5− d) = 4n− 10− 2d ≤ 4n− 14

sign changes. In a different direction, each nonbase vertex has at least four sign changes.
Therefore there are at least 4(n− 3) = 4n− 12 sign changes, a contradiction.

Similarly, if the base face is absent in G′, then there are at most 2 base vertices left in G′,
and thus by counting sign changes in faces we conclude that there are at least 4(n − 2) sign
changes. On the other hand, by counting sign changes around vertices we conclude that there
are at most 2(2n− 4− d) sign changes, a contradiction. �

Proof of Proposition 3.1 The Jacobian of the characteristic map F is a m × m matrix of

differentials
(
df1, . . . , dfm

)T
. Assume that rows of Jacobian are linearly dependent at a point

s ∈ M(G) for a plane graph G of a convex polytope Ps ⊂ R3 defined as a convex hull of the
image points F(s). Then there exist α1, . . . , αm ∈ R such that

α1 · df1(s) + . . . + αm · dfm(s) = 0.

Using the explicit formula for dfr corresponding to edges er = (i, j), and restricting to three
columns corresponding to a nonbase vertex vi we have

∑

j

αr · (xi − xj , yi − yj , zi − zj) = 0,

where summation is taken over all edges er = (vi, vj) ∈ E incident to the vertex vi. The linear
dependence of the rows implies that there is an assignment of weights αr on respective nonbase
edges er, such that the weighted sum of edge vectors at each of the nonbase vertices is 0.

Now, label each edge er of the plane graph G (of the convex polytope Ps) with the sign of
the coefficient αr. If αi = 0, label it with 0. By Lemma 3.2 and 3.3 we conclude that all αr = 0,
which completes the proof. �

4. Generic Freeness Lemma

Recall that by Proposition 3.1 the Jacobian of the characteristic map F = (f1, . . . , fm) does
not vanish on M(G), an open subset of Rm. Therefore, the Jacobian is a nontrivial polynomial
and polynomials fi are algebraically independent.

Recall, that a morphism f : X → Y is étale at a point p if dfp : TpX → Tf(p)Y is an
isomorphism. Note that nonvanishing of the Jacobian is an equivalent condition for F to be
étale at the point.
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Let Z be a hypersurface on which the Jacobian vanishes. Then the image F(Z) is a Zariski-
locally closed subset of Cm of dimension at most m − 1. Therefore, F(Z) is not dense in Cm.

Denote V = Cm − F(Z) and observe that F : F−1(V )→ V is étale by definition. Denote by U
the open subset of the preimage F−1(V ). Since F is étale, it is open on U and hence dominant,
i.e. its image is dense. This property of characteristic map is crucial in the proof of the lemma
below.

We are interested in polynomial relations (◦) as in Theorem 1.1 for all polynomial invariants.
The fact that the characteristic map is étale on a nontrivial open subset of Cm allows us
to establish the existence of a polynomial relation (◦) for every polynomial invariant and to
estimate the degree N of this polynomial relation. The proof of Theorem 1.1, the main result
of this paper, uses the following technical lemma.

Lemma 4.1 (Generic freeness). Let k be an algebraically closed field and X be an irreducible
algebraic variety of dimension m over k. Denote by A the ring of rational functions on X, and
let f1, . . . , fm ∈ A. Suppose F = (f1, . . . , fm) : X → km is a dominant morphism. Then the
algebraic closure of B = k[f1, . . . , fm] inside A is the whole A. Moreover, for any g from A,
the degree of g over B is equal to the number of different values that g takes on the preimages
of a general point in km.

Proof. First, let us show that every element g in A is algebraic over B. Indeed, the ring A has
transcendence degree m. Elements f1, . . . , fm and g lie in this ring and cannot be algebraically
independent. However, elements fi are algebraically independent since F is dominant. We
conclude that g is algebraic over B. Furthermore, since B ⊂ A are integral domains and g ∈ A
is algebraic over B, there exists a minimal irreducible polynomial Fg ∈ B[t], such that Fg(g) = 0.

Note that the coefficients of Fg are polynomial in f1, . . . , fm. Since values of F = (f1, . . . , fm)
lie in km, we, by abuse of notation, also denote by Fg the minimal polynomial in m+1 variables
such that Fg(g(a)) = Fg

(
f1(a), . . . , fm(a), g(a)

)
for all a in X.

We can now estimate the degree d of g over B. Consider a morphism F̂ = (F, g) : X → km+1.

Clearly, F is a composition of F̂ and a projection π : km+1 → km on the first m coordinates.

The image of F̂ lies in the hyperplane H defined by the polynomial Fg. Clearly, a generic

point in km has d preimages in H under π. On the other hand, since F is dominant, F̂ is

also dominant. Therefore, for a generic point all its preimages under π lie in the image of F̂.
We conclude that d is equal to the number of preimages of a generic point from km under

projection π which lie in the image of F̂. Finally, this number is exactly the number of values
that g takes on the preimages of a generic point from km under F. �

5. Geometry of realization space of polytopes

The following theorem describes the realization space of a given length family W = (G,W )
of polytopes with a graph G and an edge function given by L ∈ W. We also show that this
result implies The Cauchy Rigidity Theorem.

Theorem 5.1. Let W = (G,W ) be the length family with degree of freedom dim(W ) = d.
Then the realization space M(G,W ) ⊂ Rm is a smooth real manifold of real dimension d. This
manifold is an open subset of real points of an ambient Zariski-locally closed irreducible set
X(G,W ) of complex dimension d in Cm.

Proof. Let F : Cm → Cm be a complexification of the characteristic map of the graph G. Recall
that polynomial map F is étale on Zariski open subset U ⊂ Cm where the Jacobian of F is
nonvanishing. From Proposition 3.1 we conclude that U contains M(G,W ).
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The subspace WC ⊂ Cm is an irreducible algebraic set, so WC ∩ F(U) is also irreducible.
Since F : U → F(U) is étale and surjective, the set X(G,W ) := F−1(WC) ∩ U is closed and
irreducible in U . Since F is étale, we have

dimC(X(G,W )) = dimC(WC) = dimR(W ) = d.

On the other hand, from the analytic point of view, the map F : M(G) → Rm is regular by
Proposition 3.1. Therefore, the preimage of W

Sreal = F−1(W ) ∩ R
m

is a real smooth manifold of the same dimension d. This implies the result. �

Remark 5.2. The set X(G,W ) will be used in the future discussion in place of the whole
MC(G,W ). In many ways the space X(G,W ) behaves better than MC(G,W ). In particular,
X(G,W ) is irreducible and has the correct dimension d = dim(W ).

We say that a continuous deformations of a convex polytope P preserves faces if it defines
an isometry on each of the facets. We are now ready to deduce the Cauchy Rigidity Theorem
from our results.

Corollary 5.3 (The Cauchy Rigidity Theorem). There are no continuous deformations of a
convex polytope P ⊂ R3 which preserve the faces of P .

Proof. A triangulation with diagonals of faces of a convex polytope P satisfies the conditions of
Lemma 3.3. Hence it suffices to prove the result when P is simplicial. Then every continuous
deformation as in the statement of the corollary must preserve the graph G of P (a plane
triangulation) and the edge lengths. As in the introduction, the result follows from the fact
that there exists only a finite number of convex simplicial polytopes with the same graph and
edge lengths.

First, we can always assume that the convex polytope and all deformations are planted;
use a Euclidian motion to translate these into a planted position otherwise. Now fix a length
diagram L = (G, L) and consider a one-dimensional family of polytopes W = (G,W ), where
W = R〈L〉. By Theorem 5.1 the (real) realization space M(G,W ) is also one-dimensional.
Therefore, the realization space M(G, L) is finite since each point in M(G, L) corresponds to a
line in M(G,W ). This completes the proof. �

6. Polynomial invariants of a polytope

Let v1, . . . , vn ∈ R3 denote the vertices of a convex polytope in the realization space of the
graph G. Let I : R3n → R be a polynomial in the coordinates of vi. Denote by G = SO(3, R)nR3

the group of all Euclidean motions of R3. We say that I(·) is a polynomial invariant of G if I(·)
is invariant under the natural action of the group G on all convex polytopes P with graph G.
The squares of diagonal lengths (dij)

2 are the basic examples of polynomial invariants. Another
example in the volume vol(P ) which is clearly invariant under G, and is a polynomial as shown
in Section 2.7.

We write I(P ) for the value of I(·) on vertices of P . Since I(P ) is an invariant under the
action of G on P , everywhere below we restrict our attention only to values of polynomial
invariants of planted polytopes. We are now ready to prove the main result of this paper.

Proof of Theorem 1.1. As we showed in Proposition 5.1, the complex realization space
MC(G,W ) contains a locally closed irreducible subset X(G,W ) of dimension d = dim(W ).
We define a polynomial map H = (h1, . . . , hd) : X(G,W )→ Cd, where the length functions hi

form a basis in the vector space W , i.e. 〈h1, . . . , hd〉 = W . Map H is a composition of the
characteristic map F corresponding to G and a projection onto d coordinates. Since F is



RIGIDITY AND POLYNOMIAL INVARIANTS OF CONVEX POLYTOPES 11

dominant on X(G,W ) and the projection is also dominant, so is H. Moreover, the invariant I is
a rational function on X(G,W ), as in Lemma 4.1. From Lemma 4.1, the polynomial invariant I

is algebraic over C[h1, . . . , hd] and the degree of I is exactly the number N of values the
polynomial invariant I takes on preimages under H of the general point from W .

Recall that hi =
∑

j cij fj are linear combinations of quadratic polynomials fj defining

squared lengths of edges. The number N of preimages of (b1, . . . , bd) ∈ Cd is the number of
solutions of the linear system of m quadratic equations:

fj = aj , where 1 ≤ j ≤ m, which satisfy
∑

j

cij aj = bi, where 1 ≤ i ≤ d,

and (a1, . . . , am) ∈ F(X) ⊂ Cm. For a general point in Cm, the number of solutions of this
system is finite. By Bezout theorem, we conclude N is at most 2m. This completes the proof
of Theorem 1.1. �

Let us note that Corollary 1.3 follows immediately from Theorem 1.1 since volume is a
polynomial invariant. Similarly, Theorem 1.1 implies that squares of diagonal lengths (dij)

2

are roots of polynomial relations of degree at most 2m. Substituting (dij)
2 in place of I into

the polynomial relation (◦) we obtain the polynomial relation (∗) for dij of degree at most 4m,
which proves Corollary 1.2.

LetW = (G,W ) be the length family, and let M(G,W ) be the realization space ofW. Denote
by FW,I the minimal polynomial relation for I restricted to the realization space M(G,W ),
and let

η(W, I) := deg FW,I.

It is intuitively clear that the smaller the degree of freedom d = dim(W ), the smaller is the
degree of the minimal polynomial relation for I. The following result makes this intuition
precise.

Proposition 6.1. Let W1 = (G,W1) and W2 = (G,W2) be two length families with W2 ⊂W1.
Let I be a polynomial invariant of the graph G. Then η(W1, I) ≥ η(W2, I).

Proof. It suffices to prove the result for dim(W2) = dim(W1) − 1. Denote by F1 = FW1,I

and F2 = FW2,I the minimal polynomial relations for I restricted to X1 = X(G,W1) and
X2 = X(G,W2), respectively. Now, the set X2 is contained in the set X1 of dimension d, where
d = dim(W1) is the degree of freedom of W1. The characteristic map of W1 is

H = (f1, . . . , fd) : X1 → C
d.

Without loss of generality assume that X2 ⊂ H−1(x1, x1, x2, . . . , xd−1) ⊂ X1. Let

F1(x) = Crx
r + . . . + C1x + C0 ,

where Ci ∈ C[f1, . . . , fd]. Since F1 is minimal, we have (Cd, . . . , C0) = 1. Therefore there
exists i, such that (f1 − f2) does not divide Ci. Since Ci vanishes on the whole X2 only if
(f1 − f2) | Ci, we conclude that all Ci do not vanish simultaneously on X2. This implies that
the restriction of F1 to X2 is nontrivial and has degree less or equal than deg F1. Therefore,
the degree of the minimal polynomial F2 is less or equal than degree of F1. �

We conclude with the upper and lower bounds on the degree η(W, I).

Corollary 6.2 (The Upper Bound). In the notation above, let m be the number of edges of G.
Then the degree η(W, I) ≤ 2m. Moreover, η(W, I) is at most the number of complex realizations
|MC(G, L)|, for a general L ∈W , where W = (G,W ).
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Proof. Theorem 1.1 gives an upper bound η(G, I) ≤ 2m on the degree of the polynomial
relation (◦) for the case when the degree of freedom deg(W ) = m. On the other hand, Propo-
sition 6.1 gives η(W, I) ≤ η(G, I).

For the second claim, recall the use of Bezout theorem in the last step of the proof of
Theorem 1.1. Instead, observe that the number of complex realizations |MC(G, L)| is equal to
the number of preimages of F. Following the proof of Theorem 1.1, we obtain the result. �

Corollary 6.3 (The Lower Bound). In the notation above, let IC(L) denote the set of values of
a polynomial invariant I on complex realizations in X(G, L). Then the degree η(W, I) ≥

∣∣IC(L)
∣∣

for every length diagram L ∈ W. Moreover, the inequality becomes an equality for almost all
length diagrams.

Proof. Indeed, different values of polynomial invariant I correspond to different roots of poly-
nomial relation (◦) as in Theorem 1.1. This implies that the degree of every nontrivial relation
is at least

∣∣IC(L)
∣∣. The second claim follows from Lemma 4.1. �

Remark 6.4. The upper and lower bounds are tight (see the next section), but in general may
not be close to each other. In fact, the number of complex (and even real) realizations of the
length diagram can be infinite, as shown by certain diagonals in flexors. On the other hand, in
several special cases, such as regular bipyramid, these bounds determine the degree precisely.

7. Examples

Let us summarize the results we obtained so far from a combinatorial point of view. Consider
a planar 3-connected triangulation G, let E = tiEi be a partition of edges, and let W be the
corresponding subspace of (squared) length functions constant on each Ei. We consider the
realization space M(G,W ) of convex planted polytopes with graph G and (squared) lengths of
edges in W .

Given a “combinatorial” polynomial invariant I (such as a squared length of the diagonal d2
ij

or the volume) of G, restricted to realization space M(G,W ), there exists a minimal polynomial
relation FW,I for I, whose coefficients are polynomials in the squared edge lengths fi (Theo-
rem 1.1). The degree η(W, I) = deg FW,I is an important combinatorial invariant, perhaps the
most interesting when the partition is maximal, in which case it is denoted η(G, I).

It seems, the problem of computing η(G, I) and η(W, I) in general, is difficult even in very
simple examples. Below we present several special cases to illustrate the results.

7.1. Tetrahedron. For G = K4 and a squared length function L(i, j) > 0, 1 ≤ i < j ≤ 4, there
is a unique tetrahedron P up to reflections and Euclidean motions. In contrast, there are eight
planted realizations of P , all real and obtained one from another by reflections with respect
to axis hyperplanes: |M(G, L)| = 8. There are no diagonals to be determined, but the volume
is a polynomial invariant. On these eight realizations the volume takes two values: ±vol(P ).
Thus, by the lower bound lemma 6.2 the volume is a root of a polynomial of degree at least
two. In fact, as shown in (♥), Section 2.8, the volume is a root of a quadratic polynomial.
In the notation above η(G, vol) = 2. It is instructive to compare this value with the (very
weak) first part of the upper bound: η(G, vol) ≤ 26 = 64. The second part gives a better
bound η(G, vol) ≤ 8 in this case.
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Figure 2. Two realizations of a triangular bipyramid.

7.2. Triangular bipyramid. Let G = K3,2 and fix a general squared length family W. As in
Section 2.2, denote the vertices v1, v2, v3, u1, u2. Observe that up to reflections and Euclidean
motions there are two complex realizations of (G,W): one convex and one nonconvex (see
Figure 7.2).

There are four different values of the volume: vol(P ) ∈ {A+B,A−B,−A−B,−A+B}, where
A = vol(v1, v2, v3, u1) and B = vol(v1, v2, v3, u4). Thus we have the lower bound η(G, vol) ≥ 4
for the minimal degree of polynomial relation in terms of squared edge length functions fi. The
following polynomial relation achieves the bound and shows that η(G, vol) = 4:

(†) F (x) := (x−A−B)(x + A−B)(x−A + B)(x + A + B).

Indeed, observe that

(††) F (x) = x2 − 2(A2 + B2)x2 + (A2 −B2)2.

Since A2 and B2 are quadratic polynomials in the squared edge lengths, the polynomial rela-
tion F (x) is a degree four polynomial relation.

Similarly, there is only one diagonal whose squared length is a polynomial invariant which
we denote by I. Again, the lower and first part of the upper bound give:

2 ≤ η(G, I) ≤ 29 = 512.

The second part in the upper bound can be shown to give η(G, I) ≤ 16. Already in this simple
case we do not know the precise value of η(G, I). It would be interesting to compute explicitly
the minimal polynomial relation FG,I.

7.3. Snake polytopes. Consider a polytope Pk obtained by gluing together k tetrahedra as
follows. Start with the base (v1, v2, v3) and consider the tetrahedra τ1 = (v1, v2, v3, u1), τ2 =
(u1, v2, v3, u2), τ3 = (u2, v2, v3, u3), . . . , and τk = (uk−1, v2, v3, uk) (see Figure 3). Let Gk

denote the graph of Pk.

PSfrag replacements

v1

v2

v3

u1
u2 u3 u4

Figure 3. Snake polytope P4.

Observe that every two successive tetrahedra can be glued in two ways. Taking orientation
into account, this gives 2k possible values of the volume. Thus η(Gk, vol) ≥ 2k. The following
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product is the minimal polynomial relation for the volume:

(\) Fk(x) :=
∏

ε1∈{±1}

. . .
∏

εk∈{±1}

(
x + ε1A1 + . . . + εkAk

)
,

where Ai = vol(τi) is the volume of i-th tetrahedron τi. Note that

Fk(. . . ,−Ai, . . .) = Fk(. . . , Ai, . . .),

which implies that Fk is a polynomial in squared volumes vol2(τi). Since vol2(τi) is a polynomial
in squared edge lengths polynomials fi, we conclude that (\) gives the minimal polynomial
relation for the volume of Pk.

Note that the number of edges in Pk is m = 3(k + 1), so the first part of the upper bound
gives η(Gk, vol) ≤ 2m = 8k+1. Similarly, the second part of the upper bound can be shown to
give η(Gk, vol) ≤ 2k+2 = 4 · 2k. This differs only by a constant from the lower bound 2k.

7.4. Icosahedron. Let P be a regular icosahedron and let G be the corresponding plane trian-
gulation with a constant (squared) length function L. This is our first example where computing
coordinates of vertices of P is a nontrivial task (see e.g. [Had, §564]).

The “longest diagonal” in this case is two times the radius of a sphere circumscribed around
the icosahedron. Its length, is linear, of course, in the edge length. Of course, this does not imply
that η(W, I) = 1 since the minimal degree η(W, I) is for a polynomial relation for polynomials
in the coordinates of the vertices, not the real numbers which evaluate the squared edge lengths.
The lower bound immediately gives η(W, I) ≥ 3 as either of both of the longest diagonal vertex
links can be bent inside. We skip the details.

Of course, the degree η(G, vol) (of “generic icosahedra”) would be very interesting to com-
pute. The icosahedron has m = 30 edges, so the upper bound η(G, vol) ≤ 230 ≈ 1.07 · 109

is rather discouraging. The second part of the upper bound is probably much smaller but
hard to estimate. See [Mi] for a detailed analysis5 of interesting length families with degree of
freedom d = 3, and [Kl] for general background on icosahedron.

7.5. Nearly equilateral bipyramid. Let Gn be as in Section 2.2, a graph of a bipyramid with
the set of vertices V = {v1, . . . , vn, u1, u2}. Suppose the length of edges (v1, v2),. . . ,(vn−1, vn)
is a, of (v1, vn) is b, and of edges (vi, uj) is c. Denote byW the corresponding length family with
degree of freedom 3. Note that the corresponding bipyramid P is regular, and is equilateral
when a = b.

The squared length d2 of the ‘main diagonal’ (u1, u2) is a polynomial invariant. Thus, so
is the squared radius r2 = c2 − d2/4 of the circle circumscribed the n-gon (v1, . . . , vn). The
number of complex realizations of (G,W) is exponential in n, which gives an exponential upper
bound for the degree η(G,W) of the minimal polynomial relation for r2. On the other hand,
one can obtain the equation (∗) as in Corollary 1.2 of degree 2(n− 1).

Denote O the center of the circumscribed circle, and let 2α := ∠(v1Ov2) = . . . = ∠(vn−1Ovn),
and 2β := ∠(v1Ovn). We have: sin α = a/2r, sin β = b/2r, cos2 α = 1− (a/2r)2, and cos2 β =
1− (b/2r)2. Since (n− 1)α + β = π, we have the following equation:

(‡) cos2(n− 1)α = cos2 β.

Using Chebyshev polynomials of the first kind Tk(cos x) = cos nx, we rewrite both sides of (‡)
as polynomials of 1/r2:

(‡‡) T 2
n−1

( a

2r

)
= 1− b2

4r2
.

Multiplying both sides of (‡‡) by r2(n−1) we obtain the desired equation for r of degree 2(n−1).

5The reader might want to compare our proof of Theorem 5.1 with the proof of Theorem 4.2 in [Mi].
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7.6. Regular bipyramid. In the notation above, let Gn be the graph of a bipyramid with the
set of vertices V = {v1, . . . , vn, u1, u2}. Let Wn be the corresponding length family. Denote
the lengths of edges `(v1, v2) = a1, . . . , `(vn−1, vn) = an−1, `(v1, vn) = an, and `(vi, uj) = b.
Denote by d the length of the ‘main diagonal’ (u1, u2). Recall that vertices v1, . . . , vn lie on a
circle, and denote by r the radius of this circle. Clearly, r = r(a1, . . . , an) is independent of b,
even though r2 = b2 − d2/4.

To emphasize the difference, denote by fi quadratic polynomials giving the squared edge
lengths a2

i , by h the squared edge length b2, by g a polynomial giving the squared diagonal
length d2, and by R = h− g/4 the squared radius length r2.

From above, R is a polynomial invariant and by Theorem 1.1 we conclude that R is algebraic
over R[f1, . . . , fn]. In other words R satisfies the minimal polynomial relation

Fn = FWn,R(x, f1, . . . , fn) = 0.

Below we give an explicit formula for Fn.

Let O denote the center of the circle, and let 2α1 = ∠(v1Ov2), . . . , 2αn−1 = ∠(vn−1Ovn),
2αn = ∠(vnOv1). From geometric considerations, we have: ai = 2r sin αi, and α1+. . .+αn = π.
Consider the following product:

(>)
∏

ε2∈{±1}

. . .
∏

εn∈{±1}

sin(α1 + ε2α2 + . . . + εnαn

)
.

Use sin(β + γ) = sin β cos γ + cos β sin γ and cos(β + γ) = cosβ cos γ − sinβ sin γ formulas
repeatedly to obtain the sum of products of xi = sin αi and yi = cos αi. Observe that for n ≥ 2,
the product (>) is invariant under substitution αi ← (±αi±π). Thus (>) is an even polynomial
in xi and yi, for all 1 ≤ i ≤ n. Use the equality x2

i + y2
i = 1 to write the product (>) as follows:

(>′)
∏

ε2∈{±1}

. . .
∏

εn∈{±1}

sin(α1 + ε2α2 + . . . + εnαn

)
= Hn(sin2 α1, . . . , sin

2 αn).

From α1 + . . . + αn = π, we obtain Hn(sin2 α1, . . . , sin
2 αn) = 0. Making the substitu-

tion sin2 αi = a2
i /4r

2 we obtain

Hn(a2
1/4r2, . . . , a2

n/4r2) = 0.

Multiplying both sides by the smallest power of (r2), we see that r2 is a root of the polynomial
equation

(>>) H̃n(r2, a2
1, . . . , a

2
n) = 0.

Note that even though we derived (>>) for the real lengths ai and r, the argument imme-

diately gives a polynomial relation Fn = H̃n(x, f1, . . . , fn) for the polynomial invariant R.
Recall the integer sequence ∆k defined by (♣) in the Introduction. The following result says

that H̃n(·) is minimal and computes its degree in terms of ∆k. The result is of independent
interest and will be used in the next section to prove the Robbins Conjecture (Theorem 1.4).

Theorem 7.1. The polynomial relation H̃n(x, f1, . . . , fn) is the minimal polynomial relation
for the polynomial invariant R. Furthermore, the minimum degree ν(n) := η(Wn, R) satisfies:
ν(2k + 1) = ∆k, ν(2k + 2) = 2∆k, for all k ≥ 1.

Proof. It was shown by Robbins [R1, R2] that ∆k is the number of circumscribed (not neces-
sarily convex) combinatorial types of polygons. Observe that for general lengths of the sides of
the polygons, the radii take different values. This gives the lower bound for ν(n):

ν(2k + 1) = ∆k, ν(2k + 2) = 2∆k.

From above, H̃n is a polynomial relation for R. Now the claim follows immediately from the
following technical result:
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Lemma 7.2. The degree ν(n) := deg H̃n of the polynomial relation H̃n(x, f1, . . . , fn) satisfies:
ν(2k + 1) = ∆k, ν(2k + 2) = 2∆k, for all k ≥ 1.

The lemma will be proved by a direct argument in Section 9. �

We conclude with the following corollary which follows from Theorem 7.1 and the results
above.

Corollary 7.3. Let ν(n) := η(Wn, g) be the degree of the minimal polynomial relation for
the polynomial invariant g given by the squared length of the ‘main diagonal’ (u1, u2). Then:
ν(2k + 1) = ∆k and ν(2k + 2) = 2∆k, for all k ≥ 1.

7.7. General bipyramid. Consider the degree ζ(n) := η(Gn, I) for a general bipyramid Pn,
and the polynomial invariant I given by the squared length of the ‘main diagonal’. By Propo-
sition 6.1, we obtain the lower bound ζ(n) ≥ ν(n) = θ

(√
n 2n

)
, where ν(n) are the same as

in Corollary 7.3. Alternatively, the upper bound (the first part) gives ζ(n) ≤ 2m = 8n, where
m = 3n is the number of edges in Pn. As in the case of the icosahedron, using the second part
of the upper bound is much harder here. It would be interesting to find the exact asymptotic
behavior of ζ(n).

8. Proof of the Robbins conjecture.

Recall the problem from the introduction. Given a real positive n-tuple (a1, . . . , an) which
satisfies

max {a1, . . . , an} <
a1 + . . . + an

2
,

there exists exactly one convex n-gon inscribed into a circle whose sides are a1, . . . , an, in this
order. The uniqueness and existence is clear, because we can take a circle with large enough
radius, e.g. r > a1 + . . . + an will suffice, and points v0, v1, . . . , vn on a circle such that the
length `(vi−1, vi) = ai. Then decrease the radius r of the circle until the first time v0 = vn, and
we obtain the desired n-gon.

In the notation of Section 7.6, consider a regular bipyramid with vertices v1, . . . , vn, u1, u2,
and let ai denote the lengths of the edges of n-gon, while b denote the length of the side
edges (vi, uj). Denote by Wn the corresponding length family with degree of freedom n + 1.

Now observe that the squared area A = S
2(a1, . . . , an) is a ratio of two polynomial invariants.

Indeed, observe that 1
3 (S · c) = vol, where c = `(u1, u2) is the length of the ‘main diagonal’.

Thus A = 9vol2/c2, as desired. We conclude that the squared area is algebraic over fi, and is a
solution of a relation (s) as in Theorem 1.4. It remains to compute the minimal degree η(Wn, A)
of such relation.

By Theorem 7.1, the minimal polynomial relation H̃(R, f1, . . . , fn) for the squared radius R
has degree ν(n), where

ν(2k + 1) = ∆k, ν(2k + 2) = 2∆k,

as in the theorem. While we do not compute the generalized Heron polynomials (s) in the same

way as we computed polynomial relations H̃n(·), we can still determine η(Wn,A). We need the
following technical result.

Lemma 8.1. Given squared lengths (a1, . . . , an, b) of sides of a regular bipyramid with b large
enough, there are exactly ν(n) preimages of (a1, . . . , an, b) under the characteristic map F.
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Proof. Given real ai and b, with b large enough, there are exactly ν(n) real regular bipyramids.
They all have different radius and different length of the ‘main’ diagonal. Moreover, from
Corollary 7.3 the length of a diagonal cannot take more than ν(n) values for different realization
of a single length diagram. Hence, all complex realizations of a regular bipyramid have real
main diagonal lengths.

From above, we can assume that point u1 = (0, 0, 0) and u2 = (c, 0, 0) where c is real. For
the vertex v1 = (x, y, 0) we obtain x2 + y2 = (x − c)2 + y2 = b2. Therefore, x = c/2 and
y2 = b2 − (c/2)2, which implies that x and y are real.

Now, if v2 = (x2, y2, z2) we similarly conclude that x2 = c/2 is real and

(y − y2)
2 + (z − z2)

2 = a1, y2
2 + z2

2 = b2 − (c/2)2.

Therefore,
y2
2 + z2

2 = b2 − c2/4, yy2 + zz2 = 2(b2 − c2/4)− a1.

This system allows at most two solutions for a pair (y2, z2). We know that there are two distinct
real points on the circle y2+z2 = b2−c2/4 which give two distinct solutions. Therefore, both x2

and y2 are real numbers. Proceeding in a similar fashion, we conclude that all coordinates xi

and yi are real. �

Remark 8.2. Notice that we implicitly assumed that a general point in the length family of a
regular bipyramid has real coordinates. This assumption is valid, as real points are dense in a
complex vector space WC, corresponding to the length family of a regular bipyramid.

By Theorem 7.1, deg(FR) = ν(n) is at most the number of complex bipyramid realizations.
From Lemma 8.1, there are ν(n) complex realizations of a bipyramid with general real sides.
Thus, by Lemma 4.1 the degree η(Wn,A) of the minimal polynomial relation for the (squared)
area A = S

2(·) is at most ν(n). In a different direction, it is easy to see that for generic values
of the side length ai the (signed) areas of these polygons is different. Thus, by the lower bound
(Lemma 6.3) the degree η(Wn,A) is at least ν(n). This completes the proof of the Robbins
Conjecture (Theorem 1.4).

Example 8.3. For n = 3, the Heron formula (M) in Section 2.8 gives a linear relation for the
squared area A = S

2(a, b, c) of a triangle:

A − 1

16

(
2a2b2 + 2a2c2 + 2b2c2 − a4 − b4 − c4

)
= 0

This corresponds to the case ν(3) = ∆1 = 1.

Similarly, for n = 4, the Brahmagupta formula (�) in Section 2.9 gives a linear relation for
the squared area A = S

2(a, b, c, d) of an inscribed convex quadrilateral:

(�) A − 1

8

(
a2b2 + a2c2 + a2d2 + b2c2 + b2d2 + c2d2

)
+

1

16

(
a4 + b4 + c4 + d4) +

1

2
abcd = 0.

Note that this equation is not of the type (s) as the RHS of (�) is not a polynomial in squared
edge lengths. To correct this, let

g :=
1

8

(
a2b2 + a2c2 + a2d2 + b2c2 + b2d2 + c2d2

)
− 1

16

(
a4 + b4 + c4 + d4) ∈ C[a2, b2, c2, d2].

Now write equation (�) as A − g + abcd/2 = 0. This gives the desired quadratic relation for
the squared area A:

(
A− g + abcd/2

)(
A− g − abcd/2

)
= A

2 − 2gA +
(
g2 − a2b2c2d2/4

)
= 0,

which corresponds to the case ν(4) = 2∆1 = 2. Let us note that the
(
A − g − abcd/2

)
term

corresponds to the area of a self-intersecting inscribed quadrilateral. The cases n = 5, 6 are
presented in [R2]6.

6The case n = 5 was rediscovered in [V1] (see also [V2]). Most recently concise formulas for the cases n = 7, 8

were presented in [MRR]. We refer to [P] for a short survey and history of these developments.
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9. Proof of Lemma 7.2.

We consider the cases of odd and even n separately. The even case will be, in effect, reduced
to the odd case.

Odd Case: n = 2k + 1. Recall the polynomials Hn(·) defined in (>′) in Section 7.6. We
write

Hn(sin2 α1, . . . , sin
2 αn) =

∑

i

H i(sin2 α1, . . . , sin
2 αn),

where H i is a homogeneous part of degree i = (i1, . . . , in).
For all 1 ≤ i ≤ n let αi = miω, where {mi} are odd integers which satisfy the inequalities

(ג) m1 ≥ m2 ≥ . . . ≥ mn > 0 and m1 + m2 + . . . + mk < mk+1 + . . . + mn .

To simplify the product (>), let ε = (1, ε2, . . . , εn) and E =
{
ε = (1, ε2, . . . , εn) | εi ∈ {±1}

}
.

Similarly, denote m = (m1,m2, . . . ,mn) ∈ Zn, and let

(ε,m) := m1 + ε2m2 + . . . + εnmn , ‖ε,m‖ := |m1 + ε2m2 + . . . + εnmn| .
The inequalities (ג) and n being odd easily imply that (ε,m) has the same sign as (1 + ε2 +
. . . + εn). In other words,

(i) ‖ε,m‖ = sign(1 + ε2 + . . . + εn) · (ε,m), where sign(κ) =

{
1, if κ > 0

−1, if κ < 0

(note that 1 + ε2 + . . . + εn 6= 0 here since n is odd.)
In this notation, we have:

sin(α1 + ε2α2 + . . . + εnαn) = sin
(
m1ω + ε2m2ω + . . . + εnmnω

)
= sin

(
(ε,m)ω

)
.

Since n, mi, and εi ∈ {±1} are odd, the integer (ε,m) is also odd. Using properties of the
Chebyshev polynomials (see Section 7.3) or by induction, it is easy to see that for all odd m ∈ Z

a polynomial

(�) sin(mω) = ± sin|m| ω + . . . + m sin ω

has only odd degree terms. Here the sign ± is given by the parity of (m − 1)/2; to simplify
calculations we omit the exact formula for the signs throughout this section. Now use (�) for
each term of the product (>) in Section 7.6 to expand Hn as follows:

(z)

Hn

(
sin2(m1ω), . . . , sin2(mnω)

)
=

∏

ε∈E

sin(α1 + ε2α2 + . . . + εnαn)

=
∏

ε∈E

sin
(
‖ε,m‖ω

)
=

∏

ε∈E

(
±(sin ω)‖ε,m‖ + . . . + ‖ε,m‖ sinω

)

= ±(sin ω)
∑

ε∈E
‖ε,m‖ + . . . +

∏

ε∈E

(ε,m) ·
(
sin ω

)2n−1

.

Observe that the highest power of (sin ω) in (z) is
∑

ε∈E

‖ε,m‖ =
∑

ε∈E

∣∣m1 + ε2m2 + . . . + εnmn

∣∣ = β1m1 + β2m2 + . . . + βnmn,

for some integer coefficients β1, . . . , βn ∈ Z. Summing equations (i) over all ε ∈ E , we have:

βi =
∑

ε∈E

sign(1 + ε2 + · · ·+ εn) · εi ,

Therefore, the coefficients βi are independent of the values of {mj} whenever they satisfy .(ג)

Varying {mj} and using (�) for each variable zi = sin2(miω), we conclude that the polynomial
Hn(z1, . . . , zi) =

∑
i
H i(z1, . . . , zi) has the maximal degree i = 1

2 (β1, . . . , βn). On the other
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hand, from the (intermediate) product formula (z), all terms in Hn have degree at least 1
22n−1.

We have

β1 + β2 + . . . + βn =

n∑

i=1

∑

ε∈E

sign(1 + ε2 + . . . + εn) · εi

=
∑

ε∈E

sign(1 + ε2 + . . . + εn) · (1 + ε2 + . . . + εn) =
∑

ε∈E

∣∣1 + ε2 + . . . + εn

∣∣

=

n−1∑

j=0

(
n− 1

j

) ∣∣n− 2j
∣∣ =

k∑

j=0

(
2k

j

)(
2k + 1− 2j

)
−

2k∑

j=k+1

(
2k

j

)(
2k + 1− 2j

)

=

k∑

j=0

[(
2k

j

)
+

(
2k

j − 1

)] (
2k + 1− 2j

)
=

k−1∑

j=0

(
2k + 1

j

)(
2k + 1− 2j

)

=

k−1∑

j=0

2
(
k − j

)(2k + 1

j

)
+

k−1∑

j=0

(
2k + 1

j

)
= 2

k−1∑

j=0

(k − j)

(
2k + 1

j

)
+ 22k

Therefore, the degree of x in H̃n(x, f1, . . . , fn) is equal to

ν(2k + 1) =
1

2

n∑

i=1

βi −
1

2
2n−1 =

k−1∑

j=0

(k − j)

(
2k + 1

j

)
+ 22k−1 − 22k−1 = ∆k ,

where the last equality follows from Robbins’ formula (♣) in the introduction. This completes
the proof of the odd case of the lemma.

Even Case: n = 2k + 2. Let α1 = 2m1ω, . . . , α2k+1 = 2m2k+1ω, where {mi} are positive
integers which satisfy .(ג) Also, let mn = 1 and α2k+2 = ω. For such n-tuples (α1, . . . , αn) we
have:

sin(α1 + ε2α2 + . . . + εnαn) = sin
[(

2(m1 + ε2m2 + . . . + ε2k+1m2k+1) + ε2k+2

)
ω
]
.

Clearly M = 2(m1 + ε2m2 + . . . + ε2k+1m2k+1) 6= 0. Note that for every even integer M 6= 0
the equation (�) gives:

sin(M + 1)ω · sin(M − 1)ω =
[
sin|M |+1(ω) + . . .

]
·
[
sin|M |−1(ω) + . . .

]
= sin2|M |(ω) + . . .

Use this equation to obtain the following version of (z) in the even case:

(z z)
Hn

(
sin2(m1ω), . . . , sin2(mnω)

)
= ±(sin ω)

∑
ε∈E

(‖ε,m‖+1) +
∑

ε∈E
(‖ε,m‖−1) + . . .

= ±(sin ω)2
∑

ε∈E
(‖ε,m‖) + . . .

where m = (2m1, . . . , 2m2k+1) and E =
{
ε = (1, ε2, . . . , ε2k+1), εi ∈ {±1}

}
is as above.

By analogy with the odd case we conclude:

ν(2k + 2) =
1

2
· 2

(
β1 + . . . + βn−1

)
− 2n−1 = 2∆k.

This completes the proof of Lemma 7.2.

10. Final Remarks

10.1. Rigidity theory. While our interests lie in the study of realization spaces (see below)
much of this work is related to Rigidity Theory which was under intense development in the
last several decades. In the most general setting, it studies a general (not necessarily planar
or triangulated) graph G and edge lengths (or stresses) and asks about infinitesimal and con-
tinuous deformations of realizations in Rn (see e.g. [C2, CW, Ko, Ro]). In case of polyhedra
homeomorphic to a sphere these results extend the Cauchy Rigidity Theorem to more general
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families of polyhedra (see e.g. [G, RR]). We refer to [C4, GSS, W] for extensive surveys of
known results.

As we learned only after this paper was finished, the algebraic geometry approach developed
here for the study of polynomial invariants is strongly related to that in [AR1, G] (see also [AR2,
RW]) in the study of rigidity. While our motivation is different, our proof of Proposition 3.1
and the Cauchy Rigidity Theorem (Corollary 5.3) resembles closely that given in [AR1, Ro].
The heart of our argument, Generic Freeness Lemma 4.1 seems to be new even if motivated by
known ideas in algebraic geometry. It is perhaps of independent interest.

10.2. Flexible polyhedra. As we mentioned in the introduction, existence of flexible poly-
hedra (simplicial polyhedral complexes homeomorphic to a sphere and not self-intersecting)
was established by Connelly, who also extensively studied them, and introduced a number of
interesting conjectures [C1, C3, C4]. The Bellows Conjecture on invariance of the volume under
continuous deformations was resolved by Sabitov in a series of papers with the same general
idea but slightly varying proofs and conditions [AS, LNS, S1, S2, S3, S4] (see also [D, S5]).
The similar problem for the Denh invariant remains open [Sc]. By Sydler’s theorem this would
imply scissor equivalence (as in Hilbert’s Third Problem) of continuous deformations of flexible
polyhedra [C3, Sc].

Let us mention that Corollaries 1.2 and 1.3 while stated for convex polytopes, in fact, extend
verbatim to nonconvex simplicial polyhedra Q homeomorphic to a sphere. Indeed, the Steinitz
Theorem (see Section 2.5) implies that the corresponding plane triangulation G has an edge
lengths function which gives a convex polytope P . Since Q now is one of the complex realizations
of G with this length function, its diagonals (or volume) must satisfy the equations (∗) and (∗∗).
To see why this does not imply rigidity, recall the observation in the introduction that values
of coefficients in (∗) can become zero for some particular edge length, and thus the realization
space is no longer finite. It would be interesting to find general sufficient conditions on lengths
of edges under which a polyhedron can be a flexor (cf. [G]).

10.3. Realization spaces. The study of realization (moduli) spaces of various geometric and
combinatorial structures goes back to ancient times under the name kinematic [HC]. In the
plane, the class of algebraic sets produced by linkages has been an open problem ever since
Kempe’s classical construction of a linkage “drawing a straight line” [Ke]. Most recently this
problem was completely resolved in a remarkable paper [KM]; roughly, the authors showed
that every algebraic set can be “drawn” in such a way (see also [Ki]). See also [M1, M2] for a
different study of realization spaces of graphs.

The results of this kind are called universality theorems, after the celebrated theorem of
Mnëv [Mn] on realization spaces of matroids and convex polyhedra (with combinatorial rather
than metric conditions). This was our original motivation for study of realization spaces of
length diagrams and, more generally, length families. Although we believe that universality
type results exists in this case, we believe it is premature to formulate it as a formal conjecture.

To underscore the difference with the linkages, let us emphasize that linkages have no restric-
tion on graph structure, while graphs we consider are plane triangulations. The high degrees
of complex realization spaces of polytopes give a weak evidence in support of the universality
claim. We plan to continue our study of realization spaces M(G,W ) in the future.

10.4. Computational aspects. To see the relationship of this work and the computational
problem of constructing convex polytopes from the graph and length function [E], consider the
following straightforward algorithm: solve m = 3n − 6 quadratic equations in 3n variables,
with 6 extra conditions to make the polytope planted. Now, if the space of realizations can
be made as ‘complicated’ as desired with relatively small number n of vertices, then so is the
construction of convex polytopes. This algebraic complexity approach to lower bounds seem to
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be novel in this context and is waiting to be explored. We refer to [BCS] for background on
algebraic complexity, numerous examples and references.

10.5. Other Robbins conjectures. In addition to what we call the Robbins Conjecture
(Theorem 1.4), David Robbins made further conjectures on the behavior of the generalized
Heron polynomials [R1, R2]. Most recently, Connelly [C5] and Varfolomeev [V1] established
one of them related to the first coefficient of generalized Heron polynomials. We refer to a
recent preprint [P] outlining these and other developments.
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