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Abstract. We prove that all polyhedral surfaces in R3 have volume-increasing
isometric deformations. This resolves the conjecture of Bleecker who proved it for
convex simplicial surfaces [B1]. A version of this result is proved for all convex
surfaces in Rd. We also discuss limits on the volume of such deformations, present
a number of conjectures and special cases.

Introduction

Metric geometry of convex surfaces goes back to Legendre and Cauchy and has blos-
somed in the 20th century with the works of Alexandrov and his school. Despite a
large body of results, there remain glaring gaps in our understanding. About ten
years ago, Bleecker showed that for every convex simplicial surface in R3 there ex-
ists a volume-increasing continuous isometric deformation [B1]. In this paper we
prove Bleecker’s conjecture by extending this result to all polyhedral surfaces in R3.
Our approach heavily relies on the notion of a submetric deformation, defined as
a deformation where the geodesic distances between the corresponding points are
non-increasing1. We first prove that for every polyhedral surface in R3 there exists
a volume-increasing piecewise-linear continuous submetric deformation. Moreover,
we show that if the original surface was convex, the submetric deformation can also
be made convex. This construction is then combined with Burago-Zalgaller’s theo-
rem [BZ3] to obtain the result. We further extend our approach to higher dimensions,
for all convex polyhedral surfaces in Rd.

Let us briefly outline the history of the subject. In the 1940’s Alexandrov showed
that the intrinsic geometry of the surface of a convex polyhedron in R3 uniquely
determines the polyhedron, up to a rigid motion [A2]. This extends the Cauchy
rigidity theorem as the faces are no longer required to be rigid. This result, called the
uniqueness theorem, was partially extended by Olovianishnikoff and further extended
by Pogorelov to all convex surfaces [Po2]. Alexandrov also proved the celebrated
existence theorem which showed that under certain natural conditions a convex surface
can be realized as a surface of a polyhedron.

Clearly, the uniqueness theorem cannot be extended to non-convex polyhedra, as
polyhedra can be isometrically deformed (see Figure 1). Such continuous isomet-
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Figure 1. Bending of the surface of a cube.

ric deformations are called bendings. Of course, by the uniqueness theorem, in the
bending of a convex polyhedron all other polyhedra must be non-convex.

Observe that the volume enclosed by the surface in Figure 1 is decreasing under
the bending. About ten years ago Bleecker noticed that the volume can actually
increase [B1]. This can be easily seen in an example shown in Figure 2, where a
doubly covered equilateral triangle is deformed into a union of two simplices (the
figure shows an unfolding and how the pieces are glued together).
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Figure 2. Volume-increasing bending of a doubly covered triangle.

Bleecker constructed some symmetric volume-increasing bendings of all simplicial
polyhedra and gave symmetric construction for all regular polyhedra [B1]. Bleecker
conjectured that this should be possible for all polyhedral surfaces in Rd. Our first
major result is the proof of his conjecture in R3 (see theorems 7 and 10).

Without volume considerations such bendings were further studied by Milka [Mi],
and some of our constructions are based on his ideas (see also [P]). Bleecker obtained
an about 37.7% increase over the volume of a regular tetrahedron and about 21.9%
increase over the volume of a cube. He asked how much further this can be extended.
This question was further reiterated in [Al3, S2] and by Connelly2.

In a remarkable series of papers [BZ1, BZ3], Burago and Zalgaller first proved the
analogue of the existence theorem for non-convex polyhedra. In the second paper
they extended their approach to show that a non-convex polyhedron can be realized
within an ε-neighborhood of a given submetric embedded polyhedral surface. Our
proof of Bleecker’s conjecture heavily relies on Burago-Zalgaller’s theorem.

Our second main result (Theorem 8) is the existence of a continuous piecewise-
linear volume-increasing deformation {St} of the surface S of convex polyhedron in
Rd, such that all surfaces St are convex and submetric to S. When d = 3, this
result is neither weaker nor stronger than Bleecker’s theorem. On one hand, Bleecker

2Personal communication.
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constructs an isometric deformation, while our deformations are only submetric. On
the other hand, Bleecker works only with simplicial polyhedra and his deformations
are necessarily non-convex, while ours are always convex.

The paper is structured as follows. We present the results in Section 1. The proofs
are given in Section 2. In Section 3 we discuss the extend to which the volume can be
extended and formulate a series of conjectures nd open problems. We elaborate on
several interesting examples and special cases in Section 4. In a quick application of
the mylar balloon, we obtain an upper bound on the maximum inflated volume in the
case of doubly covered regular n-gons (Section 5). We conclude with final remarks in
Section 6.

1. Main results

Throughout the paper we consider both convex and non-convex surfaces in R3, by
which we mean embedded 2-dimensional orientable compact surfaces with no bound-
ary. We also consider convex d-dimensional surfaces in Rd+1 when d ≥ 3. Unless
explicitly stated otherwise, all surfaces are assumed to be polyhedral and compact.

1.1. Convex surfaces. Let S = ∂P be the surface of a 3-dimensional convex poly-
hedron P ⊂ R3. We say that S is a convex surface in R3. We say that S is simplicial
if P is simplicial, i.e. all its faces are triangles. The surface S ′ is called isometric
to S, write S ∼ S ′, if there exist a piecewise-linear homeomorphism ϕ : S → S ′ which
preserves geodesic distances: |x, y|S = |ϕ(x), ϕ(y)|S′ for all x, y ∈ S.

A continuous piecewise-linear isometric deformation {St | t ∈ [0, 1]} is called a
bending of S if all surfaces are isometric to S = S0: St ∼ S , for all 0 ≤ t ≤ 1. We
say that {St} is volume-increasing if vol(St) < vol(St′) for all 0 ≤ t < t′ ≤ 1. The
following is the main result in [B1] :

Theorem 1 (Bleecker). For every convex simplicial surface S in R3, there exists a
volume-increasing bending of S.

Informally, this means that every convex simplicial polyhedron can be inflated
without tearing and stretching. The proof in [B1] is based on an explicit technical
construction. Let us emphasize that the surfaces in the theorem (and throughout this
section) are always isometric embedding. For more on immersed surfaces see §1.3
below.

We say that a surface S ′ ⊂ Rd is submetric to S, write S ′ 4 S, if there exist a
homeomorphism ϕ : S → S ′ which does not increase the geodesic distances: |x, y|S ≥
|ϕ(x), ϕ(y)|S′ for all x, y ∈ S. We refer to ϕ as submetry map. A shrinking of S
is a continuous piecewise-linear deformation {St | t ∈ [0, 1]}, such that S0 = S and
St 4 St′ , for all 0 ≤ t′ < t ≤ 1. We say that this shrinking is from S0 to S1 in this
case.

We say that a deformation {St} is convex if all surfaces St are convex. We are now
ready to state our main result.
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Theorem 2. For every convex polyhedral surface S in R3, there exists a volume-
increasing convex shrinking of S.

Recall from the introduction that Theorem 2 is neither weaker nor stronger than
Bleecker’s theorem. Below we present several generalizations of both results, while all
proofs are given in the next section. But first let us consider the following immediate
corollaries of both theorems:

Corollary 3 (Bleecker). For every convex simplicial surface S in R3, there exists
an isometric surface S ′ ∼ S of greater volume: vol(S ′) > vol(S).

Corollary 4. For every convex surface S in R3, there exists a submetric convex
surface S ′ 4 S of greater volume: vol(S ′) > vol(S).

Both corollaries are quite surprising. Corollary 3 says that for every convex polyhe-
dron one can subdivide its surface into triangles which can be reassembled according
to the same combinatorial rules to obtain a polyhedron of greater volume. Corollary 4
says that one can contract each triangle so that the (unique) convex polyhedron with
these smaller triangles has greater volume. To see how that follows from the corol-
lary, contract the whole surface S ′ by a factor (1− ε) for ε > 0 small enough. By the
definition of shrinking, all triangles will contract while the volume remains greater.

Let us show now how Corollary 3 follows from Corollary 4 using the following
powerful result in [BZ3]. Let S ∼ S ′ be isometric surfaces in R3. We say that S ′

is in ε-neighborhood of S, if there exists an isometry ϕ : S → S ′ which satisfies
‖x, ϕ(x)‖ ≤ ε, for all x ∈ S (here ‖x, y‖ is the usual Euclidian distance in R3).

Theorem 5 (Burago–Zalgaller). Let S1 be a surface submetric to surface S in R3,
and let ε > 0 be any given constant. Then there exists a surface S2 isometric to S,
such that S2 is in ε-neighborhood of S1.

Now, let S be a convex surface in R3. By Corollary 4, there exists a surface S1

submetric to S with vol(S1) > vol(S). By Burago-Zalgaller’s theorem, there is a
surface S2 ∼ S in ε-neighborhood of S1. Taking ε small enough we can ensure that
vol(S2) > vol(S1). This extends Corollary 3 to all convex surfaces:

Corollary 6. For every convex surface S in R3, there exists an isometric surface
S ′ ∼ S of greater volume: vol(S ′) > vol(S).

Our next result is an extension of both Bleecker’s theorem (Theorem 1) and Corol-
lary 6:

Theorem 7. For every convex polyhedral surface S in R3, there exists a volume-
increasing bending of S.

The result is obtained in the next section by a careful examination of the proof of
Theorem 2. The proof is independent of the original proof Bleecker’s theorem in [B1].
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1.2. Higher dimensional surfaces. Let S = ∂P be the surface of a (d + 1)-
dimensional convex polyhedron P ⊂ Rd+1. We say that S is a convex surface in Rd+1.
As before, we say that a polyhedral surface S ′ ⊂ Rd is submetric to S, write S ′ 4 S,
if there exist a piecewise-linear (PL) homeomorphism ϕ : S → S ′ which does not
increase the geodesic distances: |x, y|S ≥ |ϕ(x), ϕ(y)|S′ for all x, y ∈ S. Definition of
shrinking of S extends to higher dimensions without change.

Theorem 8. For every d-dimensional convex polyhedral surface S in Rd+1, there
exists a volume-increasing convex shrinking of S.

Corollary 9. For every d-dimensional convex polyhedral surface S in Rd+1, there
exists a submetric convex surface S ′ 4 S of greater volume: vol(S ′) > vol(S).

Let us emphasize that the Theorem 8 is one of the very few results on metric
geometry of polyhedra in higher dimensions (see §6.3). The proof is a technical
iterative construction, which heavily uses convexity of P .

1.3. Non-convex surfaces. We present two natural generalizations of theorems 2
and 7: one for embedded and one for immersed surfaces. Let us start with the
definitions.

Let S be an abstract 2-dimensional polyhedral surface defined as a collection of
triangles T1, . . . , Tm with combinatorial gluing rules. Here each triangle Ti is given
by its edge lengths, and whenever two edges are glued, they have equal length. We
always assume that S is a connected simplicial complex, and that it is closed (has no
boundary) and orientable, i.e. homeomorphic to a sphere with g ≥ 0 handles. Denote
by V the set of vertices in S.

A (3-dimensional) realization of S is defined a map f : V → R3 such that the
Euclidean distance ‖v1, v2‖ between vertices is equal to the edge length |v1, v2| of any
triangle Ti which contains v1 and v2.

An immersion is a realization where no two triangles have a 2-dimensional inter-
section. For example, a doubly covered triangle is a realization in R3 of a surface
homeomorphic to a sphere, but not an immersion.

An embedding is a realization where two triangles intersect only by an edge or by
a vertex they share. We always consider surfaces S up to isometry, so we speak of
isometric immersions and isometric embeddings. An example in Figure 2 shows an
isometric embedding of a doubly covered triangle.

Since S is orientable, for all immersions of S into R3 the vol(S) is well defined.
When speaking about general isometric immersions or embeddings, it still makes
sense to ask if there exist volume-increasing bendings (continuous piecewise-linear
isometric deformations). The following results resolves Bleecker’s conjecture in the
strongest form.

Theorem 10. For every immersed closed orientable polyhedral surface S in R3,
there exists a volume-increasing bending {St} of S. Moreover, if S is an embedding,
the surfaces St can also be made embeddings.
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The proof of the theorem starts with a construction of a volume-increasing shrinking
(no longer convex). We then use Burago-Zalgaller’s theorem which we now restate
emphasizing the difference between embedded and immersed versions:

Theorem 5′ (Burago–Zalgaller). Let S1 be a polyhedral surface immersed into R3

submetric to an abstract polyhedral surface S. Then, for every constant ε > 0, there
exists a isometric immersion S2 of S into R3, such that S2 is in ε-neighborhood of S1.
Moreover, if S1 is an embedding, then S2 can also be made an embedding.

As of now, there is no analogue of the Burago-Zalgaller’s theorem in higher di-
mensions for isometric immersions/embeddings into Rd+1 when d ≥ 3. Without such
result, we are unable to generalize theorems 7 and 10 (see also §6.4).

2. Proof of theorems

We should start by saying that the proof of Theorem 2 is an important introduction
to the constructive technique we employ, and is useful for proofs of theorems 7,
8 and 10. On the other hand, the reader interested in a clear path towards the proof
of Theorem 10 should be able to skip the technical details in the proof below and
proceed directly to §2.3 and then to 2.6.

2.1. Proof of Theorem 1. Let P ⊂ R3 be a convex polyhedron. For now we assume
that P is simple. Later on we reduce the general case to the simple case.

Fix a parameter ε > 0. Think of ε as being very small. For every vertex v of P and
every face F of P containing v, consider two edges e and e′ such that v ⊂ e, e′ ⊂ F .
Denote by xv,F a vertex at distance ε from edges e and e′. Denote by XF ⊂ F the
convex hull of points xv,F , where v ⊂ F .

Let us subdivide the surface S = ∂P into regions. For every vertex v, edge e
containing it and faces F and F ′ containing e, connect points xv,F and xv,F ′ with a
unique geodesic path crossing only edge e. Clearly, this geodesic path has length ≥ 2ε.
Also, connect every point xv,F to the vertex v (see Figure 3). Now each face F is
subdivided into a polygon XF , triangles (two per vertex), and trapezoids (one per
edge).

Move every polygon XF at distance α > 0 away from P . The parameter α = α(ε)
will be determined later. Denote by yv,F the vertices of the obtained polygon, which
we denote by YF . Let Q = Q(ε) be the convex hull of points {yv,F , v ⊂ F}. This is
the desired polyhedron whose surface will be shown to be submetric to S. Of course,
polygons XF are congruent to YF , so we are left with triangles and trapezoids.

Denote by Te the trapezoid obtained as a union of two trapezoids in S adjacent to
edge e. Think of Te as being unfolded on a plane. By T ′

e denote the trapezoid shaped
face of Q, parallel to e. Note that the trapezoids Te and T ′

e have parallel sides of
equal length, but their heights can be different. Assume that the height he of Te is
greater or equal to the height h′

e of T ′
e. Then there is a natural piecewise-linear map

from Te (folded as it lies on the surface S) to T ′
e which sends the edges of XF into the

corresponding edges of YF and non-increases the distances.



INFLATING POLYHEDRAL SURFACES 7

PSfrag replacements

v

v′

e

F

F ′

xv,F

xv,F ′

XF

XF ′

Figure 3. Subdivision of the surface S = ∂P into regions around
edge e = (v, v′).

Observe that when α is sufficiently small, our assumption he ≥ h′e follows by
continuity and from the triangle inequality, while when α is sufficiently large it fails.
Define α = α(ε) to be the largest possible so that he ≥ h′e for every edge e in P .
Having α determined, the polyhedron Q = Qε is completely defined.

Recall that |x, y|S denotes the geodesic distance on the surface S, and ‖x, y‖ denotes
the usual Euclidean distance in R3. Note that for every vertex v ⊂ e, where edge e =
F ∩ F ′, the condition

(∗)
∣∣xv,F , xv,F ′

∣∣
S
≥

∥∥yv,F , yv,F ′

∥∥

is equivalent to he ≥ h′e. Furthermore, condition (∗) is linear in ε, i.e. depends only
on the ratio α/ε. Therefore, parameter α is determined by the inequalities α ≤ ceε,
for every edge e of P . We conclude that α = α(ε) grows linearly with ε.

Recall our initial assumption that P is simple. Then, for every v in P , the convex
hull of the points {yv,F , v ⊂ F} forms a triangular face Uv of Q. The union of
triangles around each vertex v forms the surface of a triangular cone shape. We need
to construct a map from this cone onto Uv. First, rearrange the triangular cone by
stretching along edge of P and bending it along edges (v, xv,F ) (see Figure 4). In
the new triangular cone the vertices will correspond to the faces F containing v, and
in fact are the images of xv,F . Similarly, the edges will correspond to the edges e
containing v. Now shrink each side of the triangular cone so that it shrinks from∣∣xv,F , xv,F ′

∣∣
S

to
∣∣yv,F , yv,F ′

∣∣ as in (∗). Finally, we obtain the surface of a triangular
cone, which can be viewed as the top of a pyramid ∆v over triangular base Uv.

We should warn the reader that when we shrink one or several sides of the triangle,
we do not necessarily create a submetry, as can be seen in Figure 5.3

If vertex v of ∆v projects in the interior of Uv, this maps non-increasing the distance
and completes the construction. If v projects outside of Uv, one or two of the dihedral

3The only other argument we are using in this proof is a projection which always creates a
submetry.
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Figure 5. Two triangles T = (a, b, c) and T ′ = (a′, b′, c′) with |a, b| =
|a′, b′|, |b, c| = |b′, c′|, |a, c| > |a′, c′|, but T ′ not submetric to T since
|b, h| < |b′, h′|.

angles of ∆v, along an edge e in Uv, is obtuse. Suppose only one angle is obtuse, at
edge e. Consider a plane He going through e, such that v projects onto interior of
He ∩ ∆v. Now project onto He the portions of the faces of ∆v which lie on the same
side of He as v (see Figure 6).

If there are two obtuse angles at edges e, e′, we need to repeat this construction two
more times. First, project v onto a hyperplane Hw going through a vertex w = e∩ e′
of Uv. Then, project the top surface of the resulting polyhedron onto a hyperplane He

going though e′ and Hw ∩ Fe (here Fe is the face of ∆v containing e, other than Uv).
It is easy to see that the resulting pyramid has only one obtuse angle (at e), so we
can repeat the construction above.
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After at most three projections as above, we obtain a pyramid whose top vertex
projects into the interior of Uv. Clearly, Qε → P as ε → 0, by construction. This
completes the construction of a PL-map ϕ : S → ∂Qε.

Given the warning above, we do no claim that the obtained surface Qε is a subme-
try. However, for the purposes of this presentation, we assume that this is in fact a
submetry and correct the problem later by a separate argument. Let us phrase this
in the form of a claim which will be formalized and resolved in §2.3.
Claim. The PL-map ϕ : S → ∂Qε constructed above can be “corrected” to become
submetric, while leaving the volume argument unaffected.

From here on, assume that {∂Qε} is a shrinking of S, for ε ≥ 0 small enough. We
need to prove that the deformation {∂Qε} is volume-increasing. Let us show that

(?) vol
(
Qε

)
= vol(P ) + area(S) · α(ε) − O(ε2), as ε→ 0.

From above, α(ε) = c · ε for some constant c = c(P ) > 0. Therefore, from (?) we
have:

vol
(
Qε

)
= vol(P ) +

(
c · area(S)

)
ε − O(ε2),

and vol(Qε) is increasing for ε small enough.
To obtain (?), observe that

area(XF ) = area(F ) − O(ε) ,

and

vol(Qε) ≥ vol(P ′) +
∑

F⊂S

α(ε) · area(XF ) = vol(P ′) + α(ε) ·
(
area(S) −O(ε)

)
,

where P ′ is the convex hull of all points xv,F .
Now, cut polyhedron P with hyperplanes spanned by triangles Uv and trapezoids[
xv,F , xv′,F , xv,F ′ , xv′,F ′

]
, corresponding to edges e = (v, v′) = F ∩ F ′. They split P

into triangular pyramids (one per vertex) and trapezoid shaped prisms (one per edge).
The volume of each pyramid is O(ε3) and the volume of the prism corresponding to
edge e is O(ε2) · |e|. Thus, vol(P ′) is equal to vol(P )−O(ε2). This finishes the proof
of (?) and completes the proof of the theorem in case when P is simple.

Before we consider the case of general (not-simple) polyhedra P ⊂ R3, we need to
treat the case when P is flat, i.e. when S is a doubly covered convex polygon. Clearly,
the above construction is inapplicable. In this case, for every vertex v of P , cut the
unique (up to reflection) face F with a line `⊥(v, xv) at distance |v, xv| from xv.
Denote by x′v and x′′v two points of intersection of ` and XF (see Figure 7). Connect
the points x′v, x

′′
v to vertex v, and drop perpendiculars to the sides of F . This makes a

subdivision of F into one large region Z, rectangles (one per each side), and triangles
around vertices (three per vertex).

We first obtain an isometric embedding of positive volume. Bend the rectangles at
right angle with respect to Z, and bend the triangles to form a pyramid whose apex v
projects onto xv. Two copies of such surface form the desired immersion. Finally, to
obtain a convex submetry we project the pyramid constructed above onto rectangle
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Figure 7. Subdivision of a polygon and its bending.

with vertices x′v and x′′v . Of course, the volume of the resulting surface Sε is positive.
To check that it is increasing, the same argument as above for gives:

vol(Sε) = area(F ) ε + O(ε2) , as ε→ 0 .

Therefore, for ε > 0 small enough the volume is increasing, as desired. An extreme
example of the construction, when S is a doubly covered square and ε = 1/(2+2

√
2)

will be shown later in Figure 23.

For general (non-flat) P , consider cones Cv around each vertex v of P . Denote
by Lv a ray which lies in the interior of the cone. For each v in P , cut Cv with a
hyperplane Hv orthogonal to Lv and at distance δ from v. For δ > 0 small enough,
the resulting polyhedron Pδ is simple and we can apply the previous construction.

As we did earlier, project the top of the pyramid onto the face Wv of Pδ contained
in Hv (see Figure 8). Here we are using the fact that v projects into the relative
interior of Wv). This shrinks the surface of P to Pδ. It remains to set the dependence
of ε on δ and check that the volume of the resulting Qε is still increasing.
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Figure 8. Cutting the cone Cv with hyperplane Hv⊥Lv.

By analogy with the earlier construction, set ε to be the largest possible so that Qε

is well defined. Note that the only restriction on ε is that the sides of polygons XF

should not collapse. This condition is given by two linear inequalities ε ≤ cδ for every
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edge e of Wv (and both faces containing it). Thus, again one can take δ linear in ε.
Since

vol(P ) = vol(Pδ) + O(δ3) = vol(Pδ) + O(ε3),

we obtain the theorem in the general case. �

2.2. An example. The case when P is a unit cube is especially symmetric (cf. [P]).
Here the trapezoids Te and T ′

e are isometric to 2ε× (1− 2ε) rectangles, the triangles
around vertices are right equilateral triangles, and parameter α = ε/

√
2. Faces Uv are

equilateral triangles with side lengths 2ε. The shrinking map is shown in Figure 9.
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Figure 9. Volume-increasing shrinking of a cube.

Observe that if we attach pyramids to faces Uv rather project them, we obtain an
isometric bending of a cube (see example 4.3 for further details).

When ε = 1/4, the polyhedron Qε is an Archimedean solid called rhombicube-
octahedron with

vol
(
Q 1

4

)
=

1

2
+

5
√

2

12
≈ 1.0892.

In general, polyhedra Qε are defined for all ε ∈ [0, 1/2] and their volume is a cubic
polynomial in ε. The maximum volume ≈ 1.1688 is achieved is achieved at ε ≈ 0.1425.
Let us note also that the polyhedron Q 1

2

is an octahedron with edge length 1 and

volume
√

2/3 ≈ 0.4714.

2.3. Resolving the Claim: an addendum to the proof of Theorem 2. As the
following argument shows, there really is no reason to be careful in constructing of
the PL-map ϕ = ϕε from the union Wv ⊂ S of all triangles around v onto Uv ⊂ Qε,
i.e. in constructing the map ϕ : Wv → Uv. Indeed, consider any PL-homeomorphism



12 IGOR PAK

ψ : Wv → Uv. By compactness, there is constant C > 0 such that the geodesic
distances increase by a factor at most C:

(L) |x, y|S ≤ C · |ψ(x), ψ(y)|Q , for all x, y ∈ Wv .

We call (L) the Lipschitz condition.
We now shrink the whole resulting polyhedron Qε to Q′

ε in such a way that the
volume of Q′

ε is close to that of Qε, and the composition map is really a submetry.
The construction is based on a sequence of cuts with a plane and projections, similar
to that in Figure 6 and 8.

Let us start with the cutting and projecting construction in case of 2-dimensional
polygons. The following example is already nontrivial and is a good illustration of
the general principle. Suppose we are given a polygon P ⊂ R2 and an edge e = (x, y).
Denote by β1, β2 the angles between e and edges `1 = (x′, x) and `2 = (y, y′) adjacent
to e. If either of the angles is non-obtuse, say β1 ≤ π/2, we can always cut P with
a line L nearly orthogonal to e and project the side of P containing e onto L (see
Figure 10). If the angle close enough to π/2, the length of the projection e1 ⊂ L of e
can be made smaller than 1/C.

PSfrag replacements

x

y

x1

y1

e

e1

`1

`1

`2
`2L

β1

β2

Figure 10. Cutting and projecting in case of an acute angle β1.

In case when both angles β1 and β2 re obtuse, we need a more elaborate scheme.
Let β = β1 + β2 − π be the angle between `1 and `2. Fix an angle γ, which will
determined later on.

We assume that the edges `1, `2 of P are long enough for the following construction
to work. Cut P with a line L1 going though x at angle γ with `2, and project the
portion of ∂P on the same side as e onto L1. Denote by e1 = (x1, y1) ⊂ L1 the
projection of e. Then cut P with a line L2 going though y1 at angle γ with e1, and
project the portion of ∂P on the same side as e1 onto L2. Denote by e2 = (x2, y2) ⊂ L2

the projection of e1. Repeat the procedure, alternating between sides e1 and e2 (see
Figure 11).

Note that the angle between lines Li and Li+1 is equal to σ = π−β−2γ. Choose γ
is such a way that 0 < σ < π/2. Then, after m steps, the length of the projection
em = (xm, ym) is at most cos(σ)m |e|, which is < 1/C for m large enough.

We are ready to present the construction. Let ϕ : S → Qε be a map which is a
submetry map everywhere but triangles around vertices, and on them it satisfies the
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Figure 11. Iterated cutting and projecting.

Lipschitz condition (L). For every vertex v of P , fix a plane H spanned by Uv and
two pair of orthogonal lines E1, E2 in H. Use the cutting and projecting procedure
described above (now with planes instead of lines) making all planes parallel to E1.
Here we keep the planes on one side of Uv, which will be repeatedly projected. Then
repeat the same procedure now with planes parallel to E2. Once finished, Uv will
contract by a factor of at least C in every direction, i.e. we get a polyhedral surface
submetric to S.

It remains to check that the above procedure is well defined and does not affect
the volume. Indeed, if ε > 0 is small enough, all the cutting above affects Qε only
locally, in the neighborhood of the vertices. The volume cut is thus O(ε3), and the
rest of the argument follows as in the proof above. This suffice to establish the claim
for simple polyhedra, and complete the prof of Theorem 2 in this case.

Finally, let us note that in construction of the PL-homeomorphism ϕ in §2.1, the
constant C in the Lipschitz condition depends only on the face and dihedral angles
of P , not on the edge lengths of P . Thus, for non-simple polyhedra, the requirement
on the lengths of edges of Pδ is Ω(ε), and it still suffice to take δ = c · ε for sufficiently
large c. This implies Theorem 2. �

2.4. Proof of Theorem 8. The proof starts as the the proof of Theorem 2 in §2.1
and continues as in §2.3. We refer to [Zi] for the introduction and basic definitions.
When speaking about metric geometry in Rd we use the same notation and terminol-
ogy as in [MP].

Let P ⊂ Rd+1 be a convex polyhedron and S = ∂P be its surface. The facets are
d-dimensional faces of P , the ridges are faces of dimension d− 1, and the warp faces
are faces of dimension ≤ d− 2. For a face G of P , denote by dim(G) the dimension
of G, i.e. of the subspace spanned by G. The points on warp faces are called warp
points. The k-dimensional volume of a k-dimensional face G is denoted by volk(G).

Polyhedron P is called simple if every vertex v of P belongs to exactly d edges
(1-dimensional faces of P ). We first consider the case when P simple, and then make
a reduction in the general case.
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Fix a parameter ε > 0. For every facet F of P consider a subset XF of points
x ∈ F at distance ≥ ε from the boundary ∂F . Note that for every ridge A ⊂ F
there is a parallel ridge XA,F ⊂ XF . Furthermore, XF has the same combinatorial
structure as F , and for every k-dimensional face G ⊂ F there exists a k-dimensional
face XG,F ⊂ XF .

Let YF be a translation of XF at distance α = c1ε, where the constant c1 = c1(P )
will be determined later. Denote by Qε the convex hull of all YF over all facets F
of P . It is easy to see that when ε > 0 is small enough, all vertices of YF are in convex
position.

Denote by e1, . . . , ed+1 the edges of P containing vertex v. Similarly, by F1, . . . , Fd+1

denote the facets of P containing v, and such that ei /∈ F , for all i. To simplify
notation, let xi = xFi

. Consider the set of points w1, . . . , wd+1 on the edges: wi ∈ ei,
such that the vectors (v, wi) and (v, xFi

) satisfy the following system of equations:

(v, xi) = (v, w1) + . . .+ (v, wi−1) + (v, wi+1) + . . .+ (v, wd+1) , for all i = 1 . . . d+ 1.

Clearly, the system has a unique solution which determines points wi, and the dis-
tances |v, wi| are linear in ε. Consider also all points

wI = wi1 + . . .+ wir

for every subset I ⊂ {1, 2, . . . , d+1}, such that |I| ≤ d. From above, we have w∅ = v
and wI = xi, where I = 1, . . . , ı̂, . . . , d+ 1, i is omitted. Inside each facet Fi, consider
a parallelepiped WF spanned by the vertices wI ∈ Fi. To make a global notation,
denote by Wv,F the parallelepiped containing v and lies inside F .

We can now construct a subdivision of the surface S = ∂P , generalizing the sub-
division in the proof of Theorem 2 (see Figure 3). First, do this separately on each
facet F and then take a union of some of the resulting pieces. For a k-dimensional
face G ⊂ F , denote by Wv,F,G the unique interior (d − k)-dimensional face of Wv,F

(i.e such that Wv,F,G * ∂F ), which is transversal to G (i.e. such that G∩Wv,F,G is a
point). Denote by TG,F ⊂ F the convex hull of all Wv,F,G, over all v ∈ G.

By construction, all polyhedral regions Wv,F,G lie in the intersection of (d − k)
pairs of parallel hyperplanes, all at distance ε from each other. For example, for
d = 3 the resulting 3-dimensional polyhedral regions are either nearly flat polygonal
prism-like polyhedra (case k = 2), or square pencil-like polyhedra (case k = 1), or
parallelepipeds (case k = 0), as in Figure 12. Similarly, TF,F = XF , but we want to
keep a separate notation in this case. Finally, let TG = ∪FTG,F . This completes the
subdivision of S.

The surface ∂Qε has a natural subdivision into facets. For each k-dimensional
face G of P , denote by T ′

G the the facet of Qε which is a convex hull of faces XG,F ,
over all F ⊃ G. Around v (which is not a vertex of Qε but is a limit of them when
ε → 0), the structure of T ′

G is that of a (k + 1)-simplex times the cone of G. For
example, when d = 3, polyhedra T ′

G look the similar to TG (case k = 2), like triangular
pencils (case k = 1), and like tetrahedra (case k = 0).

We say that a facet U of Qε has order k if vold(U) = θ(εk) as ε → 0. The order
of a region W in the above subdivision of S can be defined in a similar way. From
above, it is easy to see that facets T ′

G and regions TG have the same order d−dim(G).
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Looking at the subspace spanned by G and its orthogonal complement, we can speak
of long and short directions, respectively. By construction, both TG and T ′

G have
dim(G) short and d− dim(G) long directions.

It is easy to see now that both TG and T ′
G have the same adjacency rule as the

polyhedron P . This means that for every two faces G ⊂ G′ such that dim(G) =
dim(G′) − 1, the facet TG is adjacent to a facet TG′ (by a ridge). The same holds for
regions T ′

G.
Let us now construct a PL-homeomorphism ψ : P → Qε which maps XF to YF

congruently, and maps TG → T ′
G so that there is neither stretching nor shrinking in the

long directions. We use the adjacency rules to construct a PL-homeomorphism ψ as
follows. Start with the identity map ψ : XF → YF and take at the adjacent regions TF

and faces T ′
F , respectively. Once TF is unfolded into Rd, TF and T ′

F are both prism-
like polyhedra which differ by height. There is a natural extension of ψ to them.
On the next level we have more freedom of choice as we get again prism/pencil-like
polyhedra but with a 2-dimensional cross-section in the short directions. Any PL-
map on the cross-section respecting the boundary will suffice (the boundary contains
one-dimensional stretches coming from ψ : TF → T ′

F ). Repeat this procedure until
the rest of ψ is obtained. At the end we get to facets T ′

v of order d, which correspond
to vertices of P . Here polyhedra Tv ⊂ S are parallelepipeds, and T ′

v are d-simplices
in Qε. The map ψ is already fixed on the boundary ψ : ∂Tv → ∂T ′

v, and any PL-
homeomorphism of the interior will suffice for our purposes.

By construction of ψ, we have an isometry on large portion of the facets, but may
have some stretching along small portions of the surface S. We have an identity map in
the long directions and some more involved map in the short directions of every T ′

G.
By compactness and the isoperimetric inequality in Rd+1 [BZ2], the stretching is
bounded from above by a constant C, as in the Lipschitz condition (L).

Now we start the cutting and projecting procedure, as described in §2.3. Start
with the d-dimensional polyhedra T ′

A, which as we recall have one short and (d− 1)
long directions. In the 2-dimensional plane orthogonal to A ⊂ Rd+1, use the cutting
and projecting procedure, with the lines now substituted with hyperplanes extended
in the (d− 1) long dimensions. After contracting these facets of Qε by a factor of C,
we may have changed geometry and even combinatorics of the facets of lower order,
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but the general structure (of facets parallel to G) is still the same and the resulting
PL-map is still identity in the long directions.

We proceed to cutting and projecting for facets TG or order 2, which will have two
short and (d − 2) long directions. Take a 3-subspace HG ⊂ Rd+1 orthogonal to G.
The cross-section of Qε in HG becomes a 3-dimensional cone. Cut and project this
cone on a 2-plane LG, and choose two orthogonal lines E1 and E2. Then cut and
project the result on hyperplanes parallel to G and E1. Do the same for hyperplanes
parallel to G and E2. This gives the desired contraction of facets UG. Again, the
combinatorics and geometry of facets may change, but no facets of lower order is
removed or created and the map remains identity on long directions. We repeat this
for all facets of order 2, then for all facets of order 3, etc. We finish with the cutting
and projecting procedure for the (usual) cones Cv corresponding to every vertex v
of P . The details are straightforward.

Denote by Q′
ε the resulting polyhedra. By construction, they are always submetric

to S. It remains to compute the volume vol(Q′
ε) and show that {Q′

ε} is indeed
volume-increasing. As before, let α = c1ε, where c1 is the largest possible so that the
regions XF do not collapse. By the same argument as in §2.1, we have:

vold+1(Q
′
ε) = vold+1(Qε) + O(ε2) = vold+1(P ) + vold(∂P ) ε + O(ε2) ,

since every time we cut and project we do this along faces of dimension ≤ d−1. This
finishes the proof in the case when P is simple.

For general P ⊂ Rd, we construct a simple polyhedron by the following cutting
procedure. We will use the cut and project construction for all warp faces of the
dimension d − 2, in any order. Start with a (d − 2)-dimensional face B ⊂ P . At a
generic point b ∈ B the neighborhood of S = ∂P is a product of a (d−2)-dimensional
subspace V and a cone CB. Let H be a hyperplane orthogonal to the interior ray RB

in CB, parallel to V , and at distance δ from B. Now cut and project P ontoH. Repeat
this for all (d − 2)-dimensional faces. If we choose rays RB generically, we obtain a
simple polyhedron Pδ, since every warp point is in the closure of a (d−2)-dimensional
warp face.4

Note that we no longer have a bound on the size of edges of Pδ. However, we never
used in our construction the fact that the regions XF were constructed with the same
uniform ε. Instead, let us set δ = ε and modify the above construction as follows.

When δ → 0 is small enough, the combinatorics of faces will stabilize. Define
the sets XF the same way as before, but only for facets which don’t degenerate
when δ → 0. This is still well defined, and at the limit ε → 0 we get the same
rate of increase of vol(Qε). Now, the only obstacle is that these facets F and the
corresponding to them regions TF will disappear when the cut and project procedure
is done. In effect, we simply make deeper cuts into P . But again, this does not
affect the volume calculation nor does this change the properties of the constructed

4Formally, an extra argument is required to show that this can be done with the same δ. To avoid
this technicality one can allow δ to vary slightly for different B. Alternatively, even if the rays are
chosen non-generically, one can continue cutting and projecting for warp faces of smaller dimension,
including all vertices at the final stage.
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PL-maps, for example, that they are identity in the long directions. We omit the
details.

Finally, we still need to treat separately the case of a “flat” P , i.e. when P is
a doubly covered convex d-dimensional polyhedron F in Rd+1. Note that to satisfy
the theorem it suffice to contract F to the standard unfolding of the “top half” of
a (d + 1)-dimensional cube with side ε > 0. This can be easily done by making
two central conical triangulations of both, overlapping them, and triangulating them
again. Then we contract separately the simplices in each cone (see Figure 13). This
is a contraction when ε > 0 is small enough. Of course, the volume of a d-cube is
equal to εd, and thus increasing. This completes the proof. �

PSfrag replacements
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Figure 13. Contracting a face of a flat polyhedron onto top half of a
cube. Putting two halves together.

2.5. Proof of Theorem 7. For flat surfaces the result is already established in the
proof of Theorem 2. Let us now present an isometry construction when vol(S) > 0.

Fix a volume-increasing shrinking {Sε, ε ∈ [0, ρ]} as constructed above, for some
ρ > 0. Since Sρ 4 S, by the Burago-Zalgaller’s theorem (Theorem 5), there exists an
isometric embedding S ′ ∼ S is the ε-neighborhood of Sρ, where ε > 0 can be made
as small as desired. Before we set ε, we need to briefly recall the proof of Theorem 5
given in [BZ3].

The surface S ′ is constructed by first using a very refined triangulation of S and the
corresponding triangulation of Sρ (this part is based on [BZ1]), and then by making
certain embeddings of the triangles. The original Burago-Zalgaller’s construction is
quite robust and allows a much flexibility in choosing the triangulation as long as
the triangles are small and the angles are acute.5 In our case, one can take a regular
triangulation on the faces of F , slightly modified around the edges, as prescribed

5In fact, there is another technical condition on the centers of circumscribed circles. As shown
in [BZ3], this is easy to get once an acute triangulation is found (see also 6.4).
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in [BZ1]. Moreover, one can then embed these triangles in a trivial way when they
lie in polygons YF and in translation-invariant way along trapezoids T ′

e, making the
cross-sections and the trapezoid as shown Figure 14. The crimps here are small and
clustered closer to the middle to avoid intersections with those of other edges.

Figure 14. Immersed trapezoid and its cross-section.

Now recall that in construction of the shrinking, the map ϕε : S → Sε is linear in ε
around each vertex. Fix a map ψ = ψρ : S → Sρ and consider a family of embeddings
corresponding to the maps ψε : S → S ′

ε for 0 ≤ ε ≤ ρ, such that S ′
ρ := S ′, S0 = S, and

where ψε is defined to be linear around each vertex with faces and trapezoids mapped
as above. It is easy to see that this is well defined. Note also that the construction
easily extends to non-simple polyhedra verbatim.

It remains to check that Ξε = {S ′
ε} is volume-increasing. This is straightforward

if the parameter ε = ε(ρ) > 0 is chosen small enough to begin with. Indeed, by the
isoperimetric inequality applied to regions on surfaces around the edges and vertices
of P , the volume difference |vol(S ′

ε) − vol(Sε)| = O(ε2), where the constant implied
by the O(·) notation depends ε and is independent of ε. Therefore, taking ρ > 0
small enough we can ensure that vol(S ′

ε) − vol(S) be greater than this difference for
ε ∈ [0, ρ], and in fact grows with ε. �

2.6. Proof of Theorem 10. We start with the second part of the theorem which
is easier to visualize. Assume that a polyhedral surface S is embedded into R3, and
let P be a (possibly non-convex) polyhedron in R3, such that S = ∂P .

Fix a plane H in general position, such that H∩P = ∅. Start moving H towards P
until it hits a vertex v. Continue moving H in this direction at distance ε > 0 and
then at distance δ > ε. Denote by Hε and Hδ the corresponding hyperplanes parallel
to H. If ε, δ > 0 are small enough, the hyperplanes Hε and Hδ intersect only the
cone Cv starting at vertex v. We fix δ and present a volume-increasing shrinking
{Sε}, for all ε > 0 small enough compared to δ.

Denote by R ⊂ S the region on the surface S which lies on the other side of Hδ

from v. The surfaces Sε we consider will agree with S on R. Denote by F1, . . . , Fm

the triangular faces of the cone Cv cut with Hδ, labeled in the cyclic order. For
convenience, we keep all indices (mod m) throughout the proof, so that F0 = Fm,
etc.
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For each Fi, denote by ei = Fi ∩ Hδ and hi = Fi ∩ Hε the lines of intersection of
cone faces with the hyperplanes. Let ui = hi ∩ hi−1 and wi = ei ∩ ei−1 be the vertices
of polygons Q = S ∩Hε and G = S ∩Hδ, respectively.

Fix parameters β > 0 and γ > 0. Let xi, yi be the points on hi such that
|xi, ui| = |yi, ui+1| = εβ. Now, move each interval (xi, yi) away from the interior
of Q at distance εγ. Denote by (x∗i , y

∗
i ) the resulting intervals, and by Q∗ the polygon

[x∗1, y
∗
1, x

∗
2, y

∗
2, . . . , x

∗
m, y

∗
m]. Note that when ε decreases, polygons Q and Q∗ contract

at the same rate. Thus, when β > 0 and γ > 0 are sufficiently small, one can ensure
that Q∗ is not self-intersecting, and this restriction is independent of ε. However, for
the construction we need a stronger condition.

Denote by Ti ⊂ Fm a trapezoid formed by (xi, yi) and edge ei. Rotate each trape-
zoid Ti around its edge ei away from P , so that the resulting trapezoid T ′

i contains
the interval (x∗i , y

∗
i ). For all i, denote by (x′i, y

′
i) the rotation of (xi, yi), and by ∆i the

triangle [y′i−1, wi, x
′
i].

The trapezoids Ti and Ti+1 are called adjacent. We claim that there exist con-
stants β > 0 and γ > 0 independent of ε, such that trapezoids T ′

i and triangles ∆j

do not intersect between themselves and each other, except if they share an edge or
are adjacent trapezoids (i.e. unless they intersect for combinatorial reasons).

First, set β > 0 small enough, so that when γ = 0 the polygon Q∗ in not self-
intersecting. Since G is also not self-intersecting, neither are the triangles and trape-
zoids in between. Now start increasing γ. Observe that the first time the intersection
can occur is at a vertex x′i or y′i, for some i. It is easy to show that ‖xi, x

′
i‖ ≤ 2εγ,

‖yi, y
′
i‖ ≤ 2εγ, and the same is true for their projections π(x′

i), π(y′i) on Hε. This is
easily satisfied when γ > 0 is sufficiently small.

Consider also triangles Υi = [x′i, y
′
i, v] and Λi = [y′i−1, x

′
i, v]. We need these triangles

not to intersect each other, trapezoids Ti and triangles ∆i. Again, just as in the
previous case, this is satisfied when γ > 0 is sufficiently small, independently of ε.
We skip the details.
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We need one more condition. We want to make sure that the “short” edges of
triangles ∆i are sufficiently small:

‖y′i−1, x
′
i‖ ≤ |yi−1, xi|S , for all i.

Observe that both sides grow linearly with ε and that the inequality is obviously
satisfied when γ is small enough. We can now fix parameters β, γ > 0 and proceed
to the construction.

We construct Sε in two stages as follows. First, attach to R all trapezoids Ti

and triangles ∆i constructed above (recall that they are completely determined by
the parameters β, γ). Then, add triangles Υi and Λi constructed above. Denote
by Aε the resulting embedded surface. Note that we are not claiming that Aε is
submetric to S. Instead, we construct a PL-homeomorphism ψ : S → Aε which will
be “corrected” later.

Let ψ be identity on R and a rotation on trapezoids: ψ(Ti) = T ′
i for all 1 ≤

i ≤ m. Let ψ : [xi, yi, v] → Υi be a linear map. Take a surface quadrilateral
Bi = [yi−1, wi, xi, v] ⊂ S, defined as a union of two triangles in Fi and Fi−1. Think
of regions Bi as hinges. Turn them, increasing or decreasing the angle between two
triangles to fit on ∆i. Then project them on a plane spanned by ∆i, for all 1 ≤ i ≤ m.
Project this unhinged Bi onto ∆i and let ψ be this projection, wherever defined.
Finally, set any PL-map from the remaining portion of Bi onto Λi. This completes
the construction of a PL-homeomorphism ψ.

By construction, map ψ is an isometry on T ′
i and a submetry on the preimage of ∆i.

Let us show how to modify the cut and project construction as in §2.3, so we can
change ψ into a submetry. The idea is clear from Figure 17 where a 2-dimensional
case is shown. Instead of projecting onto a line, decrease the heights of all points to
make them nearly flat, while avoiding the overlaps. The lengths are then contracted
by about the same factor. In fact, we can make the heights between the layers smaller
and smaller, to avoid the explosion after repeated projections and to ensure that ever
that at every iteration we contract by the same constant factor.

In our situation we need to do this cutting and near-projecting procedure in two
directions parallel to plane H. Formally, we need to choose two orthogonal lines
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Figure 17. Cutting and near projecting.

E1⊥E2 ⊂ H. Then perform the cutting and near-projecting first onto planes parallel
to E1, and then onto planes parallel to E2. At the end, a portion of trapezoids Ti

and triangles ∆i will be changed. By construction, the edges cut from them will have
O(ε) length. When ε > 0 is small these cuts will not reach R and will change the
area of T ′

i by at most O(ε2). Let Sε be the resulting surface.
Let us make a volume calculation to show that vol(Sε) is increasing. Since β, γ > 0

are fixed constants, we have

area(Ti) = area(Fi) + O(ε) ,

and the height of (x′i, y
′
i) over the plane containing Fi is θ(ε) when ε is sufficiently

smaller than fixed parameter δ. Therefore, the asymptotic behavior for the volume
of polyhedra Yi = [xi, yi, x

′
i, y

′
i, wi, wi+1] is based on the volume of a pyramid formula:

vol(Yi) =
1

3
area(Fi) ·O(ε) + O(ε2) .

Here the volume change along the hinges is O(ε2). Therefore, we have:

vol(Sε) = vol(S) +
m∑

i=1

vol(Yi) +O(ε2) = vol(S) +
1

3

m∑

i=1

area(Fi) ·O(ε) +O(ε2) .

This implies that vol(Sε) is increasing for ε sufficiently small, and proves that {Sε}
is a volume-increasing shrinking.

To apply the Burago-Zalgaller’s theorem (Theorem 5′) to Sε, we need to use essen-
tially the same argument as in the proof of Theorem 7. We need to fix a trivial flat
triangulation on trapezoids and map the hinges as a cone starting at wi over the same
cross-section as in Figure 14. The remaining part is linear in ε and any triangulation
will work there. The details are straightforward.
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For the case when S is immersed, the proof is actually easier, as we have certain
extra flexibilities in the construction. We can now ignore the intersections (some of
which can be forced) and need only to avoid the overlaps of the triangles and trape-
zoids. Both the constructive proof above and the application of Burago-Zalgaller’s
theorem can be repeated verbatim. This completes the proof of the theorem. �

3. The volume of inflated polyhedra

3.1. Convex shrinking. Given a convex polyhedron P ⊂ R3, Corollary 4 says that
one can construct another convex polyhedronQ of bigger volume and with a submetric
surface. Since the proof of Theorem 2 is constructive, we actually know how to do
that. One can apply the same construction to Q, obtaining yet another polyhedron
of bigger volume, etc. Each time we repeat the construction the volume increases
while the surface shrinks. Of course, the convex body we get in the limit is no longer
polyhedral, but it still compact and its volume is well defined. In fact, by the isometric
inequality the volume of a body obtained by a shrinking of ∂P is always bounded by
a constant which depends on the area of ∂P . An interesting question is how large
this volume can be.

Problem 1. For a convex polyhedral surface S in R3, compute:

ζ(S) := sup
S′4S

vol(S ′) ,

where the supremum is over all convex polyhedral surfaces S ′ submetric to S.

Clearly, ζ(S) > 0 by Corollary 4. It would be interesting if there was a unique
convex piecewise-smooth surface Z = Z(S) submetric to S, and such that vol(Z) =
ζ(S). However, we will not try to state this as a conjecture.6 Note that in the
open problem above we consider all surfaces submetric to S, not just those obtained
by a volume-increasing shrinking. In fact, we believe in the following conjecture of
independent interest, which, if true, removes this difference.

Conjecture 1. Let S0 be a convex polyhedral surface in R3 and let S1 be a convex
polyhedral surface submetric to S0 of greater volume: vol(S1) > vol(S0). Then there
exist a volume-increasing shrinking from S0 to S1. Similarly, if vol(S1) = vol(S0),
there exist a volume-preserving7 shrinking from S0 to S1.

The second part means that you never have to first increase the volume and then
decease it in order to shrink S0 to S1 of the same volume. In the shrinking of a cube
in Example 1, there exist a value ε ≈ 0.3026 such that vol(Qε) = vol(Q0) = 1. In this
case, an explicit volume-preserving shrinking (as in the conjecture) can be obtained
in a way similar to the construction in the proof of Theorem 2. There we need to

6This is a pure speculation at this point as not a single example of this has been established.
We would be just as happy to have a C2-smooth surface. Note also that the geodesic distance can
be defined on general convex surfaces (see e.g. [AZ, Po2]), so it makes sense to say that a general
convex surface S′ is submetric to S.

7Usually, the term volume-preserving means something different, but in this context we mean
“volume-unchanging”. Neither notion will be used anywhere else in the paper.
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have parameter δ = δ(ε) to grow much faster than prescribed in the proof. We omit
the details.

3.2. Non-convex shrinking. Let us now switch to the volume of surfaces isometric
to S, and thus no longer convex.

Problem 2. For a convex polyhedral surface S in R3, compute:

η(S) := sup
S′∼S

vol(S ′) ,

where the supremum is over all immersed polyhedral surfaces S ′ isometric to S.

From Burago-Zalgaller’s theorem (Theorem 5), we know that in the definition
of η(S) one can use submetric in place of isometric surfaces. From here we im-
mediately have

ζ(S) ≤ η(S)

for all convex S. We believe that the equality is never achieved.

Conjecture 2. For every convex polyhedral surface S in R3 we have:

ζ(S) < η(S) .

In other words, conjecture 2 says that for every convex S there exist a parameter
α > 0 and an immersed surface S1 submetric to S, such that every convex surface S2

we have vol(S2) < vol(S1) − α. The conjecture can be explained by the following
stronger claim.

Observe that one can speak of a general surface S ′ submetric to S if the geodesic
distance |x, y|S′ is defined for all x, y ∈ S ′. This can be done for all piecewise-smooth
surfaces, and in fact a lower smoothness class will suffice.

Conjecture 3. For every convex polyhedral surface S in R3 there exist a unique
(up to rigid motions) piecewise-smooth surface K = K(S) which is embedded into R3,
submetric to S and such that vol(K) = η(S). Moreover, the surface K is strictly
non-convex and smooth everywhere except at the vertices.

Of course, all polyhedral surfaces are piecewise-smooth, so the supremum of vol(S ′)
over all piecewise-smooth surfaces S ′ submetric to S is at least η(S). On the other
hand, one can approximate any piecewise-smooth surface S ′ submetric to S with
polyhedral surfaces submetric to S. Therefore, the point of the first part of the
conjecture is the fact that K(S) is piecewise-smooth and unique up to rigid motions.

Finally, if K(S) is non-convex, it cannot be approximated with convex polyhedral
surfaces S ′ 4 S, which suggests (but does not formally imply) that ζ(S) < η(S).
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Figure 18. Real cushion pillow, the ideal pillow shape and a star
shaped party balloon.

3.3. Further speculations. To see the reasoning behind Conjecture 3, consider the
following physical experiment. Think of the surface S made out of bendable but non-
stretchable material, much like cellophane or polyester. Blow the air into S until it
no longer possible. The resulting shape is the desired surface K(S), and the physical
intuition is suggests that this surface is indeed unique.

When S is a doubly covered square the experiments produces a cushion pillow
shape, so one can this of the surface K(S) as an ideal pillow shape (see Figure 18).
This is the only example for which an investigation of K(S) has been attempted
(see §4.4 below). One can see that the shape is strictly non-convex as predicted by
Conjecture 3. In a way, it also suggests that the volume-increasing deformation shown
in Figure 2 is far from optimal: the optimal would be concave along all three sides
of the triangle. This can be illustrated with a party balloon in Figure 18. Here we
essentially have an ideal inflated surface K(S), where S is a doubly covered regular
pentagon.

Now, we are so confident in our Conjecture 3 and the physical experiments, we are
willing to strengthen it and venture further guesses on the shape of K(S). First, it is
natural to assume that the first part of Conjecture 3 holds for all convex piecewise-
smooth surfaces S, not just polyhedral surfaces. As we show below, the second part
is no longer true in this generality.

Second, note the crimps on the sides of the cushion pillow in Figure 2 or (much
smaller) crimps on the surface of the party balloon in Figure 18. We believe this a uni-
versal phenomenon, and the crimps always appear when the ideal inflated surface K
is approached.

Conjecture 4. For every convex polyhedral surface S in R3, the ideal inflated
surface K = K(S) has smaller area:

area(S) < area(K).

Moreover, the submetry K 4 S is strict almost everywhere:

|x, y|S < |x′, y′|K a.s. for x, y ∈ S ,

where x′ = ϕ(x), y′ = ϕ(y), and ϕ is the submetry map ϕ : S → K(S).
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The second part of the conjecture suggests that in fact the cushion pillow in Figure 2
is actually quite far from the ideal surface. In a better experiment, the surface should
have small crimps almost everywhere (the crimps should become smaller closer to the
center of each side of the pillow).

For a convex piecewise-smooth surface S, define the crimping ratio cr(S) as follows:

cr(S) =
area

(
K(S)

)

area(S)
.

Assuming the first part of Conjecture 3 extends to convex piecewise-smooth sur-
faces S, the crimping ratio is well defined, and cr(S) ≤ 1. Our final conjecture has
an isoperimetric flavor:

Conjecture 5. Among all convex piecewise-smooth surfaces S, the crimping ratio
minimizes on a doubly covered disc.

The crimping ratio of a doubly covered disc is given in §4.5 below. Let us note
here that this is not the first time this shape appears in the context of isoperimetric
problem. An old Alexandrov’s conjecture claims that the doubly covered disc max-
imizes the ratio area(S)/diam2(S), where diam(S) is the geodesic diameter of the
surface S [A1] (see also [Gh] and references therein).

3.4. Non-convex surfaces. One can ask if Conjecture 3 extends to non-convex
surfaces S. Perhaps so, but not in the obvious way, even if S embedded into R3 and
homeomorphic to a sphere. Take for example a doubly covered ring with a small gap
as in Figure 19. As can be seen in a physical experiment in the beginning of the
inflation process we get an embedding, but very soon two ends collapse into a swim
ring shape. Thus, one has to either allow realized (not even immersed) surfaces or
accept the non-uniqueness of the limit shape.

Figure 19. Non-convex inflated balloons and a doubly covered shape
which collapses when inflated.

3.5. Smooth surfaces. One can ask to what extend the conjectures above apply
to smooth convex surfaces. It seems that the first part of Conjecture 3 extends to
this case, but as the obvious example of a sphere shows, we can have S = K(S).
Obviously, K(S) is convex and has no crimping, i.e. cr(S) = 1. Thus Conjecture 2,
the second part of Conjecture 3 and Conjecture 4 are inapplicable to the smooth case.

We call the surface S non-inflatable, if K(S) = S. The following problem is of
interest from the differential geometry point of view.
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Problem 3. Characterize all smooth convex non-inflatable surfaces.

Clearly, K(K(S)) = K(S), so when K(S) is a smooth surface we get an example
of a non-inflatable surface. Beside the case of a sphere, the mylar balloon is another
example of a non-inflatable surface. It is well studied in the literature and is a
motivation of our Conjecture 5. We describe the mylar balloon and its properties in
§4.5. In the other direction, it is known that certain surfaces are inflatable i.e. have
continuous volume-increasing isometric deformation. Among other things, Bleecker
showed that oblate ellipsoids with semi-axis (1, 1, r), such that r <

√
3/8, are always

inflatable [B2]. Similarly, Bleecker showed that a smooth non-inflatable surface cannot
have flat regions [B2].

4. Examples and special cases

4.1. Doubly covered triangle. Let S be the surface of a doubly covered triangle
with side length equal to 1. Already in this simplest case neither η(S) not ζ(S)
are not known. The maximal volume attained by the isometry given in Figure 2
is about 0.0309. Bleecker found an isometry construction based on a symmetric
version of the same idea, with all three sides bent inside reaching the volume 0.0430.
Interestingly, the optimal Bleecker’s isometry coincides with the optimal case of our
isometry (see the proof of Theorem 2).

We should mention the isoperimetric inequality (see e.g. [BZ2])

(>) vol(S) ≤ 1

6
√
π

area(S)3/2,

which gives an upper bound of 0.0758 for the volume. Of course, if conjectures 3
and 4 hold in this case, then the optimal surface K(S) is non-convex, i.e. far away
from a sphere, and has surface area smaller than area(S).

4.2. Tetrahedron. Consider the surface S of a regular tetrahedron with side length
equal to 1. Bleecker’s isometric bending of a tetrahedron is given in Figure 20 (only
one quarter of a tetrahedron is shown). The volume maximizes at 0.1628 compared
with 0.1179, the volume of a regular tetrahedron. This is still quite far from the
isoperimetric inequality bound of 0.2143, which is not expected to be reached.

Figure 20. Bleecker’s isometric bending of a tetrahedron.
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4.3. Cube. As we mentioned in the introduction, in the unit cube case the Bleecker’s
construction gives the volume 1.2187. The construction in Example 2.2 maximizes the
volume at 1.1820, while the isoperimetric inequality gives the upper bound of 1.3820.

Figure 21. Andreas Gammel’s computer simulation of the ideal in-
flated surface of a cube.

4.4. Doubly covered square. Let S be a doubly covered unit square. Informally, we
refer to the surface K = K(S) as the ideal pillow shape (see Figure 18). The problem
of computing the vol(K) has attracted much attention in the recreational literature
under different names such as the tea bag problem [W], the paper bag problem [R],
etc. Here we give a quick survey of the known results, most of which are largely
unavailable in the mainstream mathematical literature.

Figure 22. Andreas Gammel’s computer simulation of the ideal pillow
shape: an intermediate step and the final shape (view from the side).

In a recent paper [R], Robin reports physical experiments and an empirical formula
for the volume of the ideal rectangular pillow. His formula gives an estimate 0.1910
for the vol(K). Andreas Gammel did a number of computer experiments simulat-
ing an ideal pillow shape K (see Figure 22). He estimated the volume vol(K) as
about 0.208 [Ga]. This should be compared with the lower bound of 0.1129 given by
our general construction (see Figure 23), which in this case is similar to Bleecker’s
construction of bending of a cube [B1]. In the opposite direction, the isoperimetric
inequality (>) gives the upper bound of 0.2660.

An interesting study was undertaken by Andrew Kepert [K], who obtained a suc-
cession of explicit constructions of isometric embeddings of S. His first construction,
shown in Figure 24, has volume 0.1902. It can be viewed as a simple modification of
our general construction in this case8

8Of course, Andrew Kepert’s construction was made much earlier, in 1997 [K].
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Figure 23. Isometric embedding of S as constructed in the proof of Theorem 2.

Kepert introduced a number of pleats and utilized the symmetry. The idea can
be understood from Figure 24, where only one octant of the construction is shown.
The volume in this case is about 0.2055. Note the circular boundary in the octant
construction which is close but not exactly optimal, as can be seen in the ideal shape
simulation 18. Kepert also found a heuristic upper bound 0.2183 based on several
unproven assumptions [K] (see §6.5).

Figure 24. Kepert’s two constructions.

4.5. Mylar balloon. Let S be the surface of doubly covered unit circle. The ideal
inflated surface K = K(S) is commonly known as mylar balloon [Pa, MO], named
after inelastic polyester material it is commonly made of (see Figure 25).

By the symmetry, the mylar balloon K is a surface of revolution. To describe it,
we first write its inflated radius:

r =
4
√

2π

Γ
(

1

4

)2
≈ 0.7627 .

The elliptic integrals of the first and second kind are defined as follows:

F (z, k) =

∫ z

0

dt√
1 − t2

√
1 − k2t2

and E(z, k) =

∫ z

0

√
1 − k2t2√
1 − t2

dt.

The Jacobi sine function sn(u, k) is defined as the inverse to F (z, k), for all k ∈ R.
The Jacobi cosine function cn(u, k) is defined by

sn(u, k)2 + cn(u, k)2 = 1.
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It was shown in [Pa, MO] that the mylar balloon surface

K =
{(
x(u, v), y(u, v), z(u, v)

)
, u ∈ [−A,A], v ∈ [0, 2π]

}

is defined by the following equations:

x(u, v) = r cn(u, a) cos(v), y(u, v) = r cn(u, a) sin(v),

z(u, v) =
r

a

[
E

(
sn(u, a), a

)
− 1

2
F

(
sn(u, a), a

)]
,

where a = 1√
2

and A = F (1, a).

The submetry map ϕ : S → K is determined via geodesics from North and South
poles to the equator: each such geodesics has length 1. Note that K is smooth,
convex and flat only at the North and South poles. Thus ζ(S) = η(S) in this case
and Conjecture 4 holds for the surface S.

Figure 25. Mylar party balloon and NASA’s Ultra Long Duration Balloon.

The area and the volume of K are given by

area(K) = π2r2 =
32π3

Γ
(

1

4

)4
≈ 5.7422,

vol(K) =
2πr2

3
=

64π2

3Γ
(

1

4

)4
≈ 1.2185.

Note that according to Conjecture 5, the crimping ratio minimizes in this case and is
equal to

cr(S) =
16π2

Γ
(

1

4

)4
≈ 0.9139.

Interestingly, the crimping ratio cr(S) is equal to the distance between the North and
South poles in this case. Thus, from Bleecker’s result mentioned in § 3.5, the oblate
ellipsoids with the same axis as mylar balloon is inflatable. We refer to [MO, Pa] for
complete calculations and further details.
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5. Applications of the mylar balloon

5.1. Denote by Pn the regular polygon inscribed into a unit circle, and let Sn be a
doubly covered polygon Pn, a convex surface in R3. The following result is a rare
general result on the function η(·).
Proposition 1. Denote by S◦ the doubly covered unit circle and let ג = η(S◦). Then,
for all n ≥ 3 we have: η(Sn) < .ג Moreover, if K = K(S◦) is well defined and is
equal to the mylar balloon, then we have:

lim
n→∞

η(Sn) = .ג

Recall from the previous section that the volume of the mylar balloon ג = vol(K) ≈
1.2185. Thus, under assumptions as in the proposition, we can compare what bound
do we get for different n. When n = 6, we have area(S6) = 3

√
3 and the isoperimetric

inequality (>) gives η(S6) < 1.1138, which is better than the inequality in the theo-
rem. On the other hand, when n = 12, we have area(S12) = 6 and the isoperimetric
inequality gives η(S12) < 1.3820, which is weaker than the inequality in the theorem.

One would assume that η(Sn) is increasing with n, but with the tools we have at
the moment we cannot establish even that. Similarly, it is natural to conjecture that
ζ(Sn) → ג as n→ ∞. However, a careful examination of the proof below shows that
the submetric embeddings constructed there are not necessarily convex.

5.2. Proof of Proposition 1. For the first part, take the doubly covered unit cir-
cle S◦ and fold onto Sn as shown in Figure 26. Every submetry S ′

n 4 Sn now
corresponds to a submetry S ′ 4 S◦ of the same volume. By definition, η(S◦) is the
supremum of the volume of the submetric embeddings of S◦. Therefore, η(S◦) ≥
vol(S ′) = vol(S ′

n). Taking S ′
n such that vol(S ′

n) is as close to η(Sn) as desired, we
obtain the result.

Figure 26. Folding the circle onto a square.

For the second part, let us approximate the mylar balloon with submetric embed-
dings of Sn. Consider a triangulation τn of the n-gon Pn into triangles such that the
length of each side of each triangle is at most the side-length of Pn, and there are no
extra vertices added on the sides of Pn. Denote by K the surface of the mylar balloon.
The submetric map ϕ : S → K maps the vertices of τn onto K so that the geodesic
distances are non-increasing (in fact, strictly decreasing in this case). Note also that
triangles in τn attached to the boundary are mapped into triangular regions on K.
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The boundary edge is mapped onto a geodesic, which is smaller than the circular
arc of K. The latter is smaller than the circular arc of the unit circle by a factor of
r < 0.77 (see Figure 27).

PSfrag replacements

S

ϕ

K

Figure 27. Triangle on a circle and mylar balloon.

Now replace all triangles on the surface of K with straight triangles on vertices
of ϕ(τn). Contract the resulting surface Xn by a factor (1 − ε), for some fixed
ε > 0 independent on n. Let us show the submetry on all triangles in the triangula-
tion τn. First, the edge lengths of all triangles is O(1/n) by construction. Because of
smoothness of K, the geodesic and straight distances on K are in fact within factor
1 + O(1/n2) of each other. Roughly, for all but the boundary triangles this implies
a near-isometry, and, after contracting by a factor (1 − ε), all these triangle become
submetric. For the boundary triangles, we have a similar argument for the interior
edges and the constant shrinking factor for the exterior edges.

Finally, for the volume the convergence argument above gives:

vol(Xn) = vol(K) + area(K) ·
(

1 −O

(
1

n2

))
.

After we do the contraction, the volume decreases by a factor of α = (1− ε)3. Since ε
is independent of n, the volume converges to αvol(K), as n → ∞. Therefore, by
choosing ε > 0 small enough, we can get submetric embedding with the volume as
close to K as desired. �

6. Final remarks

6.1. One can view the results in this paper as the first step in characterization of
non-inflatable surfaces: we show that such surfaces cannot be polyhedral. It seems
that the fundamental idea in this paper can be employed to obtain more delicate
regularity results.

Suppose, for example, that S is a piecewise-smooth non-inflatable surface with a
crease along a smooth curve f ⊂ S. Fix a point v ∈ f and consider two geodesics
g, h ⊂ S orthogonal to f in v. Choose points x ∈ g, y ∈ h on the geodesics at equal
geodesic distance ε from v. Similarly, choose points w1, w2 ∈ f so that the distance
from them to v along f is also ε. Connect x, y with w1, w2 by geodesics and denote
by U the resulting region [x,w1, y, w2] ⊂ S (see Figure 28). As ε → 0, the region U
converges to a square bent along a diagonal.
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Figure 28. Inflating a portion of the surface.

One would assume that it is possible to “inflate” the curved tetrahedron spanned by
the region, while keeping intact the geodesics on the boundary ∂U . This is impossible
to do when f is a straight line on the interval (w1, w2), but if f is concave as in
Figure 28, there is clearly a room to push v “inside” to make the acute angle between g
and h a bit larger. Making rigorous an argument of this kind is an interesting challenge
which lies outside the scope of this paper.

6.2. The proof of Theorem 8 is based on a classical idea of truncating convex poly-
hedra, an approach which often appears in a different context. For example, all
Archimedean solids can be obtained from Euclidean solids by truncating the vertices.
Similarly, the permutohedron in Rd can be obtained from a simplex by first (sym-
metrically) cutting along vertices, then along edges, etc., and eventually along all
ridges (see [Zi]). The same approach was recently used in [DP] as a way to realize
generalized associahedra.

6.3. With some notable exceptions, very little is known about metric geometry of
polyhedra in dimensions higher than three [Po2] (see also [MP]). In a certain sense
which can be made precise, the higher the dimension d, the “more rigid” are convex
polyhedra. A number of 3-dimensional results are simply false in higher dimensions.
For example, it is easy to see that Alexandrov’s existence theorem cannot be ex-
tended to d-dimensional convex surfaces in Rd+1 when d ≥ 3, since there is not
enough degrees of freedom. The same is true for the Burago-Zalgaller existence theo-
rem in [BZ1], since there exist topological obstacles for immersions of d-dimensional
surfaces into Rd+1, such as the classical Hopf theorem.

In the same way, while in R3 a number of non-rigid immersed polyhedra is known,
such as the Bricard octahedra, not a single example is known for d ≥ 5. In fact, it is
conjectured that higher dimensional cross-polyhedra cannot be rigid. We refer to [C2]
for a comprehensive survey on rigidity, to [Gr] for a general setting of the Burago-
Zalgaller type results (including the foundational results by Nash and Kuiper), and
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to [Y] for a general overview of the modern geometry, which puts Bleecker’s results
into context.

6.4. It is possible that Burago-Zalgaller’s theorem (Theorem 5′) holds in higher
dimensions, but their approach is specific to three dimensions and non-generalizable.
In fact, their starting point is a construction of an acute triangulation of the surface
(Lemma 1 in [BZ1]). This result, largely unknown in the West, has been recently
rediscovered, but only a weaker versions have been obtained (see [Ma, Za]). As of
now, very little is known about acute triangulations is higher dimensions [Za].

It would be nice to further generalize Bleecker’s theorem and our theorems 7 and 10
to Rd, but we see no way of proving them directly without Burago-Zalgaller’s theorem
even when d = 3. There is one exception, however. If one considers only isometric im-
mersions rather than embeddings, the first part of Theorem 10 can be obtained nearly
verbatim, with Theorem 5′ replaced by an appropriate strengthening of Tasmuratov’s
theorem [T1] (see also [T2]). While Tasmuratov’s proof is significantly simpler than
the proof of Burago and Zalgaller, it remains unclear whether his approach can be
extended to higher dimensions. We plan to return to this problem in the future.

Let us also mention here a completely elementary treatment of a very special case
of Burago-Zalgaller’s theorem in [Z].

6.5. Kepert’s heuristic upper bound mentioned in 4.4 is based on a subdivision of
the surface S of the doubly covered unit square into four cones C with side length 1/2
and the remaining region. Then the idea is to consider all surfaces S ′ which contain
four cones isometric to C and have the same area: area(S ′) = area(S). It is then
assumed that among such surfaces the largest volume is attained by a sphere with
four cones attached to it. If true, this gives an upper bound on η(S).

While the above assumption vaguely resembles the double bubble problem (see e.g.
[HMRR, Mo]), there are several important differences. With four cones the problem
loses symmetry, so the resulting shape is no longer the surface of revolution, an
important first step in many isoperimetric problems.

6.6. The crimping of non-inflatable surfaces was first noticed by Paulsen in the
context of the mylar balloon [Pa] (see also [B1, §5.2]). However, the physical nature
of the crimping during inflation process has hardly been understood. For example,
one would assume that the pleated surface has crimps which go along the surface,
but the experiments seem to suggest otherwise. Open mathematical problems remain
as well. For example, it takes an argument to prove that there really does exist a
volume-increasing continuous shrinking from the doubly covered circle S to the final
state. This might not be difficult, but has not been done.

Another interesting open problem is the question of uniqueness, as in Conjecture 3,
i.e. whether the mylar balloon is a unique shape up to rigid motions, which attains
the largest possible volume while remains submetric to S. There is, of course, little
doubt that this is true. In fact, we even used this result explicitly in the assumptions
of Proposition 1. In view of the symmetry of the mylar balloon, it is natural to assume
that the volume maximizes when the shape is a surface of revolution, and Paulsen’s
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analysis completes the proof. Unfortunately, it is unclear whether a complete proof
of the assumption is attainable with the available techniques.

6.7. There is a fairly large literature on isometric deformations of convex surfaces
under buckling, especially for surfaces of revolution (see [Po1, Po3]). In this case, the
volume actually decreases, so in a way this process is an inverse of inflation. To get
an idea of these constructions, a buckling of a cube from [Sh1] is shown in Figure 29
(see also [Sh2]).

Figure 29. Buckling of a cube and its unfolding (scaled down).

In a different direction, when the surface of a polyhedron is elastic, there has been
work on simulation of the inflation (see e.g. [SHM] and references therein). Of course,
the volume is no longer bounded. As it increases, the inflated polyhedron starts to
approximate a sphere (see Figure 30).

Figure 30. Smirnov’s simulation of an elastic cube inflation [SHM].

6.8. Observe that in all our constructions of isometric deformations, the geometry
of faces changes, even if combinatorics remains the same. In view of the flexible
surfaces and Connelly’s flexor examples (see [C1, C2]), one can ask whether there
exist volume-increasing flexible surfaces. The answer turns out to be no: the volume
is invariant under flexing. This is the statement of the bellows conjecture which was
proved recently by Sabitov for polyhedral spheres [S1] and then extended to orientable
surfaces of every genus in [CSW]. On the other hand, there exists a convex (even
strictly convex) polyhedron P and another (non-convex) polyhedronQ with congruent
faces and the same combinatorial structure, and such that vol(P ) < vol(Q). In the
non-strictly convex case the answer follows immediately from Corollary 3. For more
about realizations of convex polyhedra with given faces see [FP] and references therein.
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Let us note here that constructing of a volume-increasing bendings may prove easier
for polyhedra in spaces of constant curvature. This is another problem suggested by
Bleecker in [B1]. As was shown by V. Alexandrov in [Al2], the bellows conjecture fails
in this case. Similarly, the infinitesimal isometric deformations in higher dimensions
may be easier to construct than the (usual) isometric deformation (cf. [B1]). The
analogue of the bellows conjecture in R3 was also refuted by V. Alexandrov [Al1].

Note on figures. While most figures in the paper are made by the author, we
also use several pictures made by others. For the latter, we either have a written
permission to use them or they are publicly available.

Mylar balloon pictures (figures 18 and 25) were made by BalloonManiacs.com.
The cube and pillow simulations are made by Andreas Gammel (figures 22 and 21).
Pictures of isometric embeddings of a cube (Figure 24) are made by Andrew Kepert.
The inflated cube in Figure 30 is made by Andrei Smirnov. Artistic vision of NASA’s
ULDB (Figure 25) is available from the NASA.gov web site. Finally, two pillow shapes
in Figure 18 are available from [W], and were donated to public by their creators.
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[HMRR] M. Hutchings, F. Morgan, M. Ritoré and A. Ros, Proof of the double bubble conjecture,

Ann. of Math. 155 (2002), 459–489.
[K] A. Kepert, Teabag problem, web page http://frey.newcastle.edu.au/~andrew/teabag

(defunct; cache on different dates is available at http://web.archive.org).
[Ma] H. Maehara, Acute triangulations of polygons, Europ. J. Combin. 23 (2002), 45–55.
[Mi] A. D. Milka, Linear bendings of regular convex polyhedra (in Russian), Mat. Fiz. Anal.

Geom. 1 (1994), 116–130.
[MP] E. Miller and I. Pak, Metric combinatorics of convex polyhedra: cut loci and nonover-

lapping unfoldings, to appear in Discrete & Comput. Geom.; arXiv:math.MG/0312253.
[MO] I. Mladenov and J. Oprea, The mylar balloon revisited, Amer. Math. Monthly 110 (2003),

761–784.
[Mo] F. Morgan, Proof of the double bubble conjecture, Amer. Math. Monthly 108 (2001),

193–205.



INFLATING POLYHEDRAL SURFACES 37

[P] I. Pak, Inflating the cube without stretching, arXiv:math.MG/0607754.
[Pa] W. Paulsen, What is the shape of a mylar balloon?, Amer. Math. Monthly 101 (1994),

953–958.
[Po1] A. V. Pogorelov, Geometric methods in the nonlinear theory of elastic shells (in Russian),

Nauka, Moscow, 1967, 280 pp.
[Po2] A. V. Pogorelov, Extrinsic geometry of convex surfaces, AMS, Providence, RI, 1973.
[Po3] A. V. Pogorelov, Bendings of surfaces and stability of shells (in Russian), second edition,

Naukova Dumka, Kiev, 1998, 200 pp. See also English translation of the first edition:
Translations of Mathematical Monographs 72, AMS, Providence, RI, 1988, 77 pp.

[R] A. C. Robin, Paper bag problem, Mathematics today, Bulletin of the Institute of Mathe-
matics and its Applications 40 (June 2004), 104–107.

[S1] I. Kh. Sabitov, The volume as a metric invariant of polyhedra, Discrete & Comput.
Geom. 20 (1998), 405–425.

[S2] I. Kh. Sabitov, On some recent results in the metric theory of polyhedra, Rend. Circ.
Mat. Palermo (2), Suppl. No. 65, part II, (2000), 167–177.

[Sh1] M. I. Shtogrin, Piecewise smooth embedding of a cube, Russian Math. Surveys 59 (2004),
979–981.

[Sh2] M. I. Shtogrin, Special isometric transformations of the surfaces of the Platonic solids,
Russian Math. Surveys 60 (2005), 799–801.

[SHM] A. V. Smirnov, W. Huebsch and C. Menchini, A flow solver with flexible boundaries, in
Proc. IASTED Int. Conf.: Modeling and Simulation, Vol. 174, IASTED, Palm-Springs,
FL, 258–263; available at http://mulphys.com/doc/flowsolver.pdf

[T1] S. S. Tasmuratov, Deformation of a polygon into a polyhedron with a given boundary,
Sib. Math. J. 15 (1974), 947–953.

[T2] S. S. Tasmuratov, Bending of a finitely connected polygon into a polyhedron with a given
boundary (in Russian), Geometry 6 (1977), 102–107; a periodic publication of Leningrad.
Gos. Ped. Inst., Leningrad, USSR.

[W] Paper bag problem, in Wikipedia, http://en.wikipedia.org/wiki/Paper bag problem

[Y] S.-T. Yau, Review of geometry and analysis. Kodaira’s issue, Asian J. Math. 4 (2000),
235–278.

[Z] V. A. Zalgaller, Some bendings of a long cylinder, J. Math. Sci. (New York) 100 (2000),
2228–2238.

[Za] T. Zamfirescu, Acute triangulations: a short survey, in Proc. Sixth National Conference
of S.S.M.R., Sibiu, Romania, 2002, 9–17.

[Zi] G. M. Ziegler, Lectures on Polytopes, Springer, New York, 1995.


