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Abstract. We consider a probabilistic version of the depth-first search on mazes with
two exits, and show that this algorithm has equal probability of finding either exit. The
proof is combinatorial and uses an explicit involution.

Suppose you are entering a maze which has two exits. You start exploring, moving from
room to room until you find the fiirst exit door.

Question: Are you equally likely to find either exit?

Naturally, the answer depends on what exactly do we mean by a “maze” and how exactly
do we “explore” it. But most likely, you first instinct is to say “No, not necessarily, since
one exit might be much closer to the entrance.” Hold on to that thought as it would make
our story more interesting.

What is a maze? For us, a maze is a region in the plane without holes that is aligned
with a square grid, and with some edges representing walls. Without loss of generality, we
can take the region to be an m × n rectangle. The rooms are the unit squares inside the
rectangle. When two rooms are not separated by a wall, we say that there is a door between
them.

We will always assume that the boundary edges of the maze are walls except for three:
edges A, B, and C placed counterclockwise along the boundary. We also assume that every
room has at least one wall (otherwise it’s not really a room, is it?) Here is a typical example
of the kind of maze we consider (only the walls are drawn, not doors):
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One can formally define a maze as a planar connected graph with maximal degree three,
and vertices A,B,C of degree one on the outer boundary, as in the figure. It will be
convenient to keep in mind both formulations.

Shortest paths. We can now compare shortest paths in this maze, from the entrance at A
to exits at B and C. To make this formal, the length of the path is defined as the graph
distance in the corresponding planar graph. Comparing the paths in the figure, it is really
hard to imagine that there is an equal probability to exit at B and at C:
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How to explore a maze? Let us consider several different ways to explore.

(1) The first approach is deterministic. Start walking around the maze in such a way
that the right hand always touches the wall. We call this the right hand on the wall rule
(RHOW). We can similarly define the left hand on the wall rule (LHOW). In our example,
the RHOW gives a path which exits at B, while the LHOW gives a path which exits at C.
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Consider now an ambidextrous walker who would need to make a random choice: should
they go with the right hand or left hand? Say, this choice is random, made by a fair coin
flip. We suddenly have a probabilistic rule AHOW with equal probability of exiting at B
and at C. Perhaps, this is not overly surprising, but a prelude of things to come.

(2) Our next approach is algorithmic, and is still deterministic. Pretend that exits B and
C are closed off and explore the whole maze. More precisely, walk around the maze in a
way to visit every room, touch every wall, and walk through every door twice — once in
each direction, until returning back to A. Do this according to the following local rules
which depend on the number of doors in the room (from 1 to 3) and prior visits:

(i)
(ii) (iv)(iii)

(v) (vii)(vi)

Here the solid red (NE) arrow indicates the door entering a room, dashed red arrow exits
the room, and blue arrow indicate past room visits. Note that the only choice here is at
rule (iv), where the rule indicates walking through the door on the right from the entry.
These rules define the depth-first search algorithm adapted to mazes and the right direction
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in (iv), see an example in the figure below. We denote it RDFS to indicate this preference
and the asymmetric nature of the algorithm.

While we explore the maze using RDFS, both exits B and C appear along the way. In
the example above, we find B before C, so we exit there. Note that if we replace rule (iv)
with the left direction, we get a similar algorithm we denote LDFS. In the example, we get
C before B.

We can also define the ambidextrous depth-first search (ADFS) obtained by flipping a
fair coin in the beginning and choosing one of the two versions. As with the AHOW, we
again have equal probabilities of exiting at B and at C.

(3) One can explore a maze via a random walk. At each step, choose a door in the room
uniformly at random and walk there. This randomized algorithm will work eventually, in
a sense that eventually the random walk reaches either B or C, but the time that happens
can be unbounded. In this case, the exit probabilities are not necessarily equal. The reader
might enjoy calculating the exact probabilities for the example in the figure below.

A

CB

(4) Finally, one can consider probabilistic depth-first search (PDFS) defined as follows. The
first time the room with three doors is entered, flip a fair coin.

◦ If Heads, use the right door in rule (iv).
◦ If Tails, use the left door in rule (iv).

This randomized algorithm provably finishes in time bounded by twice the number of doors
in the maze. For our main example, there are 10 coins being flipped, so the probability of
exiting at B is going to be equal a

210
for some integer a. The following is our main result:

Theorem: In PDFS, the probabilities of exiting at B and C are equal to 1
2 .

In other words, when it comes to the ordering of B and C, the PDFS algorithm is similar
to the AHOW and ADFS algorithms, where only one coin is flipped in the beginning.

The case of a tree maze. To understand and explain the Theorem, consider the case
when all walls in the maze are connected to the exterior wall. Note that our main example
is not like that, as it has three connected components of walls not connected to the exterior
wall. We call these tree mazes because the corresponding graph is a tree, i.e. has no cycles.
We use T to denote this tree.

Recall that A, B and C are leaves (endpoints) of T . Vertex x in T of degree three is
called a pivot vertex, if vertices A, B and C lie in different connected components when
x is deleted. We call these components TA, TB and TC . Observe that every tree T has a
unique pivot vertex. This may seem obvious (see the figure below), but the reader might
like to carefully prove that.

Now, the PDFS starts at A and eventually reaches the pivot vertex x. Depending on
the coin flip, the walk will move to either TB or TC with equal probability. Say, it moved
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to TB . By definition of the DFS, we must explore the whole connected component TB

before returning back to x. After that, it fully explores the other connected component TC ,
and only then moves back to TA . In particular, PDFS visits B before it visits C in this
case. This is a delicate technical point, the reader might want to think it over.

We conclude that whether the walk exits at B or at C depends only on the outcome
of the coin flip at the pivot vertex, which means that these probabilities are equal. This
proves the Theorem for tree mazes.

General mazes. We now construct the DFS tree as follows. Every time a door is opened
into a room that was never visited, include an edge corresponding to that door. For the
RDFS exploration in our main example, we obtain tree T as shown in the figure below.
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In general, for a PDFS exploration, the DFS tree T depends on the choice of coin flips.
Since rule (iv) is used only the first time the room is entered and the corresponding edge
is added to T , the PDFS exploration coincides with the PDFS exploration on tree T (for
the same outcomes of coin flips).

From this point on, proceed as in the case of the tree maze. Find a pivot vertex x in T .
Change the outcome of the coin flip at x. Observe that the DFS tree corresponding to
these outcomes of coin flips is also T (the reader might want to explain why). Therefore,
changing the coin flip at x gives an involution on all PDFS graph explorations that switches
explorations where B precedes C, with those where C precedes B. This means that the
probabilities as in the Theorem are equal again. This completes the proof of the Theorem
in full generality. □

Notes on the proof. First, observe that planarity played no role in the argument. In fact, the
Theorem holds for all connected graphs with maximal degree three. On the other hand, having
maximal degree three and degrees of A,B,C at most one is essential, see exercise (1) below.

Finally, in the examples above the A → B portion of the RDFS path coincides with the RHOW

path. This is not always the case, see exercise (2) below.

Additional exercises. (1) Suppose we have a connected planar graph with maximal degree at
most three, and vertices A,B,C are on the outer boundary. Suppose both B and C are leaves (have
degree one), but A has degree three. Follow the rules of PDFS, except in the beginning choose a
direction with equal probability 1

3 . Give an example where the probabilities as in the Theorem are
unequal. Same question when A and B are leaves, but C has degeee two.
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(2) Check that in the example above, the A → C portion of LDFS coincides with the LHOW. Find
an example of a maze where this is not true. Give necessary and sufficient conditions for these paths
to coincide.

(3) Observe that the RDFS (undirected) path does not always coincide with the LDFS path, as in
the example above. Can we have both paths with B before C?

(4) Prove that the RDFS and LDFS can always be drawn in the plane without self-intersection.
Are these the only instances of PDFS when this happens?

(5) Suppose a maze has three exits: B, C and D. Prove that the probability of exit at B is between
1
4 and 1

2 . Does there exist a maze where this probability is exactly 1
3 ?

(6) In a maze with one entrance A and no exists, consider a door connecting two adjacent rooms x
and y. Prove that the probability that the door from x to y is opened before the door from y to x,
is either 0, 1

2 or 1.

(7) For a general planar graph, replace every vertex of degree at least four with a “ring” as in the
figure below, so that the resulting graph has maximal degree three. Use the PDFS algorithm for
the latter graph to design the PDFS on the former. State and prove the analogue of the Theorem
in this case.

Historical remarks. While solving mazes may seem like a recreational mathematics, it is the

origin of the DFS algorithm, which was first designed for this purpose (see [1]). We refer to [6,

Ch. 3], for the original discussion of maze exploration attributing the DFS algorithm to a French

mathematician Charles Pierre Trémaux (1859–1882). See [2, §22.3] and [3, Ch. 3] for a modern

treatment of the DFS and other graph algorithms. For a random walk on an interval starting at A

with two absorbtion states B and C, see a careful discussion in [4, Ch. XIV]. For mixing times and

other aspects of random walks on general graphs, see [5].
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[6] Edouard Lucas, Récréations mathématiques (in French), Gauthier-Villars, Paris, 1891.

Department of Mathematics, UCLA, Los Angeles, CA 90095, USA
Email address: {gladkovna,pak}@math.ucla.edu

https://www.cantab.net/users/michael.behrend/repubs/maze_maths/pages/

	What is a maze?
	Shortest paths
	How to explore a maze?
	The case of a tree maze
	General mazes
	Notes on the proof
	Additional exercises
	Historical remarks
	References

