
On sampling generating sets of finite groups and product replacement algorithm.
(Extended Abstract)

IGOR PAK∗, SERGEY BRATUS†

1 Introduction

Let G be a finite group. A sequence of k group elements
(g1, . . . , gk) is called a generating k-tuple of G if the elements
generate G (we write 〈g1, . . . , gk〉 = G). Let Nk(G) be the
set of all generating k-tuples of G, and let Nk(G) = |Nk(G)|.

We consider two related problems on generating k-tuples.
Given G and k > 0,

1) Determine Nk(G)

2) Generate random element of Nk(G), each with prob-
ability 1/Nk(G)

The problem of determining the structure of Nk(G) is
of interest in several contexts. The counting problem goes
back to Philip Hall, who expressed Nk(G) as a Möbius type
summation of Nk(H) over all maximal subgroups H ⊂ G
(see [23]). Recently the counting problem has been studied
for large simple groups where remarkable progress has been
made (see [25, 27]). In this paper we analyze Nk for solvable
groups and products of simple groups.

The sampling problem, while often used in theory as a
tool for approximate counting, recently began a life of its
own. In this paper we will present an algorithm for exact
sampling in case when G is nilpotent.

When little about structure of G is known, one can only
hope for approximate sampling. In [11] Celler et al. pro-
posed a product replacement Markov chain on Nk(G) which
is conjectured to be rapidly mixing to a uniform station-
ary distribution. The subject was further investigated in
[6, 12, 17, 16], while the conjecture is fully established only
when G ' Zp, p is a prime. We prove rapid mixing for all
abelian groups G. Also, we disprove the folklore conjecture
that the group elements in generating k-tuples are (nearly)
uniformly distributed.

Finally, we would like to remark that the generating
k-tuples occur in connection with the so-called random
random walks, which are the ordinary random walks on
G with random support. The analysis of these “average
case” random walks was inspired by Aldous and Diaconis
in [1] and was continued in a number of papers (see e.g.
[19, 33, 36, 39]). We explain how the sampling problem can
be used to test convergence of random random walks.
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2 Counting problem

Let G be a finite group. By |G| denote the order of G. As
in the introduction, let Nk(G) = |Nk(G)| be the number of
generating k-tuples 〈g1, . . . , gk〉 = G. It is often convenient
to consider the probability ϕk(G) that k uniform indepen-
dent group elements generate G :

ϕk(G) =
Nk(G)

|G|k

Theorem 2.1 For any finite group G, 1 > ε > 0, we
have

ϕk(G) > 1− ε

given k > log2 |G|+ 1 + log2 1/ε.

This is a slight improvement over a more general classical
result by Erdős and Rényi in [20].

Define κ(G) to be the minimal possible number of gen-
erators of G. In other words,

κ(G) = min{k |Nk(G) > 0}

The problem of evaluating κ(G) has been of intense interest
for classes of groups as well as for individual groups (see
[14]).

It is known that κ(G) = 2 for all simple, nonabelian
groups, and that κ(G) ≤ n/2 for G ⊂ Sn, with equality

achieved when G ' Zn/22 , and n is even. Also, it is easy to
see that κ ≤ log2 |G|, with equality for G ' Zn2 .

Define ϑ(G) to be the smallest k such that at least 1/4 of
the random k-tuples (g1, . . . , gk) generate the whole group.
In other words,

ϑ(G) = min{k |ϕk(G) >
1

4
}

Note that Theorem 2.1 immediately implies that

ϑ(G) ≤ log2 |G|+ 1

By definition ϑ(G)/κ(G) ≥ 1. It is unclear, however, how
big this ratio can be.

Here are a few known results. When G is simple, it is
known that ϕ2(G) → 1 as |G| → ∞. For G = An, this is a
famous result of Dixon (see [18]), while for Chevalley groups
the result was conjectured by Kantor, Lubotzky (see [25])
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and recently proved by Liebeck and Shalev (see [27]). This
immediately implies that ϑ(G) < C for any simple group
G and some universal constant C. It was also noted in [17]
that if G is a p-group, then ϑ(G) ≤ κ(G) + 1. The following
result is a significant generalization.

Theorem 2.2
1) If G is solvable, then ϑ(G) ≤ κ(G) + 1.

2) If G is a direct product of simple groups, then ϑ ≤
κ(G) + C log log |G| for some universal constant C.

3 Sampling problem

There are several ways a finite group G can be presented as
an input to the algorithm. Regardless of the presentation of
G, denote by µ the time necessary for group operations (mul-
tiplication, taking an inverse, comparison with id1). Denote
by ρ the complexity of generating a (nearly) uniform group
element (call it random generation). It is also convenient
to denote by η the time to check whether given k group
elements generate a group. We call this the generation test.

We start with permutation groups which are defined as
subgroups of a permutation group Sn. The group is pre-
sented by a set of generators. This is the best understood
class of groups with efficient management, random elements
generation, generation test, etc., based on the fundamental
algorithms by C. Sims (see e.g. [38, 13, 28]. In particu-
lar one has ρ = O(µn), and η = O(µn4) by reducing the
problem to group membership.

A matrix group is a group defined as a subgroup of
GL(n; q). This is a harder class of groups to work with (see
[24, 6]). Recently there has been some advance work done
in this setting (see [7, 10, 31, 29]). Still, polynomial time
management for matrix groups is yet to be discovered.

One of the most general and widely accepted is the black
box setting (see e.g. [6]) in which group elements are en-
coded by binary strings of fixed length n (possibly in many
ways). A black box can multiply elements, take inverses,
and compare elements with identity. This presentation of
a group generalizes both permutation and matrix groups.
In a pioneering work [4], Babai was able to find a polyno-
mial time algorithm for generating (nearly) uniform group
elements. The product replacement algorithm was designed
to give a practical algorithm for random generation. These
algorithms were used in a number of subsequent works, par-
ticularly on recognition of various classes of finite groups (see
[8, 9, 26, 31]). Following Babai (see [4]), there is no subex-
ponential in n algorithm which can perform the generation
test.

Now consider sampling problems (see introduction) from
the computational point of view. We immediately obtain the
following result.

Theorem 3.1 Let G be a black box group with a gen-
eration test oracle, and a random generation oracle. Let
k ≥ ϑ(G). Then there exists a randomized algorithm for
sampling from Nk(G) in time O(ρk + η).

Indeed, given k ≥ ϑ(G), we can always sample from
Nk(G) by simply generating a uniform k-tuple and testing

1For some presentations, such as the presentation by generators
and relations, the last task can be non-trivial. The black box model
discussed below makes the assumption that the identity test, i.e. com-
parison with id, can be performed efficiently.

whether it generates the whole group G. At the moment,
the problem is open for κ(G) ≤ k < ϑ(G). We do not be-
lieve that there is an efficient sampling algorithm for all k
and for general black box groups. However, such algorithms
do exist in cases when the group is already recognized, i.e..
when a black box group is provided with an isomorphism

π : G→ G
′

to a group in a canonical form (see below).

Theorem 3.2 Let G be a finite nilpotent group defined
as in the preceding paragraph. Then there exists a random-
ized algorithm for sampling from Nk(G) with running time
kρ(1+o(1)), which requires k log2 |G| (1+o(1)) random bits.

By random bits we mean, roughly speaking, the number
of coin flips required in the algorithm. Clearly, this num-
ber cannot be smaller that log2 Nk(G). To demonstrate the
strength of the algorithm, consider the case G = Zn2 . Then
κ = n and Nn(G) is in one-to-one correspondence with the
set of nonsingular matrices GL(n;Z2). It is known that
ϕn(G) = c > 1/4 (see e.g. [30, 32]). The standard ap-
proach to sampling from GL(n;Z2) would be sampling any
matrix and then checking by Gaussian elimination whether
it is nonsingular. The expected number of random bits re-
quired for that is 1

c
dlog2(n2)e, while our algorithm requires

only log2 n
2(1 + o(1)) random bits. The problem of saving

random bits when sampling from GL(n;Fq) was considered
earlier by Randall (see [35]) and the first author (see [32]).
Thus Theorem 4 can be thought of as an advance general-
ization of these results.

We conclude with the remark that for large enough k
sampling from Nk(G) can be done in a generality of black
box groups by using the product replacement algorithm (see
below).

4 Product replacement algorithm

The product replacement algorithm is an important recent
advancement in symbolic algebra. In [11] Celler et al. de-
fined a Markov chain Xt on Nk(G) as follows. Let Xt =
(g1, . . . , gk) ∈ Nk(G). Define Xt+1 = (g1, . . . , hj , . . . , gk),
where hj = gjg

±1
i or hj = g±1

i gj , where the pair (i, j),
1 ≤ i, j ≤ k, i 6= j is chosen uniformly; the multiplication
order and the ±1 degree are determined by independent flips
of a fair coin. By κ̃(G) denote the maximum size of the min-
imum generating set (i.e. of the set such that no generator
can be omitted). The authors showed (cf. [16]) that when
k ≥ κ+ κ̃ this Markov chain is reversible, aperiodic and ir-
reducible, and has a uniform stationary distribution. Thus
the chain is ergodic and can be used for approximate sam-
pling from Nk(G), k > κ(G) + κ̃. The empirical tests seem
to indicate that the chain mixes rapidly (see [11]).

At the moment it is not known whether the Markov chain
converges in time polynomial of k, log |G|, but this is con-
jectured to be true for suitable values of k. Several weaker
versions of this claim has appeared. The only case when
the conjecture has been established is due to Diaconis and
Saloff–Coste, who proved the claim for Zp when p is a prime
(see [17]). In [12] Chung and Graham showed that the mix-
ing time is polynomial in k and |G|. Babai in [6] showed that
the diameter of the underlying graph is O(log2 |G|) given
k > 2 log2 |G|. At the moment the best general results are
due to Diaconis and Saloff–Coste (see [16]). The authors
show that the mixing time is bounded by a polynomial of
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several parameters, including ∆k(G),
(

k
κ(G)

)
, and 1/ϕk(G),

where ∆k(G) is the maximal diameter of generating k-tuples
of G. Unfortunately, some of these parameters can be very
large (or are not known to be relatively small), and it is easy
to see that this upper bound in [16] is always greater than
an upper bound for the natural random walk with any k
generators.

We prove the rapid mixing for abelian groups. We
need several definitions. Fix a starting generating k-tuple
(g1, . . . , gk). Define by Qt the distribution of the product re-
placement Markov chain after t steps. By U denote the uni-
form distribution on Nk(G). Define the total variation dis-
tance d(t) = ‖Qt−U‖tv of the product replacement Markov
chain as follows:

d(t) = max
A∈Nk(G)

|Qt(A)− U(A)|

=
1

2

∑
(g)∈Nk(G)

∣∣∣∣Qt((g)
)
− 1

Nk(G)

∣∣∣∣
Theorem 4.1 Let G be abelian group, k > log |G| + 2.

Then

d(t) < e−x for t > C1k
2 log2 |G|(k2 log |G|+ C2x)

where C1, C2 are universal constants independent of G, k.

While Theorem 4.1 proves the conjecture that the prod-
uct replacement Markov chain mixes rapidly, in our opin-
ion it is somewhat premature to believe that the conjecture
holds in the general case.

Let us point out that if one knows how to sample generat-
ing k-tuples, one can also test how close the random replace-
ment Markov chain is to a stationary distribution. Indeed,
one can simply compare any given statistics on Nk(G) on
samples obtained by the exact sampling and on samples ob-
tained by the random replacement algorithm. The authors
in [11] use a chi-square statistics, while this checking method
allows more freedom.

To conclude, let us return to the original motivation of
[11]. The authors invented the product replacement algo-
rithm with the sole purpose of performing random genera-
tion. The authors proposed to generate a (nearly) uniform
generating k-tuple and then output a uniformly chosen com-
ponent. While the authors acknowledge that one can be
sure that this would work only when ϕk(G) is close to 1, it
is widely believed that this would work in practice for all
k ≥ κ(G) + 1. We confront this belief by giving an example
when no condition k ≥ κ(G) + C, where C is a universal
constant, would work.

Observe that there can be two types of error when we
generate a (nearly) uniform group element as above. The
first type comes from the distribution Qt being far from
the uniform distribution U on Nk(G). The second one
comes from having group elements in generating k-tuples
distributed not uniformly. While before we dealt with the
first type of error, we will show that the second error can
be large in some examples. Note that by symmetry all the
elements in generating k-tuples have the same distribution,
so it suffices to consider the first element only.

Let G ' Ar(n)
n , where An is an alternating group, n ≥ 5

and r(n) is the maximal degree such that G is generated by

two elements. It was shown by Hall (see [23]) that r(5) = 19,
and by Kantor and Lubotzky (see [25]), using the result of
Dixon (see [18]) that n!/8 ≤ r(n) ≤ n!/4. It was observed
in [25] that for k = O(

√
n) we have ϕk(G) → 0 as n → ∞.

We prove a stronger claim.

Theorem 4.2 Let G ' A
r(n)
n , k = o(n). Denote by

Pk the probability distribution on G of the first element in
generating k-tuples (g) ∈ Nk(G). Then

‖Pk − U‖tv → 0, as n→∞

We should add that the latter type of error can be
avoided by either one of the following tricks. We can add a
fixed generating set to our k-tuple and allow the other el-
ements to be multiplied by them. This gives us a uniform
limiting distribution on Gk. Similarly, we can add an extra
group element we call sink, which we allow to be multiplied
by the remaining elements, but never use it to multiply the
others. In the end, we output this sink element. This proce-
dure was communicated to us by Charles Leedham-Green.

It is interesting to compare these procedures. While the
former procedure seems to work slower than the latter, it has
an advantage that it outputs more of (nearly) uniform and
independent group elements, which is useful in a number of
applications (see the previous section).

Finally, consider an oriented graph on Nk(G) with edges
corresponding to product replacement moves. We remark
that in general case, when κ(G) ≤ k < κ(G) + κ̃ it is not
clear even whether this graph is strongly connected. The
question has been completely resolved for abelian groups by
Diaconis and Graham (see [15]). It is conjectured that the
graph is already strongly connected when k = 3 and G = Sn,
and this has been checked for n ≤ 5. We hope to return to
this problem in subsequent publications.

5 Random random walks

Let G be a finite group, and let (g1, . . . , gk) ∈ Nk(G) be
a generating k-tuple. A random walk Xt on G is defined
by X0 = id, Xt+1 = Xt · gi, where i is chosen uniformly
in [1, . . . , k]. One can think of the walk Xt as of a nearest
neighbor random walk on a Cayley graph.

It is known that under minor conditions the random walk
converges to a uniform distribution on G (see e.g. [2]). An
important problem is to estimate how long will it take to
converge to stationary. Formally, let Qt(g) = P(Xt = g) be
a probability distribution of the walk after t steps. Recall
the total variation distance d(t) = ‖Qt − U‖tv. Usually
estimating d(t) is a hard problem, from both theoretical
and computational points of view. Good estimates in cases
of importance normally require very special knowledge of
the behavior of a random walk. In [1] Aldous and Diaconis
proposed to study the “average case” random walks, and
conjectured that they must have fast convergence. Such
random walks with random support are often called random
random walks.

A breakthrough was made by Dou and Hildebrand, who
confirmed the conjecture for superlogarithmic values of k.
Roughly, they showed that after t > C a

a−1
logk |G| steps we

have E(d(t))→ 0 as |G| → ∞, given k > loga |G|. Different
proofs and better bounds in special cases, such as abelian
groups, were obtained by subsequent investigators (see [3,
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33, 34, 36, 39]). For fairly small k, such as k = o(log2 |G|),
the problem is largely unresolved. Say, for G = Sn it is
believed that t = Ω(n3 logn) implies d(t) → 0 as n → ∞
for any generating k-tuple, k = Const ≥ 2 (see above).
However, no polynomial bound is known even for random
random walks, the best one being that of Babai and Hetyei
(see [5]).

Now, given this poor state of the art for k = o(log2 |G|)
one may wish to collect experimental evidence for behav-
ior of random random walks. That’s where one can apply
the sampling procedures. Note also that in general, if we
can compute d(t) for random walks generated by random
k-tuples, there is no need to check whether this is a gener-
ating k-tuple. Indeed, if a k-tuple does not generate G, the
corresponding Cayley graph is disconnected and s(t) = 1 for
all t > 0. Thus if k = Ω(ϑ(G) log(1/ε)), then Qk(G) > 1− ε
and if ε → 0 we have the expectation over all k-tuples
E(d(t)) → 0 if and only if so does the expectation taken
over all generating k-tuples.

6 Proofs of Theorems

6.1 Proof of Theorem 2.1 (sketch)

Fix a finite group G. Consider the following random process.
Pick a uniform group element g1 ∈ G. If H1 = 〈g1〉 6= G,
pick a uniform group element g2 ∈ G. If H2 = 〈g1, g2〉 6= G,
pick a another groups element, etc. Denote by τ the first
time we generate the whole group. We claim that for all k
and all G, |G| ≤ 2r, the probability P(τ = k) is minimal
when G ' Zr2. Indeed, regardless of the group structure,
the probability that Hi 6= Hi+1 for a given i is 1− |Hi|/|G|.
Notice that then |Hi+1|/|Hi| ≥ 2 with the equality always
achieved when G ' Zr2. Therefore P(τ = k) is minimized in
this case.

Now observe that ϕk(G) = P(τ ≤ k). Thus ϕk(G) is-
minimized when G ' Zr2, and it remains to compute ϕk(Zr2).
Think of the k-tuple of elements of Zr2, k ≥ r, as of a k× r-
matrix with elements in {0, 1}. Such a matrix corresponds
to a generating k-tuple if it has rank r. We obtain (cf. [32]):

ϕk(Zr2) =
2k − 1

2k
2k − 2

2k
. . .

2k − 2r−1

2k

≥ 1

2

(
1− 1

2k−r+1

)
This implies the result.

6.2 Proof of Theorem 2.2 (sketch)

Let G be a solvable group. Following [21], denote by
F1, . . . , Fh the different (with respect to G-isomorphisms)
types of simple G-groups that occur among the factors in a
chief series of G. Let αi be the number of factors of type Fi
that have a complement, and βi be the number of those of
type Fi that do not possess a complement. Let Ei be the
field of endomorphisms of Fi. Further, let

ζi =

{
0 if Fi is fixed element-wise by G

1 otherwise

Assume |Fi| = pλii , pi prime, and ωi is the degree of the
endomorphism field Ei over its base field of characteristic

pi. Then Theorem 5 in [21] implies

Nk(G) =

h∏
i=1

pλiβiki ·
h∏
i=1

(
pλiki − pλiζii

)
·

·
(
pλiki − pλiζi+ωii

)
· · · · ·

(
pλiki − pλiζi+(αi−1)ωi

i

)
We obtain

κ(G) = max
i

⌈
(αi − 1)ωi

λi
+ ζi

⌉
When k ≥ κ(G) we have

ϕk(G) =

h∏
i=1

αi−1∏
j=0

(
1− pλi(ζi−k)+jωi

i

)
When k = κ(G) + 1 this product is bounded from below by
the product

ϕκ+1 ≥
∏
p

∞∏
i=2

(
1− 1

pi

)
where the first product is taken over all primes p. By Euler’s
pentagonal theorem and using Lemma 2.3.2 in [32] we obtain

ϕκ+1(G) >
∏
p

1− 1/p− 1/p2

1− 1/p
>
∏
p

1− 2

p2
>

1

4

which proves the first part of the theorem.
The second part follows from a similar analysis based on

the general results in [25]. We return to this problem in the
proof of Theorem 3.2.

6.3 Proof of Theorem 3.1 (sketch)

First, generate k independent elements of G. Run a gen-
eration test O(log 1/ε) to check with probability of error ε
whether these elements indeed generate G. If not, start over.
Now, since k ≥ κ(G) the latter will happen with probability
at most 3/4 + ε. Take ε = 1/8. The expected number of
trial becomes 1/1− (3/4 + ε) = 8. This concludes the proof.

6.4 Proof of Theorem 3.2 (sketch)

Briefly, the case when G ' Zrp, p prime, is described in [32].
The case when G ' Zrpm is no different since to generate
Zpm it is sufficient and necessary to generate an element
a ∈ Zpm which is not a zero divisor. This is equivalent to
generating Zp.

For a general abelian group G, decompose it as a prod-
uct of p-groups Hp over all primes p. As we observed in
the previous paragraph, in each case the problem of gener-
ating random generating k-tuple in Hp is equivalent to the
problem of generating random generating k-tuple in Z

rp
p for

some integer rp. It can be shown that given such a set of
generating k-tuples for all p one can combine them into a
single generating k-tuple of G.

Finally, if G is nilpotent it is a known result (see e.g.
[22]) that k-tuples that generate G/[G,G] also generate the
whole group. Thus the problem is reduced to a correspond-
ing problem for the group G/[G,G], which is abelian. We
skip the details.
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6.5 Proof of Theorem 4.1 (sketch)

Let G be a finite abelian group, n = |G|. Let (g1, . . . , gk) ∈
Nk(G) be a generating k-tuple. Consider a random sub-
product h of the following form:

h = ga1
1 · · · · · g

ak
k

where integers ai are independent uniform in [0, n− 1]. We
claim that h is uniform in G. The proof is an easy induction
on k.

Now, suppose an integer sequence (b1, . . . , bk) satisfies
the condition that (b1 mod p, . . . , bk mod p) is (nearly) uni-
form in [0, p − 1]k for all primes p < 2|G|. Conclude from
this that (b1 modn, . . . , bk modn) is also (nearly) uniform
in [0, n− 1]k.

Let k ≥ dlog |G|e + 1 + log(1/ε) ≥ κ(G). Since G is
abelian, the relative order of generators in each product is
irrelevant. Run a product replacement Markov chain for t
steps, starting at (g1, . . . , gk). We get each element of the
form

hi = g
bi,1
1 · · · · · gbi,kk

Consider a k × k matrix B = (bi,j). By definition of the
product replacement Markov chain, this matrix is a prod-
uct of t random elementary transvections Er,l ∈ SL(n,Z)
which are the matrices with ones on the diagonal, one in po-
sition (r, l), and zeros elsewhere. Taking a random walk of
these matrices mod p we obtain that the matrix Bmod p
is (nearly) uniform in SL(n, p) after t = O(k4 log3 p) steps
by the result of [17].

Note that for abelian groups we have κ(G) = κ̃(G), i.e.
given k > κ(G) at least one of the generators can be omitted.

Delete the corresponding column in B which gives us B
′
.

By Theorem 2.1 and above arguments it is easy to see that

B
′
mod p is (nearly) uniform in Mat(k, p). Thus its rows

are (nearly) uniform and independent in [0, p−1]k−1. By the
remarks in the first paragraph this implies that taken modn
we obtain rows that are (nearly) uniform and independent
in [0, n− 1]k−1, which is exactly what we need.

Using the full power of Theorem 4.1 in [17] and after
some straightforward technical computations we obtain the
result.

6.6 Proof of Theorem 4.2 (sketch)

Consider the structure of Nk(G), where G = ANn , N = r(n).
Let (g1, . . . , gk) ∈ Nk(G). Consider the number x of permu-
tations σi in g1 = (σ1, . . . , σN ) such that σi(1) = 1. Think of
x as of a random variable on Nk(G). If g1 were (nearly) uni-
form in G, x would be distributed as the number of successes
in independent Bernoulli trials with probability of success
1/n. We claim that x has a somewhat shifted distribution,
with the probability that a permutation σi satisfies σi(1) = 1
being of the order 1/n− C/nk−1.

The idea is based on the known results about the gen-
erating k-tuples of An. It can be easily deduced from the
more general results in [37] that ϕk(An) ∼ 1 − C/nk−1, as
n → ∞, and where C is independent of n. Notice that,
conditioned on σi(1) = 1, the probability that the i-th per-
mutation in all gj , j = 2, . . . , k satisfies σi(1) = 1, has the
same order 1− C/nk−2 as the probability ϕk(An). Deduce
from this that the probability of σi(1) = 1 is of the order
1/n − C/nk−1. Note that these events are no longer inde-
pendent. Observe, however, that results in [25] imply that

a generating k-tuple (g1, . . . , gN ) must contain every orbit
of the action of An on Nk(An) exactly once. Thus the cor-
relation becomes exponentially small and for our purposes
these can be viewed as independent events.

Now given two series on length N of Bernoulli trials out-
comes, with probabilities p1 = 1/n and p2 = 1/n− C/nk−1

one can distinguish between them given nk = o(N). Indeed,
use Chernoff bound to split the number of heads below and
above M = N(p1 + p2)/2, i.e. to show that with high prob-
ability the first trial will have more than M successes, while
the second less than M successes. This implies that given
k = o(lognN) = o(n) the total variation distance → 1 as
n→∞. This concludes the proof.
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