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Abstract. In this paper we define and analyze convergence of the geometric random
walks, which are certain random walks on vector spaces over finite fields. We show
that the behavior of such walks is given by certain random matroid processes. In
particular, the mixing time is given by the expected stopping time, and the cutoff is

equivalent to sharp threshold.
We also discuss some random geometric random walks as well as some examples

and symmetric cases.

Introduction

In the past two decades there has been an explosion in the number of applications
of probabilistic method. In this paper we use probabilistic method to analyze a
special case of Markov chains we call geometric random walks.

Here is a general setup of the problem. Let G be a finite group, and let S be a set
of generators of G. Consider a Markov chain Xt on G which starts at the identity
X0 = e and moves by the rule Xt+1 = Xt · s, where s ∈ S is a random generator.
It is easy to see that (under mild conditions) “after a while” the walk will be at an
approximately uniform group element. The problem, however, is to quantify and
compute how long is “after a while”. This time is usually called mixing time. It
depends in a complicated way on the the random walk and is normally very hard to
estimate even in nice examples (see [AF,D1]). There is a large literature dedicated
to finding bounds on mixing time as well to comparison of different definitions of
mixing time (see [AF,LW]).

Suppose now we have a sequence of groups {Gi} and their generating sets {Si},
where i ∈ N. One can try to quantify how rapidly the walks moves from the state
of being “far from mixing” to the state of being “well mixed”. Aldous and Diaconis
observed (see [AD,D1]) that in many natural cases this transition happens in a
period of time small compared to the mixing time. This is called cutoff phenomenon
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and is somewhat analogous to the phase transition in statistical physics (see [D2]).
While proven in many examples using asymptotically sharp estimates on the mixing
time (see [D2]), the cutoff phenomenon remains a mystery yet to be solved.

In this paper we introduce a notion of a geometric random walk. Let V = Fn
q

be an abelian group of vectors in a finite vector space. A subset S ⊂ V is called
geometric if with each s ∈ S we have a · s ∈ S for all a ∈ Fq. In other words, S
must be a union of lines in V . Now let Xt be a random walk on V generated by S.
We call it a geometric random walk. Examples of geometric random walks include
random walks on a cube (the case when S forms a basis in V = Fn

2 ) and other
familiar combinatorial walks.

Consider now a vector matroid M corresponding to S. Define a random matroid
process as follows. Start with an empty set and add random matroid elements one
by one until we get a base. In this paper we show:

1) The mixing time of a geometric random walk is equal to the expected run
time of the corresponding random matroid process (see sections 2, 4).

2) The cutoff for a geometric random walk exists if and only if the corresponding
random matroid process has a sharp threshold (see section 8).

3) The cutoff exists if S is chosen randomly in a certain sense (see sections 7,
10, 11).

4) The cutoff can be proved in several cases (see sections 9, 12).

5) The expectation can be computed exactly in several natural cases (see sections
3, 5, 6).

Perhaps the main point of the paper is methodological. We establish connection
between cutoff phenomenon for mixing of random walks, and sharp threshold for
random matroids and graphs, (also known as phase transitions, as well as 0 − 1
laws.)

While we do succeed in proving cutoff in several new cases, it is rather more
important for us that we give a new look at the subject. Thus we go at length
to reprove the cutoff in cases when it was long known (such as random walk on a
cube). We hope this new approach can be useful in other cases, and perhaps help
uncover the mystery of the phenomenon in a noncommutative situation which we
do not touch in this paper.
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also like to thank László Lovász, Gregory Margulis, and Richard Stanley for the
interest in this work. Special thanks to Martin Hildebrand for some suggestions on
style.

Part of the research was done when the first author was an NSF Postdoctoral
Fellow at MIT.



ON MIXING OF RANDOM WALKS 3

1. Basic definitions

Let V be a d-dimensional space over the finite field Fq, and let O ∈ V be the
origin. Denote [k] = {1, . . . , k}. Also, if u1, . . . , uk are vectors in V , denote by
⟨u1, . . . , uk⟩ ⊂ V their linear span.

Let A = {v1, . . . , vm} ⊂ V be a set of vectors in V such that ⟨v1, . . . , vm⟩ = V .
Define a geometric random walk W(A) to be a Markov chain Xt on vectors in V ,
such that X0 = O and

Xt+1 = Xt + a(t) · vi(t)

where a(t) ∈ Fq and i(t) ∈ [m] are uniform and independent random variables. One
can think of Xt as a symmetric random walk on an abelian group Fn

q generated by
elements a · vi, i ∈ [m].

Consider an example. Suppose q = 2, m = d and A = {v1, . . . , vm}. Then W(A)
is equivalent to a lazy random walk on a cube Zm

2 which is defined by the following
rule:

• Choose a coordinate direction i ∈ [m] uniformly. Flip a fair coin. If heads,
move along that direction and if tails stay put.

This walk was analyzed in a number of papers (see e.g. [D1,DGM,P1]). Roughly,
the walks mixes after O(n logn) steps. The problem is in many ways similar to the
coupon collector’s problem (see [F,D1]). We will give a careful analysis of this walk
in section 3 where the connection is made precise.

Denote by Qk the probability distribution of the walk after k steps:

Qk(v) = P (Xk = v) , v ∈ V

Observe that the Markov chain Xt is irreducible, aperiodic and reversible (see e.g.
[F,AF]). Thus it is ergodic and theQk converges to a uniform stationary distribution
U ≡ 1/qn as k → ∞.

There are several ways to quantify how fast Qk converges to U . The most
commonly used are the variation distance

tv(k) = max
B⊂V

∣∣Qk(B)− U(B)
∣∣ = 1

2

∑
v∈V

∣∣∣∣Qk(v)− 1

N

∣∣∣∣
and the separation distance

s(k) = N ·max
v∈V

(
1

N
−Qk(v)

)
where N = |V | = qn is the total number of vectors in V .

For random walks on groups both distances have a similar asymptotic behavior,
but the latter will suit better for our purposes. The separation distance has nice
submultiplicativity property

s(m+ k) ≤ s(m) · s(k) ,where m, k > 0.

Note also that s(0) = 1 and tv(k) ≤ s(k) for all k > 0 (see [AD,AF,D1]).
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Often it is useful to define a mixing time which is a single measure of the con-
vergence. Again, there are several different measures which include but are not
exhausted by the following two:

n1/2 = min
{
i : s(i) ≤ 1

2

}
= min

{
i : P i(v) ≥ 1

2N
for all v ∈ V

}
and

ξ = 1 + s(1) + s(2) + . . .

The latter is called the total separation and the submultiplicativity property implies
that ξ < ∞. It has same order of magnitude as n1/2:

ξ ≤ n1/2 ≤ 2ξ

(see [P1]) and will be the main object of our study.
It is convenient to consider a generation function for the separation distances

ξ(z) = 1 + s(1) · z + s(2) · z2 + . . .

which is called separation series. Clearly, ξ = ξ(1). The function ξ(z) is known to
be rational in z and has no poles inside a unit disc |z| ≤ 1 (see [P1]).

It turns out that in case of the geometric random walks one can find an explicit
combinatorial formula for the separation series and the total separation. This is
done in the next section.

2. Strong uniform times

Let Xt be a finite Markov chain on a state space V with uniform stationary
distribution. A stopping rule is an algorithm which observes the chain and stops
it depending on the state passed. Denote by τ the stopping time of this rule. By
ϱ = Xτ denote the stopping state. We think of τ and ϱ as of random variables.

The stopping time τ is called strong uniform if ϱ is uniform and independent of
τ . In other words,

P (ϱ = v | τ = k) =
1

|V |
for all v ∈ V, k > 0

The main application of the strong uniform time is the following result.

Theorem 2.1 Let τ be a strong uniform time for M. Then for k > 0 we have:

s(k) ≤ P (τ > k), and ξ ≤ E(τ).

The first part is due to Aldous and Diaconis (see [AD,D1]) and the second part
follows from the first part. In this form it is due to the first named author (see
[P1]).
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A strong uniform time τ is called perfect if ξ = E(τ). It is known that a perfect
time always exists and must satisfy s(k) = P (τ > k) for all k > 0 (see [P1,D1]).

State v ∈ V is called halting for a stopping time τ if the Markov chain always
stops whenever it gets there. If a strong uniform time has a halting state, then it
is perfect (see [P1,DF]). Therefore if we have a construction of a perfect time, we
can immediately compute the separation distance s(k) for all k.

Now we present a simple construction of a perfect time for a geometric random
walk. Recall that V ≃ Fn

q and we have a fixed set of vectors A = {v1, . . . , vm} ⊂ V .
Our walk starts at the origin X0 = O and is defined as follows:

Xt+1 = Xt + a · vi
where a = a(t) ∈ Fq and i = i(t) ∈ [m] are uniform and independent random
variables.

Consider a stopping rule which stops the walk as soon as vectors vi(1), vi(2), . . .
generate the whole space V . We claim that this defines a strong uniform time.
Formally, let τ = k be the first time we have ⟨vi(1), . . . , vi(k)⟩ = V .

Theorem 2.2 The stopping time τ defined above is strong uniform.

Proof Suppose τ = k and let B = {vi(1), . . . , vi(k)}. By definition there exist a
subset of vectors U = {u1, . . . , un} ⊂ B such that ⟨u1, . . . , un⟩ = V . Observe that
c1 · u1 + · · ·+ cn · un is uniform in V if ci, 1 ≤ i ≤ n are independent and uniform
in Fq. Therefore Xk = a1 · vi(1) + · · · + ak · vi(k) is uniform in V which proves the
result. �

Note that in Theorem 2.2 we do not claim that the stopping time τ is perfect.
The example A = V shows that τ is not perfect in general. However, there is a large
class of geometric random walks for which this is true. We need a few definitions.

Let A = {v1, . . . , vm}, and let [m] = {1, 2, . . . ,m}. For every subset I =
{i1, . . . , il} ⊂ [m] define a subspace LI = ⟨vi1 , . . . , vil⟩. Denote L = L(A) the
lattice of subspaces LI for all I ⊂ [m]. We say that A is proper if there exist a
vector v ∈ V such that v /∈ LI for all LI ̸= V .

Theorem 2.3 Let A ⊂ V be a proper set of m vectors. Then the strong uniform
time τ defined above is perfect.

Proof Since A is proper there exists w ∈ V such that w /∈ LI for all LI ̸= V . We
claim that w is a halting element. Indeed, if Xt = w then w ∈ ⟨vi(1), . . . , vi(t)⟩ = V
and by construction τ = t. Therefore whenever gets to w it stops there, i.e. w is a
halting element. Thus τ is a perfect time. �

Now observe that the Theorem 2.2 can be stated in purely combinatorial terms.
By this we mean that we used only those information about A which can be de-
scribed by linear relations between vectors. Therefore Theorem 2.3 implies that
assuming A is proper, we can compute exactly the separation distance ξ using only
combinatorial information about A.

Theorem 2.4 Let A ∈ V be a proper set of m vectors, let W(A) be the cor-
responding geometric random walk, and let L = L(A) be the lattice of subspaces.
Then the separation series ξ(z) for the random walk W(A) is given by the formula

ξ(z) =
∑

L∈L, L̸=V

(−1)n−dim(L)+1

1− j(L) z
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where n = dim(V ), j(L) = |A ∩ L|/m.

Proof Let L ∈ L(A) be a vector subspace. Clearly,

P (⟨vi1 , . . . , vik⟩ ⊂ L) = j(L)k

By the inclusion-exclusion principle,

P (⟨vi1 , . . . , vik⟩ ̸= V ) =
∑

L∈L, L ̸=V

(−1)n−dim(L)+1j(L)k

By Theorem 2.3, the stopping time τ is perfect. We have

ξ(z) =
∑
k≥0

P (τ > k) · zk =
∑
k≥0

P (⟨vi1 , . . . , vik⟩ ̸= V ) · zk

=
∑
k≥0

∑
L∈L, L ̸=V

(−1)n−dim(L)+1j(L)kzk =
∑

L∈L, L ̸=V

(−1)n−dim(L)+1

1− j(L) z

which proves the claim. �
From Theorem 2.4 one can immediately deduce various properties of the random

walk W(A). In particular, one can obtain the second largest eigenvalue, which can
be interpreted as a radius of convergence ρ of the separation series ξ(z) (see [P1]).

Corollary 2.5 Let A, W(A), and L(A) be as in Theorem 2.4. Then

s(k) ∼ C · ρk

where s(k) is the separation distance for the random walk W(A), and

ρ = max
L∈L(A)

j(L) , C = |{L ∈ L(A), j(L) = ρ}| .

Proof. Clear. �
Before we move to particular cases, let us point out to the following straightfor-

ward generalization of the results in this section.
Let Q be any set of subspaces of the vector space V ≃ Fd

q . Assume that the
vector spaces in Q generate V . Let P be a probability distribution on Q. Consider
a Markov chain Xt on V such that X0 = O and

Xt+1 = Xt + v

where v = v(t) is a vector chosen uniformly randomly from the subspace L(t) ∈ Q,
and the subspace L(t) was sampled from Q according to the probability distribution
P. Denote this Markov chain by W(Q,P). Clearly, when Q is a set of lines and P
is uniform, W(Q,P) is a geometric random walk.

Define the stopping time τ in this case to be the first time we get L(1) + · · · +
L(τ) = V . Denote by L(Q) the lattice of subspaces of V generated by subspaces
in Q. We say that Q is proper if there exist a vector v ∈ V such that v /∈ L for all
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L ∈ L(Q), L ̸= V . Denote by µ(L) = µ(L, V ) the Möbius function on L (see e.g.
[BBR,S]). Since L(Q) is a modular lattice, we have µ(L) = ±1 (see e.g. [BBR,S]).

Theorem 2.6 Let Q be a proper set of vector subspaces. Then the stopping
time τ defined above is strong uniform. Moreover, if Q is proper then τ is perfect
and

ξ(z) =
∑

L∈L(Q), L̸=V

µ(L)

1− j(L) z

where j(L) =
∑

L′∈Q,L′⊂L P(L) .

Clearly, this theorem generalizes Theorems 2.2 − 2.4. The proof is completely
analogous and will be omitted. We challenge the reader to find some interesting
applications of this formula.

3. The case of a cube

Let q = 2, m = d, V ≃ Fm
q , and A = { (0, . . . , 1i, . . . , 0), 1 ≤ i ≤ m}. Then

a geometric random walk W(A) is equivalent to the lazy random walk on a m-
dimensional cube (see section 1).

Random walk on a cube is probably one of the oldest and most thoroughly
studied problem (see e.g. [DGM,P1] for results and references). None of the results
in this section are new. We nevertheless include them here for methodological
reasons as the first nontrivial application of the method, as well as for completeness.

Theorem 3.1 The separation series ξ(z) for the random walk W(A) is given by
the formula

ξ(z) =
m∑

k=1

(−1)k+1
(
m
k

)
1− m−k

m z
.

Proof. In this case L(A) is a Boolean lattice of coordinate subspaces (see e.g.
[BBR,S]). Thus the number of subspaces L ∈ L(A) of dimension k is equal to

(
m
k

)
,

and for each such L we have j(L) = m−k
m . Also, A is proper since the vector

(1, . . . , 1) ∈ V does not belong to any coordinate subspaces except V . Together
with Theorem 2.4 this implies the result. �

Theorem 3.2 Let ξ = ξ(1) be the total separation for the random walk W(A).
We have

ξ = m · h(m)

where h(m) = 1 + 1
2 + 1

3 + · · ·+ 1
m .

Proof. Recall that τ is perfect in this case. Use the formula ξ = E(τ). Find-
ing the expectation of τ is the classical coupon collector’s problem. Indeed, we
check random coordinates one at a time and stop when all coordinates are checked.
Adding the expected time to get the first coordinate, second coordinate, etc, we get

ξ = E(τ) =
m

m
+

m

m− 1
+ · · ·+ m

1

which proves the result. �
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The Euler’s formula for the asymptotic behavior of h(m) gives us

ξ = m · h(m) = m ln(m) + γ m+
1

2
+O

(
1

m

)
where γ ≈ 0.5772156649 is the Euler-Mascheroni constant (see e.g. [WW]).

4. Random matroid process

Let S be a finite set and r : 2S → Z+ be a rank function. We say that a pair
M = (S, r) is a realizable matroid over the field Fq if there exist d and a map
ν : S → Fd

q which preserves rank function. An image A = ν(S) is called realization
of a matroid M = (S, r). By Theorem 2.4, we have the following result.

Proposition 4.1 If A is a proper set of vectors, then the separation series
ξ(z) of the random walk W(A) depends only on a matroid (S, r) and not on the
realization A.

Proof. Clear. �

It is easy to see that if (S, r) is realizable over Fq then it is realizable over any
Fq′ , such that q′ > q (see e.g. [A]). Thus one can consider realizations over fields
with sufficiently large q.

Proposition 4.2 If M is a realizable matroid over the field Fq, and q is suffi-
ciently large, then every realization A ⊂ Fd

q is proper.

Proof. The maximum number N(q) of points in all (d − 1)-dimensional sub-
spaces L ∈ L(A) of any realization A ⊂ Fd

q is bounded by a polynomial of q degree

d− 1. Therefore for sufficiently large q we have |V | = qd > N(q). This implies the
result. �

Now consider the following random process B = B(M). Fix a realizable matroid
M = (S, r), r(S) = d. Let B0 = ∅, Bt+1 = Bt ∪ s where s = s(t) ∈ S is chosen
uniformly. Clearly r(Bt) ≤ r(Bt+1). Stop the first time t such that r(Bt) = d. We
call Bt the random matroid processes. Denote by κ the stopping time of the process
B(M). Theorem 2.4 combined with Proposition 4.1, 4.2 gives us the following result.

Theorem 4.3 Let M = (S, r) be a realizable matroid such that r(S) = d. Let
A ⊂ Fd

q be realization of M , and let κ be the stopping time of the random process
B(M). Consider a geometric random walk W(A). Then for large enough q we have
ξ = E(κ).

Proof. Clear. �

We finish this section by constructing proper realizations of the graphical ma-
troids.

Let Γ be a simple connected graph (no orientation, no loops, no multiple edges)
with vertex set Y , and edge set E ⊂ Y × Y . Consider a rank function r : 2E → Z+

defined as follows:
r(H) = |Y | − c(Y,H)
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where H ⊂ E, and c(Y,H) is the number of connected components of a subgraph
(Y,H). By definition, r(E) = |Y | − 1. We call (E, r) a graphical matroid.

Now, choose any vertex y0 ∈ Y to be a root. Fix an orientation of the edges
towards the root. For any q ≥ 2 consider the following realization A = ν(S) ⊂
F|Y |−1
q of a matroid (E, r):

ν(y, y0) = ey , ν(y, y′) = ey − ey′ , y′ ̸= y0

for all (y, y0), (y, y
′) ∈ E, and where ey, y ∈ Y − y0 is a basis in F|Y |−1

q .

Proposition 4.4 For any q ≥ 2 the set of vectors A = ν(S) ⊂ F|Y |−1
q is a

realization of a matroid (S, r). Moreover, if q ≥ |Y |, this is a proper realization.

Proof. The first part is well known in the literature (see e.g. [A]). A straightfor-
ward check shows that vector w =

∑
y∈Y−y0

ey does not belong to any subspace

L ∈ L(A), such that dim(L) < |Y | − 1. This proves the second part. �
Now consider the following random process. Let H0 = ∅, Ht+1 = Ht ∪ (y1, y2)

where (y1, y2) ∈ E is a edge of graph Γ chosen uniformly. Denote κ the first time t
such that subgraph (Y,Ht) is connected. By definition, the random graph process
Ht corresponds to a random matroid process for Bt in this case. As before, denote
by κ the stopping time of this process. Theorem 4.3 combined with Proposition 4.4
gives us the following result.

Theorem 4.5 Let Γ be a simple graph with n vertices, (S, r) be the corresponding
graphical matroid, and A = ν(S) its realization over Fq, q ≥ n. Consider a geo-
metric random walk W(A) and its total separation distance ξ. We have ξ = E(κ).

Proof. Clear. �
Remark 4.6 Note that the random graph process we consider is somewhat

different from the random graph process normally studied in random graph theory
(see [Bo]).

5. The case of a complete graph.

Suppose A contains vectors el, 1 ≤ l ≤ n − 1, and ei − ej , 1 ≤ i < j ≤ n − 1,
where e1, . . . , en−1 is a basis in V ≃ Fn−1

q . It is easy to see that A is a realization
of a graphical matroid which corresponds to the complete graph Γ = Kn. We have
Y = [n], |E| =

(
n
2

)
.

Again, this is a well understood case, which we include here for completeness
and as a first application of the approach.

Theorem 5.1 Let A be as above, W(A) be the corresponding random walk, and
ξ be its total separation distance. Then

C1n log n ≤ ξ ≤ C2n log n

for some absolute constants C1, C2.

The result is clearly not sharp. Later, in Example 8.4, we will prove the cutoff
phenomenon in this case. The following proof, however, is a starting point of several
generalizations.
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Proof By Theorem 4.5 the total separation distance ξ for this random walk is
equal to the expected time to get a connected subgraph when adding one random
edge at a time. We shall bound this expectation from above and below.

Let (i1, i2) be the first edge. Denote Ht the set of edges after t steps, and Ct ⊂ Y
the component of the graph (Y,Ht) which contains i1. Let k = |Ct| be the number
of vertices in Ct. Denote pk the probability that |Ct+1| > |Ct|. Since the total
number of edges between Ct and [n] \ Ct is k · (n− k), we have

pk ≥ k · (n− k)(
n
2

)
Let κ be the first time |Ct| = n. We have

E(κ) ≤ 1 +
n−1∑
k=2

1

pk
= 1 +

(
n

2

)
·
n−1∑
k=2

1

k · (n− k)

= 1 +
n(n− 1)

2
· 1
n
·
n−1∑
k=2

1

k
+

1

n− k
∼ n log n

This gives the upper bound. To prove the lower bound, denote ι the first time
each vertex in a subgraph (Y,Ht) has at least one adjacent edge. Think of the edges
we add as of a random pair of elements in Y = [n]. Since at a time we cannot do
better than add two vertices, this becomes a coupon collector’s problem again and
E(ι) = Ω(n log n). Observe that E(ι) ≤ E(κ), which implies the lower bound. �

6. The case of coordinate subspaces.

Let e1, . . . , en be a basis in V ≃ Fn
q . For every I = {i1, . . . , ik} ⊂ [n] consider

a coordinate subspace LI = ⟨ei1 , . . . , eik⟩. Denote by Q(n, k) the set of all k-
dimensional coordinate subspaces. Clearly, |Q(n, k)| =

(
n
k

)
.

Theorem 6.1 Let Q = Q(n, k) be as above, W(Q) be the corresponding random
walk, and ξ be its total separation distance. Then

ξ = Θ

(
log n

log n− log(n− k)

)
.

Proof. Consider the following variation on the coupon collector’s problem.
Instead of taking 1 coupon at a time, now take a random sample of k different
coupons at a time. Denote by T the time all n coupons are collected. The problem
is to find E(T ). Let us show how one can imbed this problem in the usual coupon
collector’s problem.

Denote by El the expected time to collect l different coupons in the usual coupon
collector’s problem. Recall that

El =
n

n
+

n

n− 1
+ · · ·+ n

n− l − 1
= n (h(n)− h(n− l)) .

Therefore the expected time E′ to get all the coupons if given k different coupons
at once is given by

E′ ∼ En

Ek
=

h(n)

h(n)− h(n− l)
.

Observe that by Theorem 2.6 we have ξ = E(T ). This proves the result. �
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7. The case of vectors in generic position.

One of the interesting recently studied questions concerns the behavior of the
random random walks (see e.g. [DH,P4,R]). These are basically random walks on
a fixed group with a set of generators randomly chosen from a given distribution.
In this section we will study random geometric random walks which as we show
correspond to the case of lines in generic position.

Let A be a set of n vectors in V ≃ Fk
q . We say that A is generic if every k

vectors in A are linearly independent.

Theorem 7.1 Let A be a set of n vectors in V ≃ Fk
q . Let W(A) be the

corresponding geometric random walk, and ξ be its total separation distance. Then

ξ ≥ n · (h(n)− h(n− k))

and the equality holds if and only if A is generic.

Proof For any A, we need at least k different vectors to generate V . By coupon
collector’s problem, the expected time to get these k vectors is E = n · (h(n) −
h(n − k)). Now, by Theorem 4.3 we immediately have ξ = E, when A is generic
and ξ > E otherwise. �

8. The cutoff phenomenon

Let (Gi), (Si), i = 1, 2, . . . be a sequence of groups and generating sets. Con-
sider a sequence of random walks (Wi). Denote by si(·) and ξi the corresponding
separation distance and the total separation.

We say that a sequence of random walks (Wi), i = 1, 2, . . . has a cutoff if there
exist two integer sequences (ai) and (bi) such that ai/bi → 1, si(ai) → 0 and
si(bi) → 1 as i → ∞. This definition is due to Aldous and Diaconis (see [AD,D2]).

Example 8.1 Suppose G = Zm
2 and W is a random walk on a cube (see

section 3). Recall that the perfect stopping time τ is defined a time to check all
the coordinates. We have

ξ = E(τ) = m · h(m) = m logm+O(m)

where h(m) = 1+ 1
2 +

1
3 + · · ·+ 1

m Recall that the element v = (1, 1, . . . , 1) is halting

and thus s(k) = 1 − 2nP k(v) = P (τ ≤ k). Now, a direct computation for coupon
collector’s problem shows that

V ar(τ) = m
m−1∑
i=1

i

(m− i)2

(see e.g. [F, §9.9]). From here we have

V ar(τ) ≤ m2
∞∑
i=1

1

i2
=

π2

6
m2
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and by Chebyshev inequality

s(m · h(m)− x ·m) ≤ C1

x2

s(m · h(m) + x ·m) ≥ 1− C1

x2

for some absolute constant C1. This shows cutoff for the random walk on a cube
of dimension m.

Now we can generalize this observation. Let V = Fn
q , let A ∈ V be a set of

vectors, and let W = W(A) be the geometric random walk. Consider the corre-
sponding matroidM and the random matroid process B. Also, let κ be the stopping
time of B.

We say that a sequence of random matroid processes (Bi) has a sharp threshold if
there exist two integer sequences (ai) and (bi) such that ai/bi → 1, P (κi > ai) → 0
and P (κi < bi) → 0 as i → ∞.

Theorem 8.2 Let Ai ∈ Vi, i = 1, 2, . . . be proper sets of vectors. Then the
sequence of random walks (Wi) has a cutoff if and only if (Bi) has a sharp threshold.

Proof. Let vi ∈ Vi be a halting vector, and let τi be the corresponding perfect
time. For every i we have

si(k) = 1− P k(vi) · |Vi| = P (τi ≤ k) = P (κi ≤ k) .

This implies the result. �
Proposition 8.3 If V ar(κi)/E(κi)

2 → 0 E(κ) → ∞ as i → ∞, then (Bi) has
a sharp threshold.

Proof. Take

ai = E(κi) + w(i) ·
√
V ar(κi)

bi = E(κi)− w(i) ·
√

V ar(κi)

where w(i) is an increasing function

w(i) =

(
E(κi)

2

V ar(κi)

) 1
4

→ ∞ as i → ∞.

Now use Chebyshev inequality to show sharp threshold. �

Example 8.4 (The case of a complete graph.)
Let An be a proper realization of a graphical matroid which corresponds to

complete graph Γ = Kn (see section 5). Consider the corresponding random walk
Wn = W(An). We shall prove that ξ = 1

2n log n+ O(n) and that in fact we have
a cutoff in this case.

Indeed, consider the corresponding random graph process Bn. We take an empty
graph and keep adding random edges until the obtained subgraph of Kn is con-
nected. Let κn be the corresponding stopping time. By Theorem 8.2, we need to
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show that (Bn) has a sharp threshold. But this is a known result in the theory of
random graphs.

Consider a random graph process B′
n which works in a similar way but now let

us not allow repetition of edges. In other words, each time we choose an edge which
is a random edge which is not in our graph. The corresponding stopping time κpr

n

will always be bounded by
(
n
2

)
, which is the total number of edges in Kn.

Now, for the random processes (B′
n) Erdős and Rényi showed a very sharp thresh-

old. Namely, they showed that for k = (n/2)(log n+ x+ o(1))

P (κ′ ≤ k) → e−e−x

(see [ER; Bo, §9.1]).
To apply this result in our situation, observe that among m edges chosen ran-

domly we get on average O(m2/n2) repetitions. Indeed, when a new edge is added
to our set of j different edges it is one of the previous edges with probability j/

(
n
2

)
.

Thus the average number of repetitions is at most
∑m

j=1 j/
(
n
2

)
= O(m2/n2). In

our case m = O(n log n) which gives us O(log2 n) repetitions. Since this is small
compared to O(n log n), the Chernoff bound implies that the probability to get
more than O(log2 n) number of repetitions is exponentially small. From here we
have E(κn) = 1/2n log n+O(n) and (Bn) has a sharp threshold. Therefore, (Wn)
has a cutoff.

Remark 8.5 The cutoff considered in this paper is different from the cutoff
considered in [D2] and other papers, where the variation distance tv(k) was consid-
ered instead of the separation distance. While it is similar in flavor, it is not clear
to us whether either of them implies the other. Still, preliminary computations
seem to indicate that cutoff for the total variation distance is a somewhat stronger
condition.

9. Weak threshold of Margulis.

In this section we recall a pioneer result of Margulis (see [M]), who showed that
a slightly weaker version of “sharp threshold” exists for all matroid sequences.

Let M be a vector matroid. Denote η(M) the smallest number of vectors to be
removed to obtain a matroid of a smaller rank. In case of a graphical matroid, this
is simply the size of the minimal cut. Also, denote by |M | the number of vectors
in M .

Let (Mi), i = 1, 2, . . . be a sequence of matroids, and let B′
i = B′(Mi) be

the corresponding sequence of random matroid processes where repetitions are not
allowed. Also, let κ′

i = κ′
i(Bi) be their stopping times. For every ϵ denote by ai(ϵ)

and bi(ϵ) the smallest and the largest numbers respectively such that

P (κi ≤ ai) ≥ 1− ϵ

P (κi ≤ bi) ≤ ϵ

Theorem 9.1 (Margulis) Suppose η(Mi) → ∞ as i → ∞. Then:

ai − bi
|Mi|

→ 0 , as i → ∞
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While the result of Margulis is similar to what we need to establish a cutoff, it
gives a bit weaker bounds. Indeed, in case of a complete graph Kn we get an −
bn = o(n2) while to establish a sharp threshold and a cutoff for the corresponding
geometric random walk we need an−bn = o(n log n), which we know is true. In the
next example we show that one can successfully apply Theorem 9.1 to show cutoff.

Example 9.3 Consider a “thick line” graph Cn defined by connecting vertices
i and i+ 1 by log n edges, i = 1, 2, . . . , n. Consider a random graph process. Since
log n → ∞ the repetitions are rare, so when n is large both processes B(Cn) and
B′(Cn) have about the same stopping time. To get a connected spanning subgraph
we need an edge between every pair of vertices i and i + 1. Thus by coupon
collector’s problem E(κ) = n log n+O(n). On the other hand, η(Cn) = log n → ∞
and Margulis’ theorem implies that ai− bi = o(|Cn|) = o(n log n) and thus we have
a cutoff.

This example can be easily generalized to the case of vectors in generic position
(see section 7).

10. The case of random set of vectors.

For a given n, q and m consider a random set of vectors A ⊂ V = Fn
q , |A| = m.

What can we say about the total separation ξ of the geometric random walk W(A).
Would there be a cutoff?

Clearly, n ≤ m or otherwise vectors in A will not generate V . Suppose l = m−n
is fixed and n grows. Roughly, we need to use almost all the vectors to generate
the whole space V . Thus by coupon collector’s problem we need about n log n walk
steps. This can be formalized by the following result.

We call a m-tuple a set of vectors A ⊂ V , such that |A| = m.

Theorem 10.1 For any ϵ, δ > 0 there exist constants c1, c2, l1, n1 such that for
every n ≥ n1, l ≥ l1 a random (n+ l)-tuple A satisfies the following inequalities

s(n logn+ c1 n) ≤ ϵ

s(n log n+ c2 n) ≥ 1− ϵ

with probability 1 − δ, where s(k) is the separation distance after k steps of the
corresponding random walk W(A).

This roughly means that as n → ∞, a sequence of random (n + l)-tuples has a
cutoff. Heuristically, this implies that for almost all sets A the mixing time is about
the fastest possible. Thus we have a cutoff.

To prove the theorem we need several observations. We say that set B ⊂ V is full
if the linear span of B generates the whole space V = Fn

q . Suppose |B| = m, m ≥ n.
Compute the probability P (n,m) that a randomm-tuple B is full. Combine vectors
in B into a m× n matrix M . We have

P (n,m) = P (rk(M) = n) =

(
1− 1

qm

)
·
(
1− 1

qm−1

)
· . . . ·

(
1− 1

qm−n+1

)
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Thus the probability that a random (n + l)-tuple is not full is roughly 1 − q1−l.
Let l0 be the smallest integer such that for large enough n and l ≥ l0 we have
P (n, n+ l) > 1− ϵ δ.

Now, let l1 = l0 + 1. An r-subtuple B in m-tuple A is an r-tuple which is a
subset of A: B ⊂ A.

Lemma 10.2 Suppose l ≥ l1. Then at least 1− δ fraction of all (n+ l)-tuples
A satisfies the following property:

(◦) A random (n+l0)-subtuple B of A (chosen uniformly of all
(
n+l
n+l0

)
subtuples)

is full with probability at least 1− ϵ.

Proof. Let A1, . . . , AN be the set of all (n+ l)-tuples of V . For each Ai let pi
be the probability that a random (n+ l0)-tuple of Ai is not full. Also, let p be the
probability that a random (n + l)-tuple violates the property (◦) described in the
Lemma. Notice that by definition:

1

N

N∑
i=1

pi ≥ ϵ p.

On the other hand, by the symmetry,
∑N

i=1 pi is N times the probability that a
random (n+ l0)-tuple chosen from V is not full. The last probability is at most ϵ δ.
Therefore

ϵ δ ≥ ϵ p ,

which implies p ≤ δ, completing the proof. �

Proof of Theorem 10.1. From above, with probability at least 1 − δ almost all
((1− ϵ) fraction to be exact) of (n+ l0)-subtuples in a random (n+ l)-tuple are full.
This implies that with probability at least 1 − δ the expected stopping time of a
random matroid process B(A) is n logn+ O(n). This immediately implies desired
result about mixing and finishes proof of the theorem. �

Remark 10.3 There are various other results about the behavior of the so
called random random walks (see e.g. [DH,P4,R]) and the connection with cutoff
phenomenon (see [D2] for review and references). Notably, in papers [G,W] the
cutoff in terms of variation distance was shown for almost all sets of generators
of Zn

2 . While this result roughly corresponds to the case q = 2, the technique is
different from ours.

11. The case of random graphs.

By analogy with the previous section one can consider a sharp threshold of
random graph process for graphs with n vertices and m edges. It turns out that
one can prove results similar to those of the previous section. The applications to
the cutoff of geometric random walks are clear, so we will deal directly with graphs.

Let G be a graph on n vertices. We say that G is m-graph if |G| = m, i.e. G has
m edges. We say that set H is l-subgraph if H ⊂ G and |H| = l.

It is known that form = o(n logn) almost every randomm-graph is disconnected.
We will show that in a sense 1

2n log n edges is enough not only for a graph to be
connected, but also to have sharp threshold.
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Theorem 11.1 For any ϵ, δ > 0 there exist constants c1, c2, l1, n1 such that for
every n ≥ n1, l ≥ l1, a random

(
1
2n log n+ l n

)
-graph G on n vertices satisfies the

following inequalities
P (κ ≤ n log n+ c1 n) ≤ ϵ

P (κ ≤ n log n+ c2 n) ≥ 1− ϵ

with probability ≥ 1− δ, where κ is the stopping time of the random graph process
B(G).

Proof of this theorem is largely the same as of Theorem 10.1, so we will simply
sketch it.

First, we can use the bounds cited in Example 8.4 to find l0 such that a random(
1
2n log n+ l0 n

)
-graph G on n vertices is connected with probability at least 1−ϵ δ.

Take l1 = l0 + 1.
Now, refer to the following analog of Lemma 10.2:

Lemma 11.2 Suppose l ≥ l1. Then at least 1−δ fraction of all
(
1
2n log n+ l n

)
-

graph G satisfies the following property:

(◦) A random
(
1
2n logn+ l0 n

)
-subgraph H of G (chosen uniformly of all the

subgraps) contains a spanning tree with probability at least 1− ϵ.

Again, the lemma applied to the general set immediately proves the theorem. �

12. The case of edge-transitive graphs.

In this section we show that if we have a sequence of edge-transitive graphs, it
always has a sharp threshold. Thus we effectively “derandomize” the result of the
previous section.

Graph G is called edge-transitive if for every pair of edges E1 and E2 there is
an automorphism π : G → G such that π(E1) = E2. For example, both complete
graph Kn and complete bipartite graph Km,n are edge-transitive.

Let d = d(G) denote the minimum degree of G.

Theorem 12.1 Let (Gn) be a sequence of edge-transitive graphs on n vertices
such that log d/ log n → 0 as n → ∞. Then a random graph process B′(Gi) has a
sharp threshold.

We prove Theorem 12.1 using another formulation, more traditional for random
graphs.

Suppose we choose each edge of G independently with probability p, and let Gp

denote the resulting random graph. Suppose p0 and p1 satisfy P (Gp0 is connected) =
ϵ and P (Gp1

is connected) = 1−ϵ. We need to show that u(G, ϵ) = (p1−p0)/p0 → 0
as n → ∞, where G is as in the theorem.

Let us formalize the problem again. Suppose a graph G has n vertices and m
edges. Consider the hypercube H = {0, 1}m, where each coordinate corresponds to
an edge in G (so each vertex of the cube corresponds to a subgraph of G). Here we
will identify sets of subgraphs of G with sets of vertices of the hypercube. Define
a probabilistic space on H by setting µp(x) = pw(x)(1− p)m−w(x) for any vertex x,
where w(x) is the number of 1’s in x. Furthermore, for each x ∈ H, let xi denote
the vertex of H obtained by changing the ith coordinate of x.
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Let A be a monotone subset of H, and A(p) = µp(A) =
∑

x∈A µp(x). For each

coordinate i define Ai = {x|x ∈ A, xi /∈ A}, and set γ(p) = maxiAi(p).
The core of the proof is the following lemmas, shown by Talagrand [T] and

Margulis [M], respectively.

Lemma 12.2 (Talagrand) There is a constant c > 0 such that:

p
∂A(p)

∂p
≥ c

log(1/γ(p))

log(1/p)
A(p)(1−A(p)).

Lemma 12.3 (Margulis)

p
∂A(p)

∂p
= 2

m∑
i=1

Ai(p).

Now let A be the set of all connected spanning subgraphs of G. Fix an arbitrarily
large C. Assume that u(G, ϵ) < C. It follows by classical analysis that there is a

point p ∈ [p0, p1] such that p∂A(p)
∂p < C.

Since G is edge-transitive, A is symmetric, so Ai(p) are equal. Therefore, Mar-
gulis lemma implies that

γ(p) =
1

m

m∑
i=1

Ai(p) <
C

m

Combine this with Talagrand’s lemma, we have:

C ′ =
C

cϵ(1− ϵ)
≥ log(m/C)

log(1/p)

which yields

log(1/p) > C ′′ log n

for some constant C ′′ depending on C (here we use the fact that m ≥ n/2).
Recall that the minimum degree of G is d, so the probability that a v with degree

d is isolated is (1 − p)d. Since A(p) ≥ ϵ, it follows that (1− p)d ≤ 1 − ϵ, therefore
p ≥ c/d for some constant c = c(ϵ). Thus

log(1/p) < c′ log d

for some constant c′. This leads to a contradiction, since log d = o(log n). �

The theorem covers many nice symmetric cases such as cycle, thick cycle (see
Example 9.3), hypercubes (see Example 8.1) and many others.

Example 12.4 Let 0 < α < 1 and

[
n
αn

]
be the set of all ⌊αn⌋-subsets of

[n] = {1, . . . , n}. Consider a sequence of graphs Υn with vertices in

[
n
αn

]
and edges

(I, J), I, J ∈
[

n
αn

]
, such that |I ∩J | = ⌊αn⌋− 1. Clearly, Υn is edge-transitive. It
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is easy to see that d(Υn) = n− ⌊αn⌋ = O(n) while

∣∣∣∣[ n
αn

]∣∣∣∣ = (
n

⌊αn⌋
)
= O(βn/

√
n),

where β = (αα(1−α)1−α)−1 > 1. Thus log d/ log n → 0 as n → ∞ and by Theorem
12.1 the sequence of random graph processes B′(Υn) has a sharp threshold.

Example 12.5 Let Γ = Km,n be a complete bipartite graph, m ≥ n. We have
d = m and Γ is edge-transitive with m+ n vertices. Theorem 12.1 implies that the
sequence of the corresponding random graph processes B′(Km(n),n) has a cutoff if

log n/ logm(n) → 0 as n → ∞. For example, m(n) = nlogn will work.

Example 12.6 Let Γn be a sequence of Cayley graphs of finite groups generated
by small conjugacy classes. Then Γn are all edge-transitive graphs and the theo-
rem implies that we have a sharp threshold for the corresponding random graph
processes.

For example, let G = Sn be a symmetric group, and T be a set of all transposi-
tions. Let Γn be the corresponding Cayley graph. It is clearly edge-transitive. We
have

d(Γn)

|Γn|
=

|T |
|Sn|

=

(
n
2

)
n!

→ 0 as n → ∞

Now use Theorem 12.1 to show the sharp threshold.

Theorem 12.1 can be generalized to transitive matroids. We call matroid M =
(S, r) transitive if for any two elements s1, s2 ∈ S there exist a permutation π :
S → S such that π(s1) = s2 and r(π(X)) = r(X) for every X ⊂ S. A matroid
of the form M ′ = (S′, r|S′), S′ ⊂ S is called submatroid. A matroid (S, r) is
called connected if it is not a sum of two sumbmatroids (S′, r′) + (S′′, r′′), where
S = S′ ∪ S′′, S′ ∩ S′′ = ∅, and r(X) = r′(X ∩ S′) + r′′(X ∩ S′′) for all X ⊂ S.

The role of vertices (or rather their complements) of a matroid M is now played
by connected submatroidsM ′ such that r(M ′) = r(M)−1. We call these generalized
vertices. Let the degree of such a generalized vertex be the number of elements s ∈ S
such that r(M ′ ∩ {s}) = r(M). Define the degree of a matroid to be the minimum
degrees of its generalized vertices.

Theorem 12.7 Let (Mn) be a sequence of transitive matroids with n generalized
vertices and degree d = d(n) such that log d(n)/ log n → 0 as n → ∞. Then a
random matroid process B′(Mn) has a sharp threshold.

The proof of Theorem 12.7 is identical to the proof of Theorem 12.1. We use the
fact that Margulis and Talagrand lemmas are known for matroids (see [M,T]). We
omit the details.

Note that Theorems 12.1 and 12.7 are false if the (crucial) transitivity assumption
is dropped. For instance, consider two copies of the hypercube graph of dimension
d. In the first copy, delete an edge uv (say), and in the second copy delete an
edge u′v′. Draw two new edges uu′ and vv′. The resulting graph G is connected,
d-regular and has 2d+1 vertices. But u(G, ϵ) ∼ (1− 2ϵ)/ϵ for all small ϵ.

When the degree d is large, a similar result can be proved under somewhat
different assumption. We say that two subgraphs G1 and G2 of G are equivalent if
there is an element π ∈ Aut(G) such that G1 = π(G2). For a subforest F , let ϱ(F )
be the number of subforests of G equivalent to F . Let ϱ(s) = minF,|V (F )=s| ϱ(F ).
Let w(n) be an arbitrary function tending to infinity.



ON MIXING OF RANDOM WALKS 19

Theorem 12.8 There is a function f(C) such that for any C > 0, there is
n0 = n(C) such that if G is a connected graph on n > n0 vertices and ϱ(f(C)) >
(w(n)d(G))f(C) then u(G, ϵ) > 1/C.

Theorem 12.8, in a way, asserts that if G has a sufficiently large automorphism
group, thenG has sharp threshold. This theorem covers basis cases such as complete
graphs Kn (cf. Example 8.4) or complete bipartite graphs Kn,n. The proof is more
involved and omitted. Theorem 12.8 can be generalized for matroids as well.

13. Odds and ends.

In this paper we showed that the behavior of the geometric random walks is
largely determined by random matroid processes. Still, there are many open ques-
tions regarding the matter.

1) Is there an analog of the random matroid processes for other types of random
walks? The generalization to all abelian groups is straightforward, while the case
of nilpotent groups is less obvious. We discuss this in [AP].

Probably, the most interesting case is the random walk on a symmetric group
Sn generated by transpositions. In this case there are several constructions of the
strong uniform times (see [D1,P1,P2]). The mixing time ξ = 1

2n log n and there are
some strong connections with the random process for a complete graph Kn. We
discuss these connections at length in [P3].

2) In this paper we were able to establish the existence of a cutoff in some cases,
even when we don’t know the mixing time. There are other instances (cf. [D2,P1])
when such a result might be desirable.

3) There are still many gaps in our understanding of the sharp threshold phe-
nomenon. For example, we still don’t know if there exist a sharp threshold for
random graphs with small number of edges (conditioned they are connected).

Also, it is worth noting that the result of Margulis cannot be strengthened to
show the cutoff. Suppose η(Mi) → ∞ as i → ∞. Then sequence of B(Mi) may
not have a sharp threshold. Indeed, consider two copies of a complete graph Kn2

connected by n edges. Consider the corresponding graphical matroid Mn. Then
η(Mn) = n → ∞, while easy computations show that there is no sharp threshold.

4) After the paper was completed we learned about the result of Friedgut and
Kalai [FK] which deals with threshold for symmetric properties, in particular graph
properties. As connectivity of random subgraphs is a natural example of such
property, which suggests that our results for edge transitive graphs are related to
this work. We challenge the reader to uncover this curious connection.

5) The assumption of Theorem 12.1 may be too special or hard to check (al-
though the theorem covers several important graphs); it is natural to ask whether
the statement still holds under a more general assumption.
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