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Abstract. We prove that the product replacement graph on generating k-tuples of
a simple group contains a large connected component if k ≥ 3. This is related to the
recent conjecture of Diaconis and Graham. As an application, we also prove that the

output of the product replacement algorithm (see [CLMNO]) in this case does not
have a strong bias.

Introduction

Let G be a finite group, and let κ(G) be the minimal number of generators of
G. For every k ≥ κ(G) consider a graph Γ(G, k) = (X,E) with vertices to be the
generating k-tuples:

X = { (g1, . . . , gk) ∈ Gk, ⟨g1, . . . , gk⟩ = G }

and edges correspond to multiplication of one element in a k-tuple by the other:

E =
{ (

(g1, . . . , gi, . . . , gk), (g1, . . . , gi · g±1
j , . . . , gk)

)
, 1 ≤ i, j,≤ k, i ̸= j

}
This graph naturally arises in a study of the product replacement algorithm (see

below). Recently Diaconis and Graham proved that Γ(G, k) is connected if G is
abelian and k ≥ κ(G) + 1 (see [DG]). They also state the following conjecture:
Graph Γ(Sn, k) is connected for all n, k ≥ 3. We prove a weaker, but more general
result, which suffices for applications.

Theorem 1. Let G be a finite simple group, k ≥ 3. Then Γ = Γ(G, k) contains
a connected component Γ′ such that

|Γ′|
|Γ|

→ 1 as |G| → ∞

Moreover, if ⟨g1, . . . , gk−2⟩ = G, then (g1, . . . , gk−2, id, id) ∈ Γ′.
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This basically implies that while we don’t know if the graph Γ(G, k) is connected,
for large G it contains a unique ”large” connected component. Everywhere below by
Γ′ we denote the largest connected component of Γ. If the graph Γ(G, k) is in fact
disconnected, then its ”small” connected components cannot contain generating
k-tuples in which some k − 2 elements generate group G.

The proof is based on the following remarkable result:

(∗) P(⟨g1, g2⟩ = G, g1, g2 ∈ G) → 1 as |G| → ∞

where G is simple. When G = An this is a famous result of Dixon (see [Di]). For
classical simple groups of Lie type as well as for certain exceptional groups this is
due to Kantor and Lubotzky (see [KL]), and the remaining cases were resolved by
Liebeck and Shalev (see [LS1,LS2]).

Note that it is natural to ask whether the second part of the theorem can be
strengthened. For example, in the spirit of the Diaconis–Graham conjecture, is it
true that given ⟨σ1, σ2⟩ = An we have (σ1, σ2, id) ∈ Γ′ ? In fact this is true, but
the proof is based on more difficult results in probabilistic group theory.

Theorem 2. With the conditions of Theorem 1, if ⟨g1, . . . , gk−1⟩ = G, then
(g1, . . . , gk−1, id) ∈ Γ′.

The proof of this theorem is heavily based on the recent bounds by Guralnick
and Kantor (see [GK]). A special case of the alternating group can be handled
separately by using sharp bounds of Babai (see [B1]).

Applications : Product replacement algorithm

The product replacement algorithm is an important recent advancement in com-
putational group theory. It arose in conversation between Charles Leedham-Green
and Leonard Soicher ([LG]) and was studied by Celler et. al. in [CLMNO].

Let G be a finite permutation or matrix group1 given by a set of generators.
The object is to produce (nearly) uniform elements of G. The product replacement
algorithm runs a nearest neighbor random walk on a graph Γ(G, k) for a while,
and then outputs a random component of the generating k-tuple obtained. The
algorithm was found to be very efficient (see [CLMNO,LG]), much more efficient
than an ordinary random walk.

Suppose now that the graph Γ(G, k) is connected. One can ask about the mix-
ing time of the random walk. There are few interesting rigorous results on the
subject. We refer to [DS1,DS2,PB] for (usually weak) bounds on convergence of
the random walk on Γ(G, k). Babai in [B2] found an O(log2 |G|) bound on the
diameter of Γ(G, k). All these bounds assume that k ≥ κ(G) + κ̃(G) where κ̃(G)
is the maximum size of the minimal generating sets (i.e. a generating set such
that no generator can be omitted). For instance, a set of adjacent transpositions
in Sn shows that κ̃(G) ≥ n − 1, which makes the Diaconis–Graham conjecture of
particular interest.

However, even if the graph is connected, the algorithm can still fail. The author
recently discovered (see [P2,PB]) that for direct products of large numbers of simple

1In general, it can be any black box group (see [B2]).
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groups the probability distribution of a component in a random generating k-tuple
has a strong bias. The result was made even stronger by Babai and the author in
[BP] who showed that the bias can be detected by a short straight line program.
Thus one should require an extra condition on k.

Now, assume, as occurs often in practice, that our finite group is simple. Let
g1, . . . , gr be given generators. Let k = r + 1 and consider a graph Γ = Γ(G, k).
While Γ is not known to be necessarily connected, by Theorem 1 it contains a
”large” connected component Γ′. Further, by Theorem 2 we know that Γ \ Γ′ can
contain only minimal generating k-tuples. By (∗) we immediately obtain

|Γ′| = |G|k · (1− o(1)).

Therefore the projection on any component of the generating k-tuple has a proba-
bility distribution which is (nearly) uniform (in total variation distance).

To summarize, we obtained the following claim. Let G be a group presented by
r generators g1, . . . , gr, and let r ≤ k. Consider a nearest neighbor random walk on
Γ(G, k) starting at (g1, . . . , gr, id, . . . , id). Denote by Qk

t the probability probability
distribution of the random component of the state of the walk after t steps. Let
Qk = limt→∞Q

k
t . The total variation distance is defined as

∥Qk − U∥ =
1

2

∑
g∈G

∣∣∣∣Qk(g)− 1

|G|

∣∣∣∣
where U is a uniform distribution on G.

Theorem 3. Let G be a finite simple group, k ≥ r + 1. Then

∥Qk − U∥ → 0 as |G| → ∞

We refer to review article [P2] for further results on the product replacement
algorithm.

Proof of Theorems

Proof of Theorem 1. Let (g) = (g1, . . . , gk), (h) = (h1, . . . , hk) be two
random k-tuples chosen uniformly from Gk (of course, not necessarily generating
G). By φ = φ(G) denote the probability P(⟨g1, g2⟩ ̸= G). Thus with probability
1−φ we have ⟨g1, g2⟩ = G and we can multiply the remaining elements by g1, g2 to
obtain any h3, . . . , hk. This implies that (g) and (g1, g2, h3, . . . , hk) are in the same
connected component. Since g1 and h3 are chosen independently, with probability
1−φ we have ⟨g1, h3⟩ = G and (g1, g2, h3, . . . , hk) is connected to (g1, h2, h3, . . . , hk).
Finally, since h2 and h3 are chosen independently, with probability 1− φ we have
⟨h2, h3⟩ = G and (g1, h2, h3, . . . , hk) is connected to (h1, h2, h3, . . . , hk).

Recall that by (∗) we have φ = φ(G) → 0 as |G| → ∞. All three (not inde-
pendent) events occur with probability > 1 − 3φ(G) → 1. Therefore two random
vertices in Gk are in Γ(G, k) and connected with probability → 1. We conclude
that Γ(G, k) contains a connected component of size |G|k(1−o(1)). This completes
the proof of the first part.
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To prove the second part, observe that if we are given a generating k-tuple
(g) = (g1, . . . , gk−2, id, id) we can always connect it with (g1, . . . , gk−2, hk−1, hk).
The last two elements generate G with probability (1 − φ(G)) so we can connect
(g) with any of the k-tuples (h1, . . . , hk−1, hk) such that ⟨hk−1, hk⟩ = G. But the
set B of such k-tuples satisfies |B| = |G|k(1− o(1)) and therefore B ∩Γ′ ̸= ∅. Thus
B ⊂ Γ′ and this completes the second part of the proof. �

Remark 1. For G = An the result of Babai (see [B1]) gives

φ(An) =
1

n
+O

(
1

n2

)
.

One can deduce from this bound and the proof that for k ≥ 3 we have

|Γ′| = |An|k ·
(
1−O

(
1

nk−2

))
Note also that the result of Babai is based on the classification of finite simple
groups, while for the proof of Theorem 1 for G = An a weak classification free
bound of Dixon suffices.

Proof of Theorem 2. We will need the following notation. Let C ⊂ G be a
conjugacy class, C ̸= 1, and let

ψ(C,G) = min
g∈G,g ̸=id

P(⟨g, h⟩ = G,h ∈ C)

Observe that ⟨g, h⟩ = G is equivalent to ⟨ga, ha⟩ = G for any a ∈ G. By C(g)
denote the conjugacy class of G which contains g. Therefore for all h ∈ C

ψ(C,G) = min
g∈G,g ̸=id

P
(
⟨g′, h⟩ = G, g′ ∈ C(g)

)
Finally, denote by ψ(G) = maxg∈G ψ(C(g), G). By C0 denote the conjugacy class C
on which ψ(C,G) maximizes. It was shown in [GK] that ψ(G) = ψ(C0, G) > 1/10
for all simple groups G. Further, the authors prove that

lim inf ψ(G) =
1

2
as |G| → ∞

Now, let k = r + 1, (g) = (g1, . . . , gr, id) be a generating k-tuple of the simple
group G. Choose a uniform z ∈ C0. We have that (g) is connected to (g1, . . . , gr, z).
Without loss of generality assume that g1 ̸= id. Now, ⟨g1, z⟩ = G with probability
> ψ(G) (by definition) and then (g1, . . . , gr, z) is connected to (g1, h2, . . . , hk−1, z),
for any hi ∈ G. Consider two cases : k = 3 and k > 3.

If k > 3, with probability 1− φ(G) we have ⟨h2, h3⟩ = G. But then the k-tuple
(g1, h2, h3, . . . , hk−1, z) is connected to (h) = (h1, h2, . . . , hk−1, hk). We conclude
: with probability > ψ(G) − φ(G) we have that (g) is connected to (h) chosen
uniformly from Gk. Since lim inf

(
ψ(G)−φ(G)

)
= 1/2, we have that (g) is connected

to the ”large” component Γ′.
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Assume that k = 3. We have that (g) = (g1, g2, id) is connected to (g1, h2, z),
h2 is uniform in G, z is uniform in C0, with probability ψ(G). Now fix z. Recall
that for any h2 ̸= id we have P(⟨h2, z⟩ = G) = ψ(C(h2), G) ≥ ψ(G). Thus with
probability ≥ ψ(G) the vertex (g1, h2, z) is connected to (h1, h2, z), h1 - uniform in
G. Finally, with probability 1− φ(G) the latter is connected to (h1, h2, h3).

Observe now that the events ⟨g1, z⟩ = G and ⟨h2, z⟩ = G are independent.
This implies that the probability that (g) = (g1, g2, id) is connected to a uniform
(h1, h2, h3) ∈ G3 is at least ψ2(G)−φ(G). Since lim inf ψ(G)−φ(G) = 1/4, we see
that (g) is connected to the ”large” component. This completes the proof. �

Proof of Theorem 3. Observe that by Theorem 2 we have that (g) =
(g1, . . . , gr, id, . . . , id) ∈ Γ′. Observe that Γ′ is symmetric under action of Sk. In-
deed, if (h) ∈ Γ is connected to (g), then σ · (h) is connected to σ · (g) for any
σ ∈ Sk. But both (g) and σ · (g) lie in Γ′ and thus connected. Therefore (h) is
connected to σ · (h) for any (h) ∈ Γ′, σ ∈ Sk, and the symmetry follows. From here
Qk is the probability distribution of the first component of uniform elements of Γ′.

Clearly, the probability distribution of the first component of uniform elements
in Gk is uniform. We conclude

∥Qk − U∥ = max
B⊂G

|Qk(B)− U(B)| ≤ max
B⊂G

∣∣∣∣ |Γ(G, k) ∩B ×Gk−1|
|G|k

− |B ×Gk−1|
G|k

∣∣∣∣
≤ |Γ(G, k)|

|G|k
→ 0 as |G| → ∞

This completes the proof. �

Odds and ends

Let us first note that in this paper we deal only with simple groups. In particular,
we prove that the graph Γ(An, 3) has a ”large” connected component, rather than
the graph Γ(Sn, 3) which appears in the Diaconis–Graham conjecture. A simple
modification of the argument in the proof of Theorem 1 allows us to prove the
existence of the ”large” component in the latter graph as well. We leave the (simple)
details to the reader.

Also, the whole proof of Theorem 1 (in contrast with the proof of Theorem 2)
is based only only on the property (∗). We can generalize this into the following
result.

Theorem 4. Let Gi, r(i) be a sequence of groups such that P(⟨g1, . . . , gr(i)⟩ ̸=
Gi) → 0 as i → ∞. Then a sequence of graphs Γi = Γ(G, k(i)), k(i) ≥ r(i) + 1
contains a ”large” connected component Γ′

i ⊂ Γi such that

|Γ′
i|

|Γi|
→ 1 as i→ ∞

Moreover, if (g) = (g1, . . . , gk−r(i), id, . . . , id) ∈ Γ(G, k), then (g) ∈ Γ′. �

Let f(i) be any increasing function, f(i) → ∞ as i → ∞. Consider a sequence
of nilpotent groups Gi with r(i) = κ(Gi)+f(i). Then one can show that (Gi, f(i))
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satisfies the conditions of Theorem 3 (see [DS2,P1,PB]). Analogous result holds for
a sequence of solvable groups Gi, where r(i) = f(i) · κ(Gi), and for products of
simple groups Gi with r(i) = f(i) · κ(Gi) · log log |Gi| (see [P1] for details.) An
analog of Theorem 3 is straightforward.

While we cannot prove that the graph Γ(G, k) is connected for Sn and, perhaps,
all simple groups, the case of general groups is of interest as well. Interestingly, we
do not know of any finite group G generated by r elements such that Γ(G, r+1) is
disconnected. We believe that there such groups do exist (cf. [BP]).

It is possible that Theorem 2 might not have a generalization to other families of
finite groups. On the other hand, it appears useful from the computational point
of view. An unexpected bonus is the efficient computer check2 of the Diaconis–
Graham conjecture for n ≤ 10. Indeed, instead of checking the connectivity of the
triples of permutations in the brute force approach, we can check connectivity of
generating triples with the ”large” connected component. The revised computation
runs the product replacement algorithm and checks if the triple is minimal at every
stage. If at some point it’s not, by Theorem 2 it is thus connected to the ”large”
connected component. This idea was recently implemented by Gene Cooperman
and the author and will be reported elsewhere3.
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