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Abstract

Let GG be a finite group. Efficient generation of nearly uniformly distributed random
elements in G, starting from a given set of generators of (7, is a central problem in
computational group theory. In this paper we demonstrate a weakness in the popular
“product replacement algorithm,” widely used for this purpose.

The main results are the following. Let Nj;(G) be the set of generating k-tuples
of elements of (G. Consider the distribution of the first components of the k-tuples
in NV (G) induced by the uniform distribution over N3 (G). We show that there exist
infinite sequences of groups (G such that this distribution is very far from uniform in
two different senses: (1) its variation distance from uniform is > 1 — ¢; and (2) there
exists a short word (of length (loglog|G|)°(*)) which separates the two distributions
with probability 1 — e.

The class of groups we analyze is direct powers of alternating groups. The methods
used include statistical analysis of permutation groups, the theory of random walks, the
AKS sorting network, and a randomized simulation of monotone Boolean operations by
group operations, inspired by Barrington’s work on bounded-width branching programs.

1 Introduction

Let G be a finite group. A sequence of k group elements (g1,...,9x) (g; € G) is called a
generating k-tuple of G if the g; generate G. Let Ni(G) be the set of all generating k-tuples
of G, and let Nix(G) = |Np(G)].

Let Q* denote the probability distribution on G of the first components of k-tuples
chosen uniformly from A (G). This distribution appears as the limiting distribution ob-
tained by the “product replacement algorithm,” a widely used heuristic intended to rapidly
generate nearly uniformly distributed random elements in G (see next section). While the
question of mixing rate for this algorithm is wide open, we show that even the limiting
distribution QF can be very far from uniform.

The groups on which we demonstrate this anomaly are the direct powers

G=A=A,xX A, x---x A, (m times),
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where A,, is the alternating group of degree n (the group of even permutations of n > 5
elements).

Let U denote a uniform distribution over G. The total variation distance ||Q* — Uy, is
defined as follows:

9 -Vl = asl () -0 = 5 3 |otto) - |

This quantity is between 0 and 1.

Theorem 1.1 Let G = A™

™ where m = n!/8. Then

1QF = Uljpy — 1 as n — oo
assuming k > 4 and k = o(n).

We note that for m = n!/8, the group G is generated by 2 elements, but a uniform random
pair of elements (or even k-tuple of elements for k& = o(n)) is unlikely to generate it. The
intuition behind the proof builds on this discrepancy.

To prove the theorem we find an explicit set B such that Q*(B) — 0 while U(B) — 1.
The set B can be chosen to be a union of conjugacy classes in G and therefore has direct
significance to applications in computational group theory.

Let w be a word over the alphabet {x,fﬂ,i = 1,2,...}. Substituting elements of G
for the z; assigns w a value in G. Assume that the z; are chosen independently from the
probability distribution P over G. We denote by w[P] the probability distribution of the
value of w.

Terminology. We say that an event is factorially unlikely if its probability is O(n=°") for
some constant ¢ > 0; and it is factorially likely if its probability is 1 — O(n™"). (The letter
¢ will be used to denote different positive constants at each occurrence in this paper. The
expression “factorially (un)likely” will always refer to the parameter n regardless of the
other parameters such as k and m involved in the definition of the groups in question.)

Theorem 1.2 There exists a family of words w, ;, with the following properties. The length
of Wi is n°F) . Let w(n) — oo, w(n) = o(n). Also, let k = k(n) > 4 and k = o(n). Set
m = 0?0, Let G = A™. Thenw[Q¥] = 1 is factorially likely (has probability 1—O(n=")),
while w[U] = 1 is factorially unlikely.

Remark 1.3 Note that if we choose w(n) to be /n, the length of w becomes (log log |G/)©(*).
This is at most polylogarithmic compared to the bit-length of the input: the names of most
group elements require (log |G|) bits (in any encoding of the group elements).



2 The “product replacement algorithm?”

It is known that nearly uniformly distributed random elements of a finite group can be
constructed using a polynomial number of group operations, starting from any given set
of generators [Bb1l]. However, the number of operations proven in [Bbl] to guarantee
near-uniformity is rather large ((log|G|)®), not suitable in practice. Therefore heuristic
algorithms are used.

One such heuristic, the product replacement algorithm, is an important recent advance-
ment in symbolic algebra (see [CLMNO], also [Bb3, Ka, Pa2, PB]). It was designed by
Leedham-Green and Soicher to generate efficiently nearly uniform group elements (see
[LG]). It is by far the most popular practical generator of random group elements, imple-
mented in the two symbolic algebra packages most frequently used in computational group

theory, GAP [Sc] and Magma [Ca].

The product replacement algorithm works as follows [CLMNO]. Consider the Markov
chain M = {X;} on Nj(G) as follows. Let Xy = (g1,...,9x) € Ni(G). Define

Xt+1 = (gla"'7hj7"'7gk)7

where h; = gjg;tl or h; = g;tlgj, where the pair (i,7), 1 < ¢,7 < k, ¢ # j is chosen
uniformly; the order of multiplication and the exponent +1 are determined by independent
flips of a fair coin. The algorithm runs the Markov chain for T steps, starting from a given
set of generators. Then it outputs a random component g = g; of the generating k-tuple
Xr. It is known that g is distributed (nearly) uniformly if £ = Q(log|G|) and T is large
enough.

Let »#(G) and #(G) denote the smallest and the largest size, respectively, of a minimal
generating set. It is known (see [CLMNO, DS2]) that when k > s + 7, the Markov chain
M is reversible, aperiodic, irreducible, and has a uniform stationary distribution. Thus the
chain is ergodic and can be used for approximate sampling from Ny (G). The empirical tests
seem to indicate that the chain mixes rapidly (see [CLMNO, LG]) but no results are known
in this direction.

Observe that there can be two types of error when we try to generate a nearly uniform
group element by this procedure. First, we may stop too soon (the distribution of X7 is
not close to the stationary distribution on Ny (G)); second, even the stationary distribution
on N (G) may not yield (nearly) uniformly distributed elements of G.

While the former problem (a problem of mixing rate) has been studied by several authors
(see [CG, DS1, DS2, Pa2, PB]), the present paper seems to be the first one to point out the
second type of error.

Let G be a finite group and let QF be the probability distribution of the product of all
elements in a uniformly chosen generating k-tuple (g1, ..., gx) € Ni(G). Let QF denote the
probability distribution of the random component in a uniformly chosen element of N3(G).
This is the limit distribution of the algorithm output when T — oo and M is ergodic.

The following is an immediate consequence of ergodicty.

Proposition 2.1 For any finite group G, k > »(G) + #(G), and g € G we have
Qi(9) = Ql(9) = Q%(9). O



3 Direct product of groups

Evidently Ny (G) C (Ni(A,,))™. The difference of these two sets is very small:
Lemma 3.1 If k> 4 and m < n!/8 then
NE(G)] = [(Ne(An))™[- (1 + O(1/nh)). (1)
This result follows from classical work by P. Hall [Ha] and J. Dixon [Dx]. O

Corollary 3.2 Let £ C (Ny(A,))™. Then
[P(EWNK(G)) - P(E)] = O(1/nl).

(The probabilities refer to uniform choice from (Np(Ay,))™.) O

Remark 3.3 Let o() = (UY) ...,O'(])) denote elements of NV(A4,) (1 < 7 < m). Corol-
lary 3.2 means that for most calculations, we can treat the components ¢/) of a uniform
random element (o), ..., 00™)) € NL(G) as independent; for k > 4 and m < n!/8, the
error will be O(1/n!).

4 Distribution of generating k-tuples in A,

In this section we obtain rather accurate asymptotic estimates on the probability that
generating k-tuples in A,, satisfy certain conditions.

First we obtain bounds on the asymptotic behavior of Ni(A,) as n — oc.

Denote by = = (o1,...,04) a uniformly distributed element in A*. Let A denote the
event that z € Nip(Ay).

Proposition 4.1 For k > 2 we have

1 1

The idea of the proof is to show that the most frequent reason for o¢,...,0, not to
generate A, is that all o; share a common fixed point. The probability of this is dominated
by the term n=*+1, the error being O(n~2%*2). The proof uses inclusion-exclusion and the
following estimate from [Dx] and [Bb2]: the probability that a pair of random permutations
lies in a maximal subgroup not of the form (S5, x S,_,) N A4,, is at most ¢" where ¢ =
27174 4 o(1) (so ¢ < 0.841 for large n) ([Bb2, Dx], cf. [Sh]). O

Let B denote the event that o(1) = 1. Clearly, P(B) = 1/n.



Proposition 4.2 For k > 2 we have

1 1 1
Proof. For an illustration, we include the proof in some detail. We have

P(A|B)P(B) P(A|B)

1
P(A) n  P(A)

We estimate the conditional probability P(A | B) similarly to the estimation of P(A). Again,
we only need to worry about maximal subgroups of the form 5, x 5,_, N A,,. We obtain

P(B|A) =

P(A|B) =1~ (P(a(1) = 1))
—(n—-1)-(P(o(2) = 2))’“‘1 ‘P(o(2)=2]a(1)=1)+ ...

We conclude that

1 1- 5540 (m=) 1 1 1
P - TG ey e w0 () o

Let D denote the event that o is a long cycle, i.e., a cycle of length n. Clearly,

P(C)=1/n.

Proposition 4.3 For k > 2 we have

1 1 1
P(D|A):E+m—|—0(—).

n2k-1

Proof. The proof is analogous to the preceding one except that in this case the proba-
bility P(A|D) =1 — O(c") by the observations above. We omit the details. O

5 Proof of Theorem 1.1

Let B C A" be the set of all elements g = (01,...,0,,) such that

n 2.nk

; : 1 1
#{J|Uj(1):1,1§]§m}>m.(__ )
We claim that under the conditions of Theorem 1.1,

Q¥(B) =0, and U(B) — 1 as n — .



This immediately implies Theorem 1.1.

For the proof of the claim we note that the quantity on the right hand side is halfway
between the expected value of the left hand side under uniform distribution (m/n) and
under Q* (m(1/n — 1/n*)). Now both parts of the claim follow from Chernoff’s bounds, as
stated by Alon and Spencer, [AS], Theorems A.11 and A.13 (pp. 237-238). For the result
regarding Q* we also need the strong approximate independence of the components, stated
in Cor. 3.2 and Remark 3.3. O

6 Biased events

Let 2y,...,2, be Boolean variables. Let Ths:(2,...,zs) denote the threshold function
which takes value 1 if >° ;2 > t and 0 otherwise. We use this function to separate
statistically the distributions Q* and U over G.

Let n be a prime number. Consider uniform samples of = (oy,...,0%) € AF. Using
the notation of Section 4, let D be the event that the permutation o, € A, is a long cycle.

By D’ we denote the event that (o3)” = 1. We have
1 1
P(D)= -+ —

n  nl

On the other hand, when k& = o(n), Proposition 4.3 gives us
1 1 1
! _
P(D'|A) = E-I-J-FO (n%—l) .

Let us now take s independent samples 1, ...,z, € A*, and let D; denote the event D’
with respect to z;. We view the D; as random (0, 1)-variables. Then

(St
whereas .
B(Er04) =54 540 (=)
=1

We set s = 2n** and apply Chernoff’s bounds with threshold ¢ = 2n3% + n?*. This value of
t is halfway between the two expected values above for the given s. It follows that

P(Ths(Dy,...,D)) < exp(—nk(l — 1/4nk)) <n~ ", (2)
while
P(Ths(D1,...,Ds)| A) > 1 —exp(—n*)+ 0(1/n!) > 1 —n"". (3)

Now we express the threshold function by a monotone Boolean circuit with suitable
parameters.It is immediate that the AKS sorting network [AKS] can be turned into a
monotone Boolean circuit with fan-in 2 gates for the threshold function T'h,;; the circuit
will have depth O(logs) and width (maximum number of nodes per level) s.

Thus we have proved the following result.



Proposition 6.1 Give n, k there exists an explicit monotone fan-in 2 Boolean circuit F,,
of size < nP®) and depth O(klogn) with s = 2n** input variables such that, assuming
k = k(n) = o(n), k > 4, we have P(F) = 1 - 0(n™") and P(F|A) = O(n~"), where
F=F,i(Dy,....,Dy). O

7 Simulation of Boolean operations

In this section we turn the Boolean circuit of the preceding section into a short word in
the group G. The basic idea was inspired by Barrigton’s simulation of Boolean operations
by group operations [Br], although the actual details and the scope are quite different. In
particular, in our context, negation cannot be simulated; and our simulation is (necessarily)
randomized.

Let H be a group and g € H. We consider the predicate £(g) meaning “g = 1.” We
wish to construct words wq and wq corresponding to the predicates & (g,h) = E(g) A E(h)
and & (g,h) = E(g) Vv E(h), respectively. Clearly, there is no word which would be 1
exactly if & holds, nor is there one for £. But the product wy = gh and the commutator
wy = [g,h] = g71h~1gh go part of the way: £i(g,h) implies wy = 1 and & implies wy = 1;
and the converse holds often enough in each case. We shall formalize this last observation.

Lemma 7.1 Given n > 5, there exist words wy and wy of length O(n?logn) in O(nlogn)
variables g, h, w1, ug, ... such that for every g,h € A,

(al) if g=h =1 then wy =1 (regardless of the values u;);
(a2) if g=1 or h =1 then wy = 1 (regardless of the values u;);

(b1) ifg # 1 or h # 1 and if the u; are independent uniformly distributed random elements
of A, then the event wy = 1 is factorially unlikely;

(b2) ifg # 1 and h # 1 and if the u; are independent uniformly distributed random elements
of A, then the event wq = 1 is factorially unlikely.

First, let us consider the word

z=(u7 gu) - ... (uy' gun) (4)

over a finite group H. For a fixed g € A,, and randomly chosen u; one can think of z as the
N-th state of a random walk on H generated by the conjugates of g.

Lemma 7.2 Fiz g € A,, g # 1. Let N = Q(n?log?n) and define z by equation (4). If the
u; are independent, uniformly distributed elements from A, then

1 1

Plr=h)— — | < ——
E=m = < A

for all h € A,.



Proof. Let RN be the probability distribution of the element z € A,,. It follows then
from a result of Roichman (see [Ro]) that

IRY = Ul < e,

where 1 > ¢; > 0, N = cnlogn, c,c; are universal constants!. Now use a standard
bound which relates mixing in relative pointwise distance (or £, distance) with mixing in
total variation distance (see e.g. [AF, LW].) This implies that after N = Q(Nlog|A,]|) =
Q(n?log® n) steps we obtain the inequality stated. O

Now we turn to the proof of Lemma 7.1. For g € H, consider the word z(g) =
z(g,u1,...,un). For h € H, consider the word z(h) = z(h, un41,. .., u2N).

Let now w1(g,h) = 2(g)-z(h) and wy(g,h) = [2(g), 2(h)]. It is obvious that these choices
satisfy parts (al) and (a2) of Lemma 7.1.

For the proof of (bl), there are two more cases to consider. If exactly one of ¢,h is
1, then z(g) - z(h) is nearly uniform over A, and therefore factorially unlikely to be 1. If
neither ¢, nor h is 1 then

P(z(g)-2(h)=1)= ) P(x(g) = f)-P(z(h) = f7') < |An| - (|1/3|) '

fEAR

We conclude that w; is factorially unlikely to be 1 when g,h # 1.
For (b2), the only case to consider is when g,h # 1. In this case,

P([z(g),z(h)] = 1) = > P(z(g) = v1) - P(z(h) = v2) < 7(4An) - (FZZ)

01,02 € An,[v1,v2]=1

where r( H ) is the number of solutions of the equation [v1, 2] = 1in the group H. Denote by
n( H ) the number of conjugacy classes in H. Frobenius observed [Fr] that r(H) = |H|-n(H).
The number of conjugacy classes of A,, is bounded by 2 times the number of partitions of

the integer n and therefore n(A,) = O (ecﬁ). We conclude that

P([z(9),2(h)] =1) = O(n™™). D

8 Proof of Theorem 1.2

Now we can put together the results of the previous sections.

Let £ > 4 be any large constant or any function of n such that k(n) = o(n). Now let
G = AT, where n is a sufficiently large prime and let m = m(n) grow faster than n°* but
slower than n°" for all ¢ > 0. Therefore m(n) ~ ¢”“(") as in Theorem 1.2 will work.

Now fix n. Consider independent samples from QF, i.e., samples obtained by projection
of Ni(G) onto the first components g; in generating k-tuples. Consider the Boolean circuit F
given in Proposition 6.1. Substitute the expression z} for the i-th Boolean input variable.

!This result seems to have been known before [Ro]; it follows from the character bounds in an unpublished
manuscript [CH].



Substitute the words wy, wy given in Section 7 for the Boolean operations to evaluate
the circuit. Let w be the resulting output word. This is the word we will use to prove
Theorem 1.2.

We claim that Py(w = 1) = O(n™") (we substitute independent, uniformly distributed
random members of G for the variables in w). Indeed, Lemma 7.1 implies that the error
in the Boolean operations in factorially small. The number of Boolean operations in F is
nO%) = p°(") 50 even the total error probability is factorially small. This and Proposition 6.1
imply that it is factorially likely that none of the components o; € A, of w = (61,...,05)
is the identity (which is far more than what we need).

On the other hand, we claim that Pgi(w = 1) = 1 — O(n™"). Again, let w =
(01y-..,0m) (0; € A,). As before, we make only a factorially small error by assuming
that the o; are independently chosen from the distribution Q*(A4,,).

Under this assumption, it is factorially likely that o; = 1 for any fixed 2. This is
immediate from Proposition 6.1 and the observation that the error made in the group-
theoretic simulation of monotone circuits is one-way: if a gate outputs 1 then necessarily
the simulating group element is the identity. This follows from properties (al) and (a2)
listed in Lemma 7.1.

Finally, m = n°); therefore it is factorially likely that all components of w are 1.

It is easy to see that the length of the word w is n®(). First of all this is obvious
if we allow the commutator to be an operation. Now the increase due to expanding the
commutators is a factor of 47 where d is the depth of the circuit. Since d = O(klogn), the
bound on the length of w follows. O
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