
Partition congruences by involutions

Christine Bessenrodt

Fachbereich Mathematik
Universität Hannover

D-30167 Hannover, Germany
bessen@math.uni-hannover.de

Igor Pak

Department of Mathematics, MIT
Cambridge, MA 02139

pak@math.mit.edu

August 26, 2003

Abstract

We present a general construction of involutions on integer parti-
tions which enable us to prove a number of modulo 2 partition congru-
ences.

Introduction

The theory of partitions is a beautiful subject introduced by Euler over
250 years ago and is still under intense development [2]. Arguably, a turning
point in its history was the invention of the “constructive partition theory”
symbolized by Franklin’s involution [10] and commemorated in Sylvester’s
magnum opus [17]. Based on explicit constructions of bijections and invo-
lutions, this approach was taken to a new high by Schur’s proof of Rogers-
Ramanujan’s identities and led to numerous new proofs and identities. We
refer to [14] for an extensive survey of history and recent developments of
the subject.

By themselves, partition congruences became a subject of intense interest
ever since Ramanujan’s celebrated discovery of the congruence p(5n−1) ≡ 0
mod 5. Despite various proofs, extensions and even Dyson’s ‘rank’ combi-
natorial interpretation [7], there is still no bijective proof of Ramanujan’s
congruences. In fact, the few partition congruences which are known to have
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combinatorial proofs are mod 2 congruences, all proved by explicit involu-
tions. The idea of this paper is to present a certain new class of involutions
which prove a wide range of modulo 2 partition congruences and identities.

Let us start with Euler’s classical Pentagonal Theorem, which is equiv-
alent to the following identity:

(∗)
∞∏

i=1

(1− ti) =
∞∑

m=−∞
(−1)mtm(3m−1)/2 .

One way to prove (∗) is to show that the number of partitions of n into dis-
tinct parts with an odd number of parts is equal to the number of partitions
of n into distinct parts with an even number of parts, unless n is a pentago-
nal number. This is exactly the approach used by Franklin [10]; his classical
involution proves (∗) by switching the parity of the number of parts in a
partition. The proof was soon recognized as of great importance by Cayley
and other contemporaries and became a key result in Sylvester’s program
of studying partitions [17]. Hardy described the proof as “beautiful” [11],
and Rademacher called it “the first American theorem”.1 In his historical
investigation [3], Andrews showed that Franklin’s involution easily follows
from an easy Durfee square type proof of Sylvester’s identity. This even led
to speculations that this was in fact how Franklin’s proof was obtained, a
speculation later disproved2. Most recently, this approach was formalized
in [16].

In recent years, Franklin’s proof had a new life with several more general
identities proved by means of the very same involution (see e.g. [6, 12, 13]).
Just last year, a note [15] by the second author showed that one of Fine’s
partition results follows easily from Franklin’s involution. We refer to [15] for
the full story, but let us mention here that Fine published a note [8] where,
in Andrews’ words “[Fine] announced several elegant and intriguing partition
theorems. These results were marked by their simplicity of statement and
[...] by the depth of their proof.” The paper [15] presents combinatorial
proofs of all of Fine’s results except for the following:

Fine’s Theorem The number of partitions of n into distinct parts and
with odd smallest part is odd if and only if n is a perfect square.

This result remained elusive until now. In this paper we present an
explicit involutive proof of this Fine’s theorem, together with a number

1This quote was communicated to us by George Andrews, who attended Rademacher’s
lectures while at UPenn.

2George Andrews, personal communication.
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of extensions and generalizations. It turns out that there is a common
general underlying principle behind these involutions as well as Franklin’s
involution. As the reader shall see, the proof we present is really a “proof
from the book”, and after reading this paper will wonder why it took so
long to find this connection.

The structure of the paper is as follows. After basic definitions (Sec-
tion 1), we start with Vahlen’s classical involution and its restricted version
(Sections 2 and 3). Then follows Section 4 on Sylvester’s transformation and
main results are given in Section 5. In Section 6 we present a number of ex-
amples and special cases, which include extensions of Fine’s Theorem above.
We suggest the reader check our calculations as this may prove helpful for
a better grasp of the material. The connection to Franklin’s involution is
described in Section 7. We conclude with final remarks and questions for
further study.

1 Basic definitions

A partition of n is an integer sequence λ = (λ1, λ2, . . . ) such that λ1 ≥
λ2 ≥ · · · ≥ 0 and |λ| := λ1 + λ2 + · · · = n. We refer to the λi as the parts
of the partition λ. Let D and P denote the set of partitions with distinct
parts and the set of all partitions, respectively. Denote by `(λ) and s(λ) the
number of parts and the smallest part in λ, respectively; for convenience,
set s(∅) = ∞. For partitions λ and µ denote by λ∪µ the partition obtained
by taking the (multiset) union of the parts.

A joint partition of n is a pair of partitions (λ, µ) such that λ ∈ P,
µ ∈ D, and n = |λ|+ |µ|. Denote by J = P ×D the set of joint partitions.
Clearly,

∑

(λ,µ)∈J
a`(λ) b`(µ) t|λ| z|µ| =

∞∏

i=1

1 + b zi

1− a ti
.

Graphically, one can present partitions and joint partitions by using
Young diagrams and MacMahon’s diagrams as in Figure 1. Here, a MacMa-
hon diagram corresponding to (λ, µ) ∈ J is presented by a Young diagram
of shape ν = λ ∪ µ with marked squares in the corners, so that rows with
marked squares correspond to parts of the partition µ (see [14]).
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λ

µ

ν

Figure 1. Young diagrams corresponding to partitions λ = (5, 4, 3, 3, 1) ∈ P,
µ = (4, 3, 2) ∈ D, and MacMahon’s diagram of shape ν = λ∪µ corresponding
to (λ, µ) ∈ J .

2 Vahlen’s involution

Consider the following trivial identity:

(?)
∞∏

i=1

(1− ti) ·
∞∏

i=1

1
1− ti

= 1 .

The left hand side can be viewed as a weighted sum of (−1)`(µ) over all
joint partitions (λ, µ) ∈ J . Let us prove identity (?) by constructing an
involution φ : J → J , defined as follows. If s(λ) < s(µ), move the smallest
part from λ to µ. Otherwise, if s(λ) ≥ s(µ), move the smallest part from µ
to λ. It is easy to see that the involution φ has exactly one fixed point: an
empty joint partition, which represents the r.h.s. of (?). The involution φ
is called Vahlen’s involution [14].

It is easy to generalize (?) to any subset of integers I ∈ N:

(??)
∏

i∈I

(1− ti) ·
∏

i∈I

1
(1− ti)

= 1 ,

with the proof given again by Vahlen’s involution φ.

3 Restriction of Vahlen’s involution

Consider a subset R≤k of joint partitions (λ, µ) ∈ J with `(λ) ≤ k, and
such that s(λ) < s(µ) whenever `(λ) = k. Let us prove that

(◦)
∑

(λ,µ)∈R≤k

(−1)`(λ) t|λ|+|µ| = 1 .
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Use Vahlen’s involution φ again. Observe that when `(λ) < k, we can always
apply φ. In case `(λ) = k there is no room to add the smallest part from µ.
But that is unnecessary due to the condition s(λ) < s(µ) in this case. This
implies (◦).

There is another way to define a restriction of φ which will not be used
later in the paper. Define S≤k ⊂ J to be the subset of joint partitions (λ, µ)
with `(µ) ≤ k, such that s(µ) ≤ s(λ) whenever `(µ) = k. Then

(◦◦)
∑

(λ,µ)∈S≤k

(−1)`(λ) t|λ|+|µ| = 1 .

The proof again follows from Vahlen’s involution.

4 Sylvester’s transformation

Let P≤k denote the set of partitions λ ∈ P with `(λ) ≤ k. Similarly, let
Dk denote the set of partitions µ ∈ D with `(µ) = k. Consider a map
πk : P≤k → Dk defined by πk(λ1, λ2, λ3 . . . ) = (λ1 + k, λ2 + (k − 1), λ3 +
(k − 2), . . . ). It is easy to see that πk is a bijection. Pictorially, it can be
presented by adding a triangular shape region (see Figure 2 below). This
transformation was first introduced by Sylvester [17] (see also [14]). Observe
that |πk(λ)| = |λ|+ (

k+1
2

)
, which immediately implies

(♦)
∑

µ∈Dk

t|µ| = t(
k+1
2 ) ∑

λ∈P≤k

t|λ| .

Summing (♦) over all k = 0, 1, 2, . . . we obtain one of the classical Euler
identities:

(¨)
∞∏

i=1

(1 + ti) = 1 +
∞∑

k=1

t(
k+1
2 )

(1− t)(1− t2) · · · (1− tk)
.

Let us present a generalization of Sylvester’s transformation. Fix an
infinite integer sequence A = (a0, a1, a2, a3, . . . ), where a0 > 0, and define
P(A) to be the set of partitions λ ∈ P which satisfy:

λ`−i − λ`−i+1 ≥ ai, for all i = 0, . . . , `− 1, where ` = `(λ), λ`+1 = 0.
For example, when A = (1, 0, 0 . . . ) we have P(A) = P. Similarly, when
A = (1, 1, 1, . . . ) we have P(A) = D.
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Denote by Pk(A) the set of partitions λ ∈ P(A) with `(λ) = k. Finally,
consider a map πk,A : P≤k → Pk(A) defined by

πk,A(λ1, . . . , λk−1, λk) = (λ1+a0+a1+. . .+ak−1, . . . , λk−1+a1+a0, λk+a0)

It is easy to see that πk,A is a bijection generalizing bijection πk defined
above. Define hk(A) = ak−1+2 ak−2+. . .+k a0, and observe that |πk,A(λ)| =
hk(A) + |λ|. We conclude:

(¨¨)
∑

λ∈P(A)

t|λ| = 1 +
∞∑

k=1

thk(A)

(1− t)(1− t2) · · · (1− tk)
.

5 Main results

Fix A = (1, a1, a2, . . . ) as above. DefineR(A) to be the set of joint partitions
(λ, µ) ∈ J such that λ ∈ P(A), µ ∈ D, and s(λ) ≤ s(µ). In R(A), let
R(A;n) be the subset of joint partitions (λ, µ) of n, i.e., |λ| + |µ| = n. Let
Rk(A) denote the set of joint partitions (λ, µ) ∈ R(A) with `(λ) = k, and
let R±(A) be the set of joint partitions (λ, µ) ∈ R(A) with (−1)`(µ) = ±1.
We tacitly use the corresponding notation for subsets of joint partitions.

Theorem 1. For any A = (1, a1, a2, . . . ) and any k, n ∈ N, we have

|R+
k (A; n)| − |R−k (A; n)| = δn,hk(A).

Thus we have the identity

∑

(λ,µ)∈R(A)

(−1)`(µ)q`(λ)t|λ|+|µ| =
∞∑

k=0

qkthk(A) .

Proof. We construct an involution κ : R(A) → R(A) which keeps `(λ)
fixed, and which changes the parity of `(µ) unless (λ, µ) ∈ R(A) is a fixed
point. Fixed points of κ are joint partitions (λ(k),∅), where λ(k) = πk,A(∅).
Since |λ(k)| = hk(A), this implies the result.

The involution κ is defined as follows. Start with (λ, µ) ∈ R(A) and let
k = `(λ). Define ν = π−1

k,A(λ) and (ν ′, µ′) = φ(ν, µ). Finally, let λ′ = πk,A(ν ′)
and set κ(λ, µ) = (λ′, µ′).
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Note that if `(λ) = `(ν), then the condition s(λ) ≤ s(µ) translates into
s(ν) = s(λ)−1 < s(µ), so the restriction of φ is applicable in this case. From
here and `(λ′) = `(λ), we conclude that κ is an involution, which restricts
to an involution on Rk(A). The fixed points of κ are the joint partitions
(λ, µ) = (λ(k),∅) which correspond to the fixed points (ν, µ) = (∅,∅) of the
involution φ. Moreover, by the construction of Vahlen’s involution φ, the
parity of µ′ differs from the parity of µ unless (ν, µ) is a fixed point of φ.
This completes the proof. ¤

The following result is a natural generalization of Theorem 1 to modular
diagrams (see e.g. [14]). Rather than define the latter, we state the result
in terms of joint partitions.

Fix an integer m and an infinite residue pattern r = (r1, r2, . . .), 1 ≤
ri < m for all i. Let B = (r;ma1,ma2, . . . ). Define R(B, m) to be the set of
joint partitions (λ, µ) ∈ J such that λ ∈ P(A), for A = (r1,ma1,ma2, . . .),
and with λi ≡ rk+1−i mod m (for i = 1, . . . , k = `(λ)), µ ∈ D, µi ≡ 0
mod m (for all i), and s(λ) < s(µ). Define R±k (B,m; n) similarly as before.
For k ∈ N, hk(B) is the smallest number n with Rk(B, m; n) 6= ∅ (the set
then contains a unique partition (λ(k),∅)).

Theorem 2. For any B = (r;ma1,ma2, . . . ) as above, we have

|R+
k (B,m; n)| − |R−k (B, m;n)| = δn,hk(B).

The proof follows verbatim the proof of Theorem 1. One should replace
Vahlen’s involution with its generalization as in (??). Similarly, one should
use the partition λ(k) and proceed as above. We omit the details.

6 Examples and special cases

Suppose A = (1, 0, 0, . . . ). Then P(A) = P, λ(k) = (1k), and hk(A) = k for
all k ≥ 1. Theorem 1 in this case gives:

Corollary 1. Let Q be the set of joint partitions (λ, µ) such that
s(λ) ≤ s(µ). Then

∑

(λ,µ)∈Q
(−1)`(µ)q`(λ)t|λ|+|µ| =

1
1− q t
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In particular, the set Q(n) of joint partitions (λ, µ) ∈ Q of n is of odd order
for all n.

When n = 3, we have Q(3) = {(3,∅), (21,∅), (13,∅), (12, 1), (1, 2)},
and therefore |Q(3)| = 5. The involution κ defined in the proof works as
follows:

(3,∅) ←→ (1, 2) , (21,∅) ←→ (12, 1) , (13,∅) ª .

When n = 4, we have Q(4) = {(4,∅), (31,∅), (22,∅), (212,∅), (14,∅),
(21, 1), (13, 1), (2, 2), (12, 2), (1, 3), (1, 21)}, and |Q(4)| = 11.

It is instructive to compare Corollary 1 with the following Gauss identity:

(>)
∞∏

i=1

1− ti

1 + ti
= 1 + 2

∞∑

k=1

(−1)ktk
2
.

This shows that the total number of joint partitions (λ, µ) of n is even for
all n ≥ 1.

Now suppose A = (1, 1, 1, . . . ). Then P(A) = D, λ(k) = (k, k−1, . . . , 2, 1),
and hk(A) =

(
k+1
2

)
for all k ≥ 1. Theorem 1 in this case gives:

Corollary 2. Let Q be the set of joint partitions (λ, µ) such that λ ∈ D
and s(λ) ≤ s(µ). Then

∑

(λ,µ)∈Q
(−1)`(µ)q`(λ)t|λ|+|µ| =

∞∑

k=0

qkt(
k+1
2 ) .

In particular, |Q(n)| is odd if and only if n is a triangular number.

When n = 5, we haveQ(5) = {(5,∅), (41,∅), (32,∅), (31, 1), (21, 2), (2, 3),
(1, 4), (1, 31)}, |Q(5)| = 8. Similarly, when n = 6, we have Q(6) = {(6,∅),
(51,∅), (42,∅), (321,∅), (41, 1), (31, 2), (21, 21), (21, 3), (3, 3), (2, 4), (1, 5),
(1, 41), (1, 32)}, and |Q(6)| = 13. An example of the involution κ in this
case is given in Figure 2.
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Figure 2. An example of the involution κ : (97631, 431) → (97632, 43).

In Theorem 2, suppose m = 2, r = 1 = (1, 1, 1, . . .), B = (1; 2, 2, . . . ).
Then R(B, 2) is the set of joint partitions (λ, µ), where λ is a partition into
distinct odd parts, µ is a partition into distinct even parts, and s(λ) ≤ s(µ).
Taking the union λ ∪ µ of the parts of λ, µ gives a bijection ι : R(B, 2) →
Q ⊂ D into the set of partitions τ into distinct parts with the smallest part
s(τ) odd. For k ∈ N, let Qk denote the set of partitions in Q with k odd
parts. Note that here λ(k) = (2k − 1, . . . , 3, 1), and hk(A) = k2. Theorem 2
in this case gives:

Corollary 3. Let Q(n) be the set of partitions of n into distinct parts,
with odd smallest part. For k ∈ N, let Q±k (n) denote the partitions in Q(n)
with k odd parts, and with an even and odd number of even parts, respec-
tively. Then

|Q+
k (n)| − |Q−k (n)| = δn,k2 .

In particular, |Q+(n)| − |Q−(n)| = 1 if n is a perfect square, and it is 0
otherwise.

Clearly, Corollary 3 extends Fine’s Theorem (see the introduction). When
n = 9 we have Q(9) = {9, 81, 63, 621, 531}, |Q(9)| = 5, and the involution
works as follows:

9 ←→ 81 , 63 ←→ 621 , 531 ª .

To see how the involution η = ικ ι−1 works in general, see Figure 3.
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Figure 3. An example of steps of the involution η : Q(52) → Q(52). Here
η(13, 10, 9, 7, 6, 4, 3) = (13, 10, 9, 7, 6, 4, 2, 1).

In Theorem 2, suppose m = 2, r = 1, B = (1; 0, 0, . . . ). For a parti-
tion τ let `1(τ) and `0(τ) denote the number of odd and even parts of τ ,
respectively. Similarly as for Corollary 3, we obtain the following result.

Corollary 4. Let Q be the set of partitions with distinct even parts and
odd smallest part. Then

∑

τ∈Q
(−1)`0(τ)q`1(τ)t|τ | =

1
1− q t

Let Q±(n) denote the set of partitions of n in Q with an even and odd
number of even parts, respectively, then in particular |Q+(n)|− |Q−(n)| = 1
for all n ≥ 1.
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When n = 7 we haveQ(7) = {7, 61, 512, 43, 421, 413, 321, 3212, 314, 215, 17},
|Q(7)| = 11. In particular, Corollary 4 says that |Q(n)| is always odd. As
in Corollary 1, it is instructive to compare this result with another Gauss
identity:

(>>)
∞∏

i=1

1− t2i

1 + t2i−1
=

∞∑

k=1

(−1)k−1 t(
k
2) .

This shows that the total number of partitions of n with no repeated even
parts is even unless n is a triangular number. From here we immediately
obtain the following result.

Corollary 4′. Let Q(n) be the set of partitions of n with distinct even
parts and even smallest part. Then |Q(n)| is even if and only if n is a
triangular number.

Consider the following generalization of the previous situation. Let j ∈
{1, . . . , m− 1}, r = (j, j, j, . . .) = j, B = (j; 0, 0, . . . ). Then we obtain:

Corollary 5. Let Q(n) be the set of partitions of n into parts ≡ 0, j
mod m, with the smallest part ≡ j mod m and no repeated parts divisible
by m. Let `0(τ) and `j(τ) denote the number of parts of τ congruent to 0
and j mod m, respectively. Then

∑

τ∈Q
(−1)`0(τ)q`j(τ)t|τ | =

1
1− q tj

In particular, the number of partitions in Q(n) with an even number of parts
divisible by m minus the number of partitions in Q(n) with an odd number
of parts divisible by m is equal to 1, whenever n is a multiple of j, and 0
otherwise.

The proof of the corollary follows verbatim the proof of Corollary 4. We
skip the details.

7 Variations on the theme

Rather than state general theorems, let us indicate in special cases a few
directions in which our results can be generalized.

Proposition 1. Let Q(n) be the number of partitions τ of n with
no repetitions of odd parts ≥ 3, and with odd largest part τ1 or smallest
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part s(τ) = 1. Let `0(τ) and `1(τ) denote the number of even and odd parts
in τ . Then ∑

τ∈Q
(−1)`0(τ)q`1(τ)t|τ | =

1
1− q t

In particular, |Q(n)| is odd, for all n ≥ 1.

In other words, partitions τ ∈ Q(n) satisfy the following conditions:
• |τ | = n,
• no part 3, 5, 7, . . . is repeated,
• s(τ) = 1 or τ1 is odd.
For example, Q(6) = {51, 412, 321, 313, 214, 2212, 16} and |Q(6)| = 7.
The proof of Proposition 1 follows along the same lines as the proof of

Corollary 4. Here the crucial difference is in the use of Vahlen’s involution:
instead of φ one should use its sister map ψ where the largest part is moved
in place of the smallest part.

Formally, define an involution ζ : Q → Q as follows. For τ ∈ Q, let 2a+1
be the largest odd part, and let 2b be the largest even part. If a ≥ b and
a > 0, i.e., when τ1 ≥ 3 is odd, define τ ′ = ζ(τ) to be the partition obtained
from τ by replacing the part 2a + 1 by the parts 1, 2a. Note that τ ′ ∈ Q
since s(τ ′) = 1. If b > a, i.e., when τ1 is even and s(τ) = 1, remove parts 1
and 2b from τ , and add part 2b + 1. Then τ ′ ∈ Q since τ ′1 = 2b + 1 is odd.
Finally, if τ1 = 1, i.e., τ = 1n, stay put.

For example, when n = 6, the involution ζ acts on Q(6) as follows:

51 ←→ 412 , 321 ←→ 2212 , 313 ←→ 214 , 17 ª .

Note that the number of odd parts is unchanged under ζ, while the parity of
the number of even parts changes unless τ = 1n. This implies Proposition 1.

Let D(n) be the set of partitions of n into distinct parts, and let D±(n)
denote the subsets of partitions with an even and odd number of parts,
respectively.

Proposition 2. (Euler) Let n ∈ N. Then |D+(n)| − |D−(n)| = (−1)k

if n = k(3k ± 1)/2 is a pentagonal number, and 0 otherwise.

Let D±1 (n) denote the subsets of partitions of D(n) with an even and
odd largest part, respectively.

Proposition 3. (Fine) Let n ∈ N. Then |D+
1 (n)| − |D−

1 (n)| = (−1)k

if n = k(3k ± 1)/2 is a pentagonal number, and 0 otherwise.

12



To prove these results, remove a pentagonal shape region of area k(3k±
1)/2 as in Figure 4 to obtain a joint partition (µ, ν), with µ1, ν1 ≤ k. Now
use Vahlen’s involution φ to these partitions. Check that φ changes parity
of λ1 and `(λ) unless λ is a fixed point. This implies the result.

Figure 4. A pentagonal shape in partitions with distinct parts.

Now, of course, Proposition 2 is exactly Euler’s Pentagonal Theorem (see
introduction). Proposition 3 is one of Fine’s theorems (see [15]). The result-
ing involution in this case coincides with Franklin’s involution as discovered
by Andrews [3]. We leave the details to the reader.

8 Final remarks

It is well known that the number p(n) of partitions of n take infinitely many
even and odd values. Can one use the kind of involution that we describe
to give a combinatorial proof of this result? We should point out that even
modulo 3 the distribution of p(n) remains open [5].

There is very little hope that known methods can lead to a combinatorial
proof of Ramanujan’s congruences p(5n − 1) ≡ 0 mod 5, even in view of
Dyson’s rank interpretation. In Oliver Atkin’s words3, “it is probably bad
advice to a young man to look for a true combinatorial proof [of Ramanujan’s
congruences].”

The form of the curious identities (1.5) and (1.6) from [4] suggests that
they should have an involutive proof in a similar manner. Despite several
attempts such a proof eluded the authors. We hope the reader give it a try.

The name “joint partitions” was coined recently by Don Knuth as a bet-
ter alternative to a term “overpartitions” existing in the literature (cf. [14])
The notion of MacMahon diagrams was rediscovered on many occasions,
especially in connection with “m-modular diagrams” (see [14]).

Fine’s Theorem was announced in [8]. Its proof first appeared in print
forty years later in Fine’s book [9]. See [15] for a history of these results as

3This quote is taken from a letter of Atkin to the second author.
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well as some “missed opportunities.”
Both Gauss identities (>) and (>>) have involutive proofs [1]. Thus one

can use an involution principle to prove Corollary 4′ bijectively (see e.g. [14]).
Can one find an “involution principle free” bijective proof? In a different
direction, can one start with these involutions and refine them to obtain new
partition congruences? What about Schur’s celebrated involution? (see [14])

Finally, can one use the second version of restricted Vahlen’s involution
on S≤k ⊂ J (see Section 3) to construct further partition congruences?

Acknowledgements. We would like to thank George Andrews and
Don Knuth for the interest in the subject and engaging discussions. The
second author was supported by the NSA and the NSF.
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