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Abstract. We investigate the problem of sampling integer points in rational polyhe-
dra provided an oracle for counting these integer points. When dimension is bounded,
this assumption is justified in view of a recent algorithm due to Barvinok [B1,B2,BP].

We show that the exactly uniform sampling is possible in full generality, when the
oracle is called polynomial number of times. Further, when Barvinok’s algorithm is
used, poly-log number of calls suffices.

Introduction

Let P ⊂ R
d be a rational polyhedron of dimension d, where d is a fixed constant.

Let B = P∩Z
d be the set of integer points in P. In a pioneering paper [B2], Barvinok

presented an algorithm for computing |B| in time polynomial in the size of the
input. In sharp contrast with various approximation algorithms (see [DFK,KLS]),
Barvinok’s algorithm is algebraic, and by itself insufficient for sampling from B,
i.e. picking a uniformly random integer point in P . In this paper we show how one
can efficiently utilize advantages of this algorithm for uniform sampling from B.

The problem of uniform sampling of integer points in polyhedra is of interest
in computational geometry as well as in enumerative combinatorics, algebraic ge-
ometry, and Applied Statistics (see [Br,DG,DKM,Sta,Stu]). There are numerous
algorithms for uniform sampling of combinatorial objects (see e.g. [PW,W]), which
often can be viewed as integer points in very special rational polyhedra. In sta-
tistics, one often need to obtain many independent uniform samples of the integer
points in certain polyhedra (e. g. the set of contingency tables) to approximate
a certain distribution on them (e. g. χ2 distribution). We refer to [DE,DG] for
references and details.

Let us note that Monte Carlo algorithms for nearly uniform sampling, based on
a Markov chain approach, have been of interest for some time. Remarkable poly-
nomial time algorithms (polynomial in even the dimension!) have been discovered

Key words and phrases. Rational polyhedra, integer points, random sampling, Barvinok’s
algorithm.

Typeset by AMS-TEX

1



2 IGOR PAK

(see [DFK,KLS]). These algorithms, however, work under certain “roundness” as-
sumptions on polytopes and miss some “hard to reach” points. Theoretical results
(see [DKM]) show hardness of uniform sampling in time polynomial in dimension.
While the dimension of polytopes often grows quickly in cases of practical interest,
it still remains to be seen what can be done when the dimension is bounded.

By L everywhere below we denote the bit size of the input, and d will denote
the dimension (cf. [Sc]).

Theorem 1. Let P ⊂ R
d be a rational polytope, and let B = P ∩ Z

d. Assume

an oracle can compute |B| for any P as above. Then there exists a polynomial time

algorithm for sampling uniformly from B which calls this oracle O(d2 L2) times.

Theorem 2. In conditions of Theorem 1, there exists a polynomial time algo-

rithm for sampling uniformly from B which calls Barvinok’s algorithm O(d2 log L)
times.

1. Uniform sampling

First we shall prove Theorem 1. Here is a general strategy. We will find a
hyperplane H such that α = |B ∩H+|/|B| and β = |B ∩H−|/|B| ≤ 1

2 , where H−,

H+ are the two halfspaces of R
d \H. Note that we can have γ = |B ∩H|/|B| ≥ 1

2 ,
α+β +γ = 1. Then sample a random variable with three outcomes,with respective
probabilities α, β, γ. Depending on the outcome, reduce the overall problem to the
smaller subproblem. Observe that either dimension drops, or the the number of
integer points is reduced by a factor ≥ 2. On the other hand, the dimension can
be decreased at most d times. Since the number of integer points is exp

(

O(dL)
)

,
we need O(dL) times to halve it.

To find the hyperplane as above, consider all level hyperplanes x1 = C, where
xi are coordinates in V = R

d. Clearly, for some integer C this defines H as above.
Now determine the constant C by binary search. Recall that C is bounded by
c1 ≤ C ≤ c2, where c1, c2 are polynomial in exp(dL). Checking whether conditions
α, β ≤ 1

2 are satisfied requires two calls of an oracle for each constant to be tested,
the total number of calls to half the polytope is O(dL). Combining with the
previous observation, this completes the proof of Theorem 1. ¤

2. Using Barvinok’s algorithm

The strategy is similar, but we will choose a desired constant C in a “smarter
way”, by utilizing the full power of Barvinok’s algorithm.

Recall the idea of the algorithm in [B2] (see also [B1,BP]). Given a presentation
of P by equations and inequalities, Barvinok computed F (x) = F (x1, . . . , xd; P)
defined as

F (x1, . . . , xd) =
∑

m=(m1,...,md)∈B

xm,

where xm = xm1

1 · . . . · xmd

d . The solution is given in the form

(∗) F (x) =
∑

j∈J

ǫj

xaj

(1 − xb1,j ) · . . . · (1 − xbd,j )
,
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where ǫj ∈ {±1}, J = {1, . . . , r}, and aj , bi,j ∈ Z
d, are of size LO(d), polynomial in

the size of the input. Now |B| = F (1, . . . , 1), where the substitution is taken with
care (cf. [DK]).

The real meaning of (∗) is that F is presented as a short alternating sum of the
integer points of unimodular cones (with det = ±1). These cones originate in the
vertices aj of the polytope P. It is crucial that the number of cones r = |J | = LO(d),
and was shown in [B2] that this bound can be achieved.

Now we can present our algorithm which proves Theorem 2. For simplicity
assume that P ∈ R

d
+, and has no facets parallel to H = {x1 = 0} (otherwise,

one can always find a unimodular transformation of V which places P in general
position).

Let us orient all unimodular cones “upward”, i.e. to not intersect H. Simply,
for each bi,j ∈ H− make a substitution b′i,j = −b′i,j , ǫ′j = −ǫj , a′

j = aj − bi,j .
Geometrically, this corresponds to flipping a cone in an appropriate cone with
the same defining hyperplanes but different orientation. This is possible since the
function F (x) ≡ 0 for sets containing lines (see part 4) of Theorem 3.1 in [BP]).
Algebraically, this corresponds to substitution

1

1 − z−1
=

−z

1 − z

for every z = xbi,j , bi,j ∈ H−.
Now observe that the volume vol(P ∩ {x1 ≤ C}) is piecewise polynomial in C,

with the polynomial changing at first coordinate of vertices. Use binary search
as in the previous section to determine between which of these the desired C lies
(such that α, β ≤ 1

2 as in section 1.) The number of vertices is at most Ld, so
O(log L) calls of an oracle suffices. One can simply pick random vertices, use oracle
to determine the probabilities of restricting the polytope to either half, etc. With
probability ≥ 1/2 at most 3/4 fraction of the points will remain in the half, so it
will take O(d log L) iterations. At the end we obtain that the desired “random”
point has been sampled uniformly from a polytope Q = P ∩ {c1 ≤ x1 ≤ c2}.

Consider the structure of the polytope Q. Let QC = Q∩{x1 ≤ C}. From above,
the volume vol(QC) is polynomial in C degree C. Recall that we have presented
all integer points in Q as an alternating sum of the integer points in the unimodular
cones Rj , j ∈ J , since each cone Rj is chosen to have a compact intersection with
a plane {x1 = C}.

Fix one cone R = {a + µ1b1 + · · · + µdbd |µi ∈ R+}, where a, bi ∈ Z
d. For

simplicity, assume a = 0. Denote by M the sum of the first coordinates of bi (all
positive, from above). Observe that every integer point in RC−M corresponds to a
block of volume 1 in Qc, which implies that

∣

∣RC−M ∩ Z
d
∣

∣ ≤ vol(RC) ≤
∣

∣RC+M ∩ Z
d
∣

∣.

By linearity, the above inequality holds for QC as well.
Now, the volume vol(RC) as a polynomial of degree d in C can be explicitly

computed from a, bi and c1. Thus we obtain an explicit polynomial f(C) for the
volume of QC . Let N = |Q ∩ Z

d|, and pick a random number n ∈ {1, . . . , N}.
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Estimate the unique solution C0 of the equation f(C) = n (up to the nearest
integer). Then use binary search to determine the desired C ∈ {C0−M, . . . , C0+M}
(i.e. such that α, β ≤ 1

2 ). This will require O(log L) oracle calls. Then proceed as
in section 1.

Adding up the number of calls for Barvinok’s algorithm, we conclude that for
each of the d directions we need to call it O(d log L) times. This completes the
proof of Theorem 2. ¤

3. Concluding remarks

It remains to be seen if Barvinok’s algorithm is efficient in practice. In theory,
it has LO(d) cost, which is perhaps excessive unless general assumptions are made.
In particular, recall that one needs to calculate all vertices of the polyhedron when
running Barvinok’s algorithm. The main point of this note is to show that at a
small additional cost one can use the algorithm for sampling of integer points in
the convex hull as well.

Let us give a few simple observations to show that the performance of our al-
gorithm is somewhat better than we showed. First, recall that in section 2 all
polytopes QC have the same combinatorial structure and thus covered by the sec-
ond part of Theorem 4.4 in [BP]. Also, the estimate O(d2 log L) is too conservative.
One can make an argument that O(d log L) is enough when the hyperplane H is
chosen appropriately. Roughly, one can choose hyperplanes in general position and
avoid paying the “dimension price”. Additional analysis of our simple algorithm
is unnecessary since the dominating term - cost of Barvinok’s algorithm - grows
exponentially with the dimension.

Note that when faster approximation algorithms are available, one can use them
in place of a counting oracle everywhere when determining which hyperplane to
use. But the probabilities must be determined by the precise counting oracle since
the errors will blow up otherwise.

Finally, when the function to be approximated on integer points is polynomial
or exponential, one can use Barvinok’s algorithm to obtain the exact result. In
general, however, our approach can be effective.
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