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Abstract. In this paper we present a systematic approach to enumeration of differ-
ent classes of trees and their generalizations. The principal idea is finding a bijection
between these trees and some classes of Young diagrams or Young tableaux. The

latter arise from the remarkable representation of the symmetric group studied by
Haiman in connection with diagonal harmonics (see [7]).

Define the vector space V ≃ ⟨xa1
σ(1)

. . . xan
σ(n)

|σ ∈ Sn, 0 ≤ ai ≤ i − 1, 1 ≤ i ≤
n⟩. Let the symmetric group Sn act on Vn by the permutation of variables. It is
known that dim(Vn) = (n + 1)n−1 is equal to the number of labeled trees, and

dim(Vn)Sn = 1
n+1

(2n
n

)
is equal to the number of plane trees with n vertices. There

are combinatorial interpretations for the other multiplicities. We generalize all the
results in case of k-dimensional trees and (k + 1)-ary trees.

1. Introduction.

Define a vector space

(1–1) V ≃ ⟨xa1σ(1) . . . x
an
σ(n)| σ ∈ Sn, 0 ≤ ai ≤ i− 1, 1 ≤ i ≤ n⟩

Let the symmetric group Sn act on V by the permutation of variables. Call this
representation Tn. It has been studied by Mark Haiman in [7] in connection with
diagonal harmonics. He also found the following property of Tn.

Take a vector space U ≃ Cn+1 and W ≃ U⊗n. Let the symmetric group Sn act
on V by permutation of coordinates. Then in a ring of characters

(1–2) Tn =
1

n+ 1
W
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From here we immediately have:

(1–3) dim(Tn) = (n+ 1)n−1

i.e. dim(Tn) is equal to the number of labeled trees with n + 1 vertices (see e.g.
[6,8,17,23]).

Denote Sλ an irreducible representation of Sn associated with the Young diagram
λ (see [9,16,22,24]). Now we can find multiplicities of Sλ in Tn.

Consider an action of the GL(n+ 1) on W by linear transformations on each V
in W ≃ V ⊗V ⊗· · ·⊗V . By the Schur–Weyl duality (see [26]) and the hook-content
formula for the dimension of the irreducible representation of GL(n + 1) (see e.g.
[9,16,24]) , the multiplicity of Sλ in Sn-module W is given by the following formula:

(1–4) c(Tn, S
λ) =

1

n+ 1

∏
(i,j)∈λ

n− i+ j + 1

h(i, j)

where h(i, j) = λi + λ′
j − i− j + 1 is the hook length.

In particular, we have:

(1–5) dim(Tn)
Sn =

1

n+ 1

(
2n

n

)
i.e. the dimension of invariants is equal to the Catalan number (see [7]). This
number has numerous interpretations, such as the number of plane trees with n+1
vertices or to the number of triangulations of a polygon with n+2 vertices (see e.g.
[6,8,15,23]).

More generally, we have:

(1–6) c(Tn, S
(n−l,1l)) =

1

n+ 1

(
2n− l

n

)(
n− 1

l

)
i.e. this multiplicity equal to the number of polygonal subdivisions of (n + 2)-gon
with (n− l) regions (see [20]).

The main goal of our paper is to explain that all the previous observations are
not coincedental, but a part of the general picture. We shall present a set of
bijections which prove all these and many other results with their k-dimensional
generalizations.

In Section 2 of the abstract we shall state precisely what kind of combinatorial
object appear in this case. In Section 3 we point at the k-dimensional generaliza-
tions.

2. Main results

We shall recall definitions of Young diagrams and Young tableaux (see e.g [16,22,24]).
The Young diagram of a partition λ = (λ1, λ2, . . . ) is a set of 1×1 lattice squares

with centers at points (i, j), 1 ≤ j ≤ λi (see diagram (4, 3, 1) on Fig. 3–1. Skew
Young diagram is a set theoretic difference of two Young diagrams. Horisontal
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stripe is a skew Young diagram which contains exactly one square in each column.
Cn-diagram is a horisontal stripe with n squares inside the staircase shape diagram
δn = (n, n− 1, . . . , 1). Denote CDn the set of all Cn-diagrams.

Young tableau of a shape λ ⊢ n is a function on the Young diagram λ into Z,
which is nondecreasing in rows and strictly increasing in columns. Young tableau is
standard if it’s a bijection into {1, 2, . . . }. Cn-tableau is a standard Young tableau
of shape Cn-diagram. We draw them by putting values inside the squares. Denote
CT n(λ) the set of Cn-tableaux of shape λ, and CT n the set of all Cn-tableaux.

We call ν1 ◦ ν2 the disjoint union of diagrams ν1 and ν2. Then horisontal stripe
is simply a union of rows.

The weight of a tableau A is a sequence ω(A) = (w1, w2, . . . ), where ωi is the
number of elements i in A. Denote CT n(λ) the set of all CTn-tableaux A with
weight ω(A) = λ.

With each skew Young diagram ν is associated a representation Sν of Sn (see
e.g. [16,22,26]). In particular, monomial representation Mλ correspons to a skew

diagram λ̃ = λ1 ◦ λ2 ◦ . . . .

Proposition 2.1.

(2–1) Tn =
∑

ν∈CDn

Sν

From here and the Young rule (see e.g. [M, St], we have:

Proposition 2.2.

(2–2) c(Tn, S
λ) = |CT n(λ)|

Definition 2.3. A sequence a = (a1, . . . , an), 1 ≤ ai ≤ n is called majorating
sequence if #{j|aj ≤ i} ≥ i for all i = 1, . . . , n (see [13,14]). Denote Mn a set of
all majorating sequences.

Define a Dyck sequence b = (b1, . . . , b2n), bi ∈ {1;−1} by the following inequali-
ties: b1 + b2 + · · ·+ bi ≥ 0, i = 1, . . . , 2n− 1, and b1 + · · ·+ b2n = 0. Denote DSn
the set of all Dyck sequences of length 2n.

Definition 2.4. Define the following sets of trees:

1) Ln be a set of labeled trees with n vertices,

2) Pn be a set of plane trees with n vertices ,

3) Bn be a set of nonlabeled binary trees with n vertices,

4) IBn be a set of increasing in both directions binary trees with n vertices,

5) RBn be the set of increasing to the right binary trees with n vertices,

6) ILn be the set of increasing labeled trees with n vertices.

Define surjections ρ : Ln → Pn and τ : RBn → Bn by forgetting labels of the
vertices. Analogously ϵ : CT n → CDn is a surjection which maps tableau into it’s
shape.
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Main Theorem 2.5. There is a set of natural bijections which form the following
commutative diagram:

DSn ←−−−−
κ

Mn

η⋆
y η

y
CDn ←−−−−

ϵ
CT n

ψ⋆

y ψ

y
Bn ←−−−−

τ
RBn ←−−−−

ιB
IBn

φ⋆

y φ

y φ

y
Pn ←−−−−

ρ
Ln ←−−−−

ιL
ILn

where ι is simply an inclusion operator.

Remark. We actually present in our paper all these bijections. Some of them are
new, some can be found in the literature (see [1,4,5,10,12,23,25])

4. k-generalizations

Here we point on a k-generalization of all results in Section 2.
We can analogously define generalized vector space V as follows:

(3–1) V ≃ ⟨xa1si(1) . . . x
an
si(n)| σ ∈ Sn, 0 ≤ ai ≤ k(i− 1), 1 ≤ i ≤ n⟩

with action of the symmetric group Sn as before. Call this representation T kn .
It has a dimension

(3–2) dim(T kn ) = (kn+ 1)(n−1)

i.e. equal to the number of k-dimensional trees (see [2,8]).

Using Schur-Weyl duality and the hook-length formula we have

(3–3) c(T kn , S
λ) =

1

kn+ 1

∏
(i,j)∈λ

kn+ i− j + 1

h(i, j)

In particular,

(3–4) dim(T kn )
Sn =

1

kn+ 1

(
(k + 1)n

n

)
i.e. the dimension of invariants is equal to the k-Catalan number (see f.e. [3])

and the number of (k + 1)-ary trees (see [11]).
We claim that in this situation everything works the same way, and we get an

exact analog of the Main Theorem.
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[21] C. Rényi, A. Rényi, Combinatorial Theory and its Applications I, North–Holland, Ams-

terdam, 1970.
[22] B. E. Sagan, The Symmetric Group, Wadsworth & Brooks/Cole, California, 1991.
[23] R. P. Stanley, Enumerative Combinatorics, Vol. 1, Wadsworth & Brooks/Cole, California,

1986.

[24] R.P. Stanley, Theory and applications of plane partitions, Stud. Appl. Math. 50 (1971),
167–188.

[25] D. Stanton, D. White, Constructive Combinatorics, Undegraduate Texts in Mathematics,
Springer–Verlag, Berlin, 1986.

[26] H. Weyl, Classical Groups,, Princeton University Press, Princeton, NJ, 1939.


